Journal of Archaeological Method and Theory

, Volume 26, Issue 1, pp 185–216 | Cite as

Integrated Geophysical Techniques for the Archaeological Investigation of LbDt-1, a Paleo-Inuit Lithic Quarry Site in the Interior of Southern Baffin Island, Nunavut, Canada

  • David B. LandryEmail author
  • Ian J. Ferguson
  • Brooke Milne
  • Mulu Serzu
  • Robert W. Park


In 2015, we mapped surface and near-surface physical properties of a Paleo-Inuit lithic quarry site, LbDt-1, located in the interior of southern Baffin Island, Nunavut, Canada using a multi-method approach. The survey site is characterised by a dense chert flake deposit. The purpose of the survey was to document this survey site’s surface features using three-dimensional laser scanning and to investigate the utility of active remote sensing and geophysical methodologies at prehistoric lithic quarry sites. Manual and automated data reduction, interpretation and inversion methods were applied across each dataset to isolate the surface and subsurface distribution of flakes. Laser scanning results demonstrate a remarkable dispersal of surface chert flakes confined to a general area of the geophysical survey. To define the base of the lithic deposit layer, a combination of enhanced radar reflections and two-layer inversion models of magnetic responses obtained using electromagnetic measurements was used. Radar results suggest the deposit has a thickness of around 10–20 cm and indicate that there are no additional parts of the deposit masked by soil in this area. The magnetic susceptibility data define an upper layer of ~ 20 cm thickness and susceptibility (0.004–0.008 SI) overlying a less magnetic (< 0.004 SI) lower layer, with the spatial variations in the upper layer suggesting debitage and gravel deposits have lower magnetisation than the topsoil at the site. Overall, this study demonstrates the capacity of remote sensing and geophysical methods to non-invasively investigate some prehistoric activities without the need for full-scale excavation and the collection of large material assemblage characteristic of lithic quarry sites.


Ground penetrating radar Magnetic susceptibility Lithic quarries Chert Paleo-Inuit 



The authors gratefully acknowledge contributions to this research from the following people: Douglas Stenton (Department of Culture and Heritage, Government of Nunavut), Reid Campbell (University of Manitoba), Rick Armstrong and Mary Ellen Thomas (Nunavut Research Institute, Iqaluit, NU), L. Conyers and two anonymous reviewers.

Funding Information

Funding support for this research was generously provided by the Social Sciences and Humanities Research Council of Canada’s Insight Grant Program (No. 435-2012-1176; Milne, Fayek, Park, Stenton), the Canada Foundation for Innovation—John R. Evans Leaders Fund Project (No. 25071; Milne), the Manitoba Research and Innovation Fund (Milne), the Manitoba Heritage Grants Program (No. 12F-H145; Milne), the Social Sciences and Humanities Research Council Doctoral Award (Landry), University of Manitoba Graduate Fellowship (Landry), Northern Scientific Training Program (Landry), the University of Manitoba, Faculty of Graduate Studies SSHRC Graduate Enhancement of Tri-Council Stipends Scholarship (Landry) and the Polar Continental Shelf Project (Natural Resources Canada, Earth Sciences Sector Project No. 647-13).


  1. Andrefsky, W. (2009). The analysis of stone tool procurement, production, and maintenance. Journal of Archaeological Research, 17(1), 65–103.Google Scholar
  2. Andrews, B. W., Murtha, T. M., & Scheetz, B. (2004). Approaching the Hatch Jasper quarry from a technological perspective: a study of prehistoric stone tool production in Central Pennsylvania. Midcontinental Journal of Archaeology, 29(1), 63–101.Google Scholar
  3. Annan, A. P. (2005). Ground-penetrating radar. In D. K. Butler (Ed.), Near-surface geophysics (pp. 357–438). Society of Exploration Geophysicists.Google Scholar
  4. Bamforth, D. B. (2006). The Windy Ridge quartzite quarry: hunter-gatherer mining and hunter-gatherer land use on the North American continental divide. World Archaeology, 38(3), 511–527.Google Scholar
  5. Beamish, D. (2011). Low induction number, ground conductivity meters: a correction procedure in the absence of magnetic effects. Journal of Applied Geophysics, 75(2), 244–253.Google Scholar
  6. Bellian, J. A., Kerans, C., & Jennette, D. C. (2005). Digital outcrop models: applications of terrestrial scanning LiDAR technology in stratigraphic modeling. Journal of Sedimentary Research, 75(2), 166–176.Google Scholar
  7. Bonsall, J., Fry, R., Gaffney, C., Armit, I., Beck, A., & Gaffney, V. (2013). Assessment of the CMD mini-explorer, a new low-frequency multi-coil electromagnetic device, for archaeological investigations. Archaeological Prospection, 20(3), 219–231. Scholar
  8. Brosten, T. R., Bradford, J. H., McNamara, J. P., Gooseff, M. N., Zarnetske, J. P., Bowden, W. B., & Johnston, M. E. (2009). Estimating 3D variation in active-layer thickness beneath Arctic streams using ground-penetrating radar. Journal of Hydrology, 373(3–4), 479–486.Google Scholar
  9. Brumbach, H. J. (1987). A quarry/workshop and processing station on the Hudson River in Pleasantdale, New York. Archaeology of Eastern North America, 15, 59–83.Google Scholar
  10. Burke, A. L. (2007). Quarry source areas and the organization of stone tool technology: a view from Quebec. Archaeology of Eastern North America, 35, 63–80.Google Scholar
  11. Byrd, B. F., Young, D. C., & McGuire, K. R. (2009). Pavement, quarries, gypsum period residential stabiltity, and trans-Holocene settlement systems of the Mohave Desert: a case study at Fort Irwin. Journal of California and Great Basin anthropology, 29(2), 121–144.Google Scholar
  12. Campbell, R. (2016). Experimental approach to the resolution and detection limit of the GSSI SIR3000 GPR system with a 400 MHz antenna in a scattering and non-scattering medium. Unpublished report to Dept. Geological Sciences, University of Manitoba, 32 pp.Google Scholar
  13. Conyers, L. B. (2015). Analysis and interpretation of GPR datasets for integrated archaeological mapping. Near Surface Geophysics, 13(6), 645–651.Google Scholar
  14. Conyers, L. B. (2016). Ground-penetrating radar for geoarchaeology. Wiley-Blackwell.Google Scholar
  15. Dafflon, B., Hubbard, S. S., Ulrich, C., & Peterson, J. (2013). Electrical conductivity imaging of active layer and permafrost in an Arctic ecosystem, through advanced inversion of electromagnetic induction data. Vadose Zone Journal, 12(4).
  16. Dalan, R. A. (2006). Magnetic susceptibility. In J. K. Johnson (Ed.), Remote sensing in archaeology: an explicitly North American perspective (pp. 161–203). The University of Alabama Press: Tuscaloosa.Google Scholar
  17. Dallimore, S. R., & Davis, J. L. (1992). Ground penetrating radar investigations of massive ground ice. In: J. Pilon (ed.) Ground penetrating radar (pp. 41–48), Geological Survey of Canada, Paper 90(4).Google Scholar
  18. Ericson, J. E. (1984). Towards the analysis of lithic production systems. In J. E. Ericson & B. A. Purdy (Eds.), Prehistoric quarries and lithic production. New directions in archaeology (pp. 1–10). Cambridge: Cambridge University Press.Google Scholar
  19. Erwin, J. C. (2010). Dorset Palaeoeskimo quarrying techniques and the production of little pots at Fleur de Lys, Newfoundland. In M. Brewer-LaPorta, A. Burke, & D. Field (Eds.), Ancient mines and quarries: a trans-Atlantic perspective (pp. 56–66). Oxbow Books: Oxford.Google Scholar
  20. Evans, M., & Heller, F. (2003). Environmental magnetism: principles and applications of enviromagnetics. San Diego, USA: Elsevier Science.Google Scholar
  21. Everett, M. E., & Meju, M. A. (2005). Near-surface controlled-source electromagnetic induction: background and recent advances. In Y. Rubin & S. S. Hubbard (Eds.), Hydrogeophysics (pp. 157–183). Springer: Dordrecht, the Netherlands.Google Scholar
  22. Fitterman, D. V., & Labson, V. F. (2005). Electromagnetic induction methods for environmental problems. In D. K. Butler (Ed.), Near-surface geophysics (pp. 301–355). Society of Exploration Geophysicists.Google Scholar
  23. Gacitúa, G., Tamstorf, M. P., Kristiansen, S. M., & Uribe, J. A. (2012). Estimations of moisture content in the active layer in an Arctic ecosystem by using ground-penetrating radar profiling. Journal of Applied Geophysics, 79, 100–106.Google Scholar
  24. Goodyear, A. C., & Charles, T. (1984). An archaeological survey of chert quarries in western Allendale County, South Carolina. Research Manuscript Series, 187.Google Scholar
  25. Gramly, R. M. (1978). Lithic source areas in Northern Labrador. Arctic Anthropology, 15, 36–47.Google Scholar
  26. Grote, K., Crist, T., & Nickel, C. (2010). Experimental estimation of the GPR groundwave sampling depth. Water Resources Research, 46(10).Google Scholar
  27. Güth, A. (2012). Using 3D scanning in the investigation of Upper Palaeolithic engravings: first results of a pilot study. Journal of Archaeological Science, 39(10), 3105–3114.Google Scholar
  28. Harris, S. A. (1982). Identification of permafrost zones using selected permafrost landforms. In: Proceedings of the fourth annual Canadian permafrost conference, 49–58.Google Scholar
  29. Hinkel, K. M., Doolittle, J. A., Bockheim, J. G., Nelson, F. E., Paetzold, R., Kimble, J. M., & Travis, R. (2001). Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska. Permafrost and Periglacial Processes, 12(2), 179–190.Google Scholar
  30. Huang, H., & Fraser, D. C. (2003). Inversion of helicopter electromagnetic data to a magnetic conductive layered earth. Geophysics, 68(4), 1211–1223.Google Scholar
  31. Huang, H., Won, I. J., & San Filipo, B. (2003). Detecting buried nonmetal objects using soil magnetic susceptibility measurements. AeroSense, 2003, 1181–1188.Google Scholar
  32. Hull, S., Fayek, M., Mathien, F. J., Shelley, P., & Durand, K. R. (2008). A new approach to determining the geological provenance of turquoise artifacts using hydrogen and copper stable isotopes. Journal of Archaeological Science, 35(5), 1355–1369.Google Scholar
  33. Isenburg, M. (2015). LAStools efficient tools for LiDAR processing. (Version 1.3). Retrieved from
  34. Kessler, R. A., Beck, C., & Jones, G. T. (2009). Trash: The Structure of Great Basin Palaeoarchaic Debitage Assemblages in Western North America. In B. Adams & B. S. Blades (Eds.), Lithic Materials and Paleolithic Societies (pp. 144–159). New York: Wiley-Blackwell.Google Scholar
  35. Kneisel, C., Hauck, C., Fortier, R., & Moorman, B. (2008). Advances in geophysical methods for permafrost investigations. Permafrost and Periglacial Processes, 19(2), 157–178.Google Scholar
  36. Knight, R. J., & Nur, A. (1987). The dielectric constant of sandstones, 60 kHz to 4 MHz. Geophysics, 52(5), 644–654.Google Scholar
  37. Landry, D. B., Ferguson, I. J., Milne, S. B., & Park, R. W. (2015). Combined geophysical approach in a complex Arctic archaeological environment: A case study from the LdFa-1 site, southern Baffin Island, Nunavut. Archaeological Prospection, 22(3), 157–170.Google Scholar
  38. Landry, D. B., Milne, S. B., Park, R. W., Ferguson, I. J., & Fayek, M. (2016). Manual point cloud classification and extraction for hunter-gatherer feature investigation: a test case from two low Arctic Paleo-Inuit sites. Open Archaeology, 2(1), 232–242.Google Scholar
  39. Larsen, B. P., Holdaway, S. J., Fanning, P. C., Mackrell, T., & Shiner, J. I. (2017). Shape and an outcome of formation history: Terrestrial laser scanning of shell mounds from far north Queensland, Australia. Quaternary International, 427(A), 5–12.Google Scholar
  40. Lazenby, M. E. C. (1980). Prehistoric Sources of Chert in Northern Labrador: Field Work and Preliminary Analyses. Arctic, 33(3), 628–645.Google Scholar
  41. McNeill, J.D. (1980). Electromagnetic terrain conductivity measurement at low induction numbers. Tech. Note TN-6. Geonics Ltd., Mississauga, ON.Google Scholar
  42. McNeill J.D. (2012) Archaeological mapping using the Geonics EM38B to map terrain magnetic susceptibility (with selected case histories). Tech. Note TN-35, Geonics Ltd., Mississauga, ON.Google Scholar
  43. McNeill, J & Bosnar M. (1999). Application of ‘dipole–dipole’ electromagnetic systems for geological depth sounding. Tech. Note TN-31, Geonics limited: Mississauga, ON.Google Scholar
  44. Mester, A., van der Kruk, J., Zimmermann, E., & Vereecken, H. (2011). Quantitative two-layer conductivity inversion of multi-configuration electromagnetic induction measurements. Vadose Zone Journal, 10(4), 1319–1330. Scholar
  45. Milne, S. B. (2013). Chert sourcing and Palaeo-Eskimo stone tool technology. Report on work conducted under Nunavut Archaeological Permit No. 2013-02A. Manuscript on file with the Department of Culture, Language, Elders and Youth, Government of Nunavut, Igloolik, Nunavut.Google Scholar
  46. Milne, S. B. (2015). Chert sourcing and Palaeo-Eskimo stone tool technology: permit report on work conducted under Nunavut archaeological permit no. 2015-21A. Department of Culture, Language, Elders and Youth, Government of Nunavut, Igloolik, Nunavut.Google Scholar
  47. Milne, S. B., Park, R. W., Hamilton, A. C., & Fayek, M. J. (2011). Chert sourcing and Palaeo-Eskimo raw material use in the interior of southern Baffin Island, Arctic Canada. Canadian Journal of Archaeology, 35(1), 117–142.Google Scholar
  48. Minchak, S. A. (2010). A microwear study of Clovis blades from the Gault Site, Bell County, Texas (Doctoral dissertation, Texas A & M University).Google Scholar
  49. Moorman, B. J., Robinson, S. D., & Burgess, M. M. (2003). Imaging periglacial conditions with ground-penetrating radar. Permafrost and Periglacial Processes, 14(4), 319–329.Google Scholar
  50. Parish, R. M. (2013). The application of reflectance spectroscopy to chert provenance of Mississippian symbolic weaponry. Doctoral dissertation, University of Memphis.Google Scholar
  51. Pilon, J.A., Allard, M., & Séguin, M.K. (1992). Ground probing radar in the investigation of permafrost and subsurface characteristics of surticial deposits in Kangiqsualujjuaq, Northern Quebec. In: J. Pilon (ed.) Ground penetrating radar (pp. 165–175), Geological Survey of Canada, Paper 90(4).Google Scholar
  52. Robinson, D. A., Lebron, I., Lesch, S. M., & Shouse, P. (2004). Minimizing drift in electrical conductivity measurements in high temperature environments using the EM-38. Soil Science Society of America Journal, 68(2), 339–345.Google Scholar
  53. Romero, B. E., & Bray, T. L. (2014). Analytical applications of fine-scale terrestrial lidar at the imperial Inca site of Caranqui, northern highland Ecuador. World Archaeology, 46(1), 25–42.Google Scholar
  54. Schwamborn, G., Wagner, D., & Hubberten, H. W. (2008). The use of GPR to detect active layers in young periglacial terrain of Livingston Island, Maritime Antarctica. Near Surface Geophysics, 6(5), 331–336.Google Scholar
  55. Snegirev, A. M., Velikin, S. A., Istratov, V. A., Kuchmin, A. O., Skvortsov, A. G. and Frolov, A. D. (2003). Geophysical monitoring in permafrost areas. In Permafrost: 8th international conference on permafrost, Zurich, pp. 1079–1084.Google Scholar
  56. Stenton, D. R., & Park, R. W. (1998). Ancient Harpoon Heads of Nunavut: An Illustrated Guide [in English and Inuktitut]. Parks Canada, Department of Canadian Heritage, Government of Canada, Iqaluit. 108 pp.Google Scholar
  57. Tarnocai, C., & Bockheim, J. G. (2011). Cryosolic soils of Canada: genesis, distribution, and classification. Canadian Journal of Soil Science, 91(5), 749–762.Google Scholar
  58. Tabbagh, A. (1986). Applications and advantages of the Slingram electromagnetic method for archaeological prospecting. Geophysics, 51(3), 576–584.Google Scholar
  59. ten Bruggencate, R. E., Milne, S. B., Fayek, M., Park, R. W., & Stenton, D. R. (2015). Characterization of chert artifacts and two newly identified chert quarries on southern Baffin Island. Lithic Technology, 40(3), 189–198.Google Scholar
  60. ten Bruggencate, R. E., Milne, S. B., Fayek, M., Park, R. W., Stenton, D. R., & Hamilton, A. C. (2016a). Characterizing southern Baffin Island chert: a cautionary tale for provenance research. Journal of Archaeological Science: Reports.
  61. ten Bruggencate, R. E., Stup, J. P., Milne, S. B., Stenton, D. R., Park, R. W., & Fayek, M. (2016b). A human-centered GIS approach to modeling mobility on Southern Baffin Island, Nunavut, Canada. Journal of Field Archaeology, 41(6), 684–698.Google Scholar
  62. Theune, U., Rokosh, D., Sacchi, M. D., & Schmitt, D. R. (2006). Mapping fractures with GPR: A case study from Turtle Mountain. Geophysics, 71(5), B139–B150.Google Scholar
  63. Tripcevich, N., & Contreras, D. A. (2013). Archaeological approaches to obsidian quarries: investigations at the Quispisisa source. In N. Tripcevich & K. J. Vaughn (Eds.), Mining and quarrying in the Ancient Andes, interdisciplinary contributions to archaeology. New York: Springer Science+Business Media.Google Scholar
  64. Urban, T. M., Anderson, D. D., & Anderson, W. W. (2012). Multimethod geophysical investigations at an Inupiaq village site in Kobuk Valley, Alaska. The Leading Edge, 31(8), 950–956.Google Scholar
  65. Urban, T. M., Rasic, J. T., Alix, C., Anderson, D. D., Manning, S. W., Mason, O. K., Tremayne, A. H., & Wolff, C. B. (2016). Frozen: the potential and pitfalls of ground-penetrating radar for archaeology in the Alaskan Arctic. Remote Sensing, 8(12), 1007.Google Scholar
  66. Valls, A., García, F., Ramírez, M., & Benlloch, J. (2016). A combined use of GPR data with historical archives for identifying pavement construction periods of Valencian Silos (16th century, Spain). IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1), 98–107.Google Scholar
  67. Viberg, A., Trinks, I., & Lidén, K. (2009). Archaeological prospection in the Swedish Mountain tundra region. ArchéoSciences 33, Presses Université de Rennes, 33 (suppl.), 167, 169.Google Scholar
  68. Vickers, K. J. (2011). Quaternary geology of Bluegoose Prairie, Baffin Island, Nunavut. M.Sc. thesis, Simon Fraser University, Canada.Google Scholar
  69. Wilke, P. J., & Schroth, A. B. (1989). Lithic raw material prospects in the Mojave Desert, California. Journal of California and Great Basin anthropology, 11(2), 146–174.Google Scholar
  70. Wolff, C. B., & Urban, T. M. (2013). Geophysical analysis at the old whaling site, Cape Krusenstern, Alaska, reveals the possible impact of permafrost loss on archaeological interpretation. Polar Research, 32(1).Google Scholar
  71. Yilmaz, O. (1987). Seismic data processing. Tulsa: Society of Exploration Geophysicists.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anthropology and The Centre for Earth Observation ScienceUniversity of ManitobaWinnipegCanada
  2. 2.The Centre for Earth Observation ScienceUniversity of ManitobaWinnipegCanada
  3. 3.Department of Geological SciencesUniversity of ManitobaWinnipegCanada
  4. 4.Department of AnthropologyUniversity of WaterlooWaterlooCanada

Personalised recommendations