Advertisement

Journal of Archaeological Method and Theory

, Volume 25, Issue 3, pp 839–862 | Cite as

The Role of Fire in the Life of an Adhesive

  • Dries CnutsEmail author
  • Sonja Tomasso
  • Veerle Rots
Article

Abstract

The use of fire is essential for the preparation of hafting adhesives; both are suggested to be a proxy for distinguishing the technological expertise and complex cognition among Palaeolithic populations. While use of fire has been argued to exist from about 1.0 Ma onwards, evidence for adhesives in the Palaeolithic record is rare and fragmented. In spite of the close link between fire places and adhesives, no study has ever focussed on examining the impact of heat on adhesive deposition and preservation. This paper discusses the results of a combustion experiment that was undertaken to understand the impact of heat exposure on hafting adhesives. The results have significant implications for archaeological interpretations. Deposition in or near a fire proves to severely impact the types of residues that preserve on a stone tool. The vertically transferred heat is responsible for the loss of adhesives but also for the incidental production of adhesives and their deposition on stone tools. It can be hypothesised that the rare survival of adhesives on archaeological stone tools might not only be the result of direct contact with the fire but also the result of degradation due to heat from overlying fireplaces. If we are to improve our understanding of the preservation of adhesives, it is important to unstand the taphonomic processes that affect these adhesives, in particular heat alteration.

Keywords

Fire Hafting adhesives Residues Palaeolithic Experimental archaeology 

Notes

Acknowledgements

Veerle Rots is indebted to the FNRS. We are grateful to Fernand Collin and Cécile Jungels for accommodating the experiments at the Prehistomuseum. We thank the TraceoLab and Chercheurs de la Wallonie (CETREP) members for their help and advice during the experiments, in particular Christian Lepers and Justin Coppe for producing all the experimental stone tools examined in this study and Elspeth Hayes for having revised the English text. Finally, we would like to thank the reviewers who have helped to improve this paper.

Funding Information

This research was funded by the European Research Council under the European Union Seventh Framework Programme (FP/2007-2013) in the context of a starting grant (EVO-HAFT) attributed to Veerle Rots (ERC Grant Agreement no. 312283).

References

  1. Aldeias, V. (2017). Experimental approaches to archaeological fire features and their behavioral relevance. Current Anthropology, 58, S191–S205.  https://doi.org/10.1086/691210.CrossRefGoogle Scholar
  2. Aldeias, V., Dibble, H. L., Sandgathe, D., Goldberg, P., & McPherron, S. J. P. (2016). How heat alters underlying deposits and implications for archaeological fire features: a controlled experiment. Journal of Archaeological Science, 67, 64–79.  https://doi.org/10.1016/j.jas.2016.01.016.CrossRefGoogle Scholar
  3. Allain, J., & Rigaud, A. (1986). Décor et fonction. Quelques exemples tirés du Magdalénien. L’anthropologie, 90(4), 713–738.Google Scholar
  4. Ambrose, S. H. (1998). Chronology of the Later Stone Age and food production in East Africa. Journal of Archaeological Science, 25(4), 377–392.  https://doi.org/10.1006/jasc.1997.0277.CrossRefGoogle Scholar
  5. Ambrose, S. H. (2001). Paleolithic technology and human evolution. Science (New York, N.Y.), 291, 1748.  https://doi.org/10.1126/science.1059487.CrossRefGoogle Scholar
  6. Audouin, F., & Plisson, H. (1982). Les ocres et leurs témoins au Paléolithique en France: enquête et expériences sur leur validité archéologique. Cahiers du Centre de Recherches Préhistoriques Paris, 8, 33–80.Google Scholar
  7. Audouze, F., & Beyries, S. (2007). Chasseurs de renne d’ hier et d’aujourd’ hui. In S. Beyries & V. Vaté (Eds.) Les civilisations du renne d’hier et d’aujourd’hui. Approches ethnostoriques, archéologiques et anthropologiques (pp. 185–208). Antibes.Google Scholar
  8. Barham, L. (2013). From hand to handle: the first industrial revolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
  9. Berna, F., Goldberg, P., Horwitz, L. K., Brink, J., Holt, S., Bamford, M., & Chazan, M. (2012). PNAS plus: microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proceedings of the National Academy of Sciences, 109(20), E1215–E1220.  https://doi.org/10.1073/pnas.1117620109.CrossRefGoogle Scholar
  10. Boëda, E., Connan, J., Dessort, D., Muhesen, S., Mercier, N., Valladas, H., & Tisnérat, N. (1996). Bitumen as a hafting material on Middle Palaeolithic artefacts. Nature, 380(6572), 336–338.  https://doi.org/10.1038/380336a0.CrossRefGoogle Scholar
  11. Boëda, E., Bonilauri, S., Connan, J., & Jarvie, D. (2008). Middle Palaeolithic bitumen use at Umm el Tlel around 70,000 BP. Antiquity, 82(318), 853–861.  https://doi.org/10.1017/S0003598X00097623.CrossRefGoogle Scholar
  12. Bradshaw, F., Attenbrow, V., Robertson, G., Hiscock, P., Hiscock, P., Veth, P., et al. (2013). Chemical characterisation of museum-curated ethnographic resins from Australia and New Guinea used as adhesives, medicines and narcotics. Heritage Science, 1(1), 36.  https://doi.org/10.1186/2050-7445-1-36.CrossRefGoogle Scholar
  13. Bradtmoller, M., Sarmiento, A., Perales, U., Zuluaga, M. C., Bradtmöller, M., Sarmiento, A., et al. (2016). Investigation of Upper Palaeolithic adhesive residues from Cueva Morín, Northern Spain. Journal of Archaeological Science: Reports, 7, 1–13.  https://doi.org/10.1016/j.jasrep.2016.03.051.CrossRefGoogle Scholar
  14. Cârciumaru, M., Ion, R. M., Niţu, E. C., & Ştefânescu, R. (2012). New evidence of adhesive as hafting material on Middle and Upper Palaeolithic artefacts from Gura Cheii-Râşnov Cave (Romania). Journal of Archaeological Science, 39(7), 1942–1950.  https://doi.org/10.1016/j.jas.2012.02.016.CrossRefGoogle Scholar
  15. Caspar, J.-P., & De Bie, M. (1996). Preparing for the hunt in the Late Paleolithic Camp at Rekem, Belgium. Journal of Field Archaeology, 23(4), 437–460.  https://doi.org/10.1179/009346996791973747.Google Scholar
  16. Charters, S., Evershed, R. P., Goad, L. J., Heron, C., Blinkhorn, P. (1993) Identification of an adhesive used to repair a Roman jar. Archaeometry 35(1), 91-101.  https://doi.org/10.1111/j.1475-4754.1993.tb01025.x.
  17. Charrié-Duhaut, A., Porraz, G., Cartwright, C. R., Igreja, M., Connan, J., Poggenpoel, C., & Texier, P.-J. (2013). First molecular identification of a hafting adhesive in the Late Howiesons Poort at Diepkloof Rock Shelter (Western Cape, South Africa). Journal of Archaeological Science, 40(9), 3506–3518.  https://doi.org/10.1016/j.jas.2012.12.026.CrossRefGoogle Scholar
  18. Clarke, P. A. (2012). Australian plants as tools. Kenthurst: Rosenberg Publishing.Google Scholar
  19. Clarkson, C., Smith, M., Marwick, B., Fullagar, R., Wallis, L. A., Faulkner, P., et al. (2015). The archaeology, chronology and stratigraphy of Madjedbebe (Malakunanja II): a site in northern Australia with early occupation. Journal of Human Evolution, 83, 46–64.  https://doi.org/10.1016/j.jhevol.2015.03.014.CrossRefGoogle Scholar
  20. Clarkson, C., Jacobs, Z., Marwick, B., Fullagar, R., Wallis, L., Smith, M., et al. (2017). Human occupation of northern Australia by 65,000 years ago. Nature, 547(7663), 306–310.  https://doi.org/10.1038/nature22968.CrossRefGoogle Scholar
  21. Clemente-Conte, I. (1997). Thermal alterations of flint implements and the conservation of microwear polish: preliminary experimental observations. Siliceous Rocks and Culture, 525–535.Google Scholar
  22. Cnuts, D., Perrault, K. A., Stefanuto, P.-H., Dubois, L. M., Focant, J.-F., & Rots, V. (n.d.). Fingerprinting archaeological glues using HS-SPME GC×GC-HRTOFMS: a new powerful method allows tracking glues back in time. Archaeometry, In Press.Google Scholar
  23. Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: structure, properties, reactions, occurrences and uses. Weinheim: Wiley-VCH.  https://doi.org/10.1002/3527602097.CrossRefGoogle Scholar
  24. d’Errico, F., Backwell, L., Villa, P., Degano, I., Lucejko, J. J., Bamford, M. K., et al. (2012). Early evidence of San material culture represented by organic artifacts from Border Cave, South Africa. Proceedings of the National Academy of Sciences, 109(33), 13214–13219.  https://doi.org/10.1073/pnas.1204213109.CrossRefGoogle Scholar
  25. Daher, C., & Bellot-Gurlet, L. (2013). Non-destructive characterization of archaeological resins: seeking alteration criteria through vibrational signatures. Analytical Methods, 5(23), 6583–6591.  https://doi.org/10.1039/c3ay41278d.CrossRefGoogle Scholar
  26. De Bie, M., & Caspar, J. P. (2000). Rekem; a ‘Federmesser’Camp on the Meuse River Bank (2 Vols). Leuven & Asse-Zellik: Leuven University Press and Instituut voor het Archeologisch Patrimonium.Google Scholar
  27. Dickson, F. P. (1981). Australian stone hatchets: a study in design and dynamics. Sydney: Academic Press.Google Scholar
  28. Dinnis, R., Pawlik, A., & Gaillard, C. (2009). Bladelet cores as weapon tips? Hafting residue identification and micro-wear analysis of three carinated burins from the late Aurignacian of Les Vachons, France. Journal of Archaeological Science, 36(9), 1922–1934.  https://doi.org/10.1016/j.jas.2009.04.020.CrossRefGoogle Scholar
  29. Dupont, G. (1924). Distillation du bois. Paris: Gauthier-Villars & Cie.Google Scholar
  30. Evershed, R. P. (2008). Organic residue analysis in archaeology: the archaeological biomarker revolution. Archaeometry, 50(6), 895–924.  https://doi.org/10.1111/j.1475-4754.2008.00446.x.CrossRefGoogle Scholar
  31. Fullagar, R., & David, B. (1997). Investigating changing attitudes towards an Australian Aboriginal Dreaming mountain over >37,000 years of occupation via residue and use wear analyses of stone artefacts. Cambridge Archaeological Journal, 7(1), 139–144.  https://doi.org/10.1017/S0959774300001517.CrossRefGoogle Scholar
  32. Gaillard, Y., Chesnaux, L., Girard, M., Burr, A., Darque-Ceretti, E., Felder, E., et al. (2015). Assessing hafting adhesive efficiency in the experimental shooting of projectile points: a new device for instrumented and ballistic experiments. Archaeometry.  https://doi.org/10.1111/arcm.12175.
  33. Gibson, N. E., Wadley, L., & Williamson, B. S. (2004). Microscopic residues as evidence of hafting on backed tools from the 60 000 to 68 000 Howiesons Poort layers of Rose Cottage Cave, South Africa. Southern African Humanities, 16, 1–11.Google Scholar
  34. Hamm, G., Mitchell, P., Arnold, L. J., & Prideaux, G. J. (2016). Cultural innovation and megafauna interaction in the early settlement of arid Australia. Nature, 539(7628), 280–283.  https://doi.org/10.1038/nature20125.CrossRefGoogle Scholar
  35. Hauck, T. C., Connan, J., Charrié-Duhaut, A., Le Tensorer, J.-M., & Sakhel, H. A. (2013). Molecular evidence of bitumen in the Mousterian lithic assemblage of Hummal (Central Syria). Journal of Archaeological Science, 40(8), 3252–3262.  https://doi.org/10.1016/j.jas.2013.03.022.CrossRefGoogle Scholar
  36. Heyes, P. J., Anastasakis, K., de Jong, W., van Hoesel, A., Roebroeks, W., & Soressi, M. (2016). Selection and use of manganese dioxide by Neanderthals. Scientific Reports, 6(February), 22159.  https://doi.org/10.1038/srep22159.CrossRefGoogle Scholar
  37. Kamminga, J. (1982). Over the edge: functional analysis of Australian stone tools. Occasional papers in anthropology (University of Queensland. Anthropology Museum) (Vol. 12). Brisbane.Google Scholar
  38. Keeley, L. H. (1982). Hafting and retooling effects on the archaeological record. Journal of Anthropological Archaeology, 47(4), 798–809.  https://doi.org/10.1016/j.jaa.2007.02.005.Google Scholar
  39. Koller, J., Baumer, U., & Mania, D. (2001). High-tech in the Middle Palaeolithic: Neandertal-manufactured pitch identified. European Journal of Archaeology, 4(3), 385–397.CrossRefGoogle Scholar
  40. Kozowyk, P. R. B., Poulis, J. A., & Langejans, G. H. J. (2017a). Laboratory strength testing of pine wood and birch bark adhesives: a first study of the material properties of pitch. Journal of Archaeological Science: Reports, 13, 49–59.  https://doi.org/10.1016/j.jasrep.2017.03.006.CrossRefGoogle Scholar
  41. Kozowyk, P. R. B., Soressi, M., Pomstra, D., & Langejans, G. H. J. (2017b). Experimental methods for the Palaeolithic dry distillation of birch bark: implications for the origin and development of Neandertal adhesive technology. Scientific Reports, 7(1), 8033.  https://doi.org/10.1038/s41598-017-08106-7.CrossRefGoogle Scholar
  42. Leroi-Gourhan, A., & Allain, J. (1979). Lascaux inconnu. Paris: CNRS.Google Scholar
  43. Lombard, M. (2007). The gripping nature of ochre: the association of ochre with Howiesons Poort adhesives and Later Stone Age mastics from South Africa. Journal of Human Evolution, 53(4), 406–419.  https://doi.org/10.1016/j.jhevol.2007.05.004.CrossRefGoogle Scholar
  44. Lombard, M. (2008). Finding resolution for the Howiesons Poort through the microscope: micro-residue analysis of segments from Sibudu Cave, South Africa. Journal of Archaeological Science, 35(1), 26–41.  https://doi.org/10.1016/j.jas.2007.02.021.CrossRefGoogle Scholar
  45. Lombard, M., & Wadley, L. (2007). The morphological identification of micro-residues on stone tools using light microscopy: progress and difficulties based on blind tests. Journal of Archaeological Science, 34(1), 155–165.  https://doi.org/10.1016/j.jas.2006.04.008.CrossRefGoogle Scholar
  46. Mania, D., & Toepfer, V. (1973). Königsaue. Gliederung, Ökologie und mittelpaläolithische Funde der letzten Eiszeit. Veröffentlichungen des Landesmuseums für Vorgeschichte in Halle (Vol. 26). Berlin: VEB Deutscher Verlag der Wissenschaften.Google Scholar
  47. Matheson, C. D., & McCollum, A. J. (2014). Characterising native plant resins from Australian Aboriginal artefacts using ATR-FTIR and GC/MS. Journal of Archaeological Science.  https://doi.org/10.1016/j.jas.2014.08.016.
  48. Mazza, P. P. A., Martini, F., Sala, B., Magi, M., Colombini, M. P., Giachi, G., et al. (2006). A new Palaeolithic discovery: tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed. Journal of Archaeological Science, 33(9), 1310–1318.  https://doi.org/10.1016/j.jas.2006.01.006.CrossRefGoogle Scholar
  49. Modugno, F., Ribechini, E., & Colombini, M. P. (2006). Chemical study of triterpenoid resinous materials in archaeological findings by means of direct exposure electron ionisation mass spectrometry and gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry: RCM, 20(11), 1787–1800.  https://doi.org/10.1002/rcm.2507.CrossRefGoogle Scholar
  50. Moeyersons, J. J., Vermeersch, P., Van Peer, P., Van Neer, W., Beeckman, H., & De Coninck, E. (1996). Sodmein Cave Site, Red Sea Mountains, Egypt: development, stratigraphy and palaeoenvironment. Aspects of African archaeology. Papers from the 10th Congress of the Panafrican Association for Prehistory and related Studies, (June 1934), pp. 53–62.Google Scholar
  51. Monnier, G. F., Hauck, T. C., Feinberg, J. M., Luo, B., Le Tensorer, J.-M., & Sakhel, H. A. (2013). A multi-analytical methodology of lithic residue analysis applied to Paleolithic tools from Hummal, Syria. Journal of Archaeological Science, 40(10), 3722–3739.  https://doi.org/10.1016/j.jas.2013.03.018.CrossRefGoogle Scholar
  52. Monnier, G., Frahm, E., Luo, B., & Missal, K. (2017). Developing FTIR microspectroscopy for the analysis of animal-tissue residues on stone tools. Journal of Archaeological Method and Theory, 78, 158–178.  https://doi.org/10.1016/j.jas.2016.12.004.Google Scholar
  53. Ortiz Nieto-Márquez, I., & Baena Preysler, J. (2015). Experiments around the fire. Discovering human and natural processes in Middle Paleolithic hearths. Anthropologie. International Journal of Human Diversity and Evolution, LIII(3), 501–518.Google Scholar
  54. Parr, J. (1999). Once, twice maybe, but not three times: reheating Xanthorrhoea australis resin. Australian Archaeology, 49(49), 23–27.CrossRefGoogle Scholar
  55. Pawlik, A. F., & Thissen, J. P. (2011). Hafted armatures and multi-component tool design at the Micoquian site of Inden-Altdorf, Germany. Journal of Archaeological Science, 38(7), 1699–1708.  https://doi.org/10.1016/j.jas.2011.03.001.CrossRefGoogle Scholar
  56. Prinsloo, L. C., Wadley, L., & Lombard, M. (2014). Infrared reflectance spectroscopy as an analytical technique for the study of residues on stone tools: potential and challenges. Journal of Archaeological Science, 41, 732–739.  https://doi.org/10.1016/j.jas.2013.10.011.CrossRefGoogle Scholar
  57. Regert, M. (2004). Investigating the history of prehistoric glues by gas chromatography-mass spectrometry. Journal of Separation Science, 27(3), 244–254.  https://doi.org/10.1002/jssc.200301608.CrossRefGoogle Scholar
  58. Regert, M., Colinart, S., Degrand, L., & Decavallas, O. (2001). Chemical alteration and use of beeswax through time: accelerated ageing tests and analysis of archaeological samples from various environmental contexts. Archaeometry, 43(4), 549–569.  https://doi.org/10.1111/1475-4754.00036.CrossRefGoogle Scholar
  59. Roebroeks, W., & Villa, P. (2011). Reply to Sandgathe et al.: Neandertal use of fire. Proceedings of the National Academy of Sciences, 108(29), E299–E299.  https://doi.org/10.1073/pnas.1108129108.CrossRefGoogle Scholar
  60. Rots, V. (2002). Bright spots and the question of hafting. Anthropologica et praehistorica, 113, 61–72.Google Scholar
  61. Rots, V. (2003). Towards an understanding of hafting: the macro-and microscopic evidence. Antiquity, 77(298), 805–815.CrossRefGoogle Scholar
  62. Rots, V. (2010). Prehension and hafting traces on flint tools: a methodology. Leuven: Universitaire Pers Leuven.Google Scholar
  63. Rots, V. (2012). Trace formation, strike-a-lights, and the contribution of functional analyses for understanding Palaeolithic contexts. A MInd Set on Flint. Studies in Honour of Dick Stapert, 149–162.Google Scholar
  64. Rots, V., & Williamson, B. (2004). Microwear and residue analyses in perspective: the contribution of ethnoarchaeological evidence. Journal of Archaeological Science, 31(9), 1287–1299.  https://doi.org/10.1016/j.jas.2004.02.009.CrossRefGoogle Scholar
  65. Rots, V., Van Peer, P., & Vermeersch, P. M. (2011). Aspects of tool production, use, and hafting in Palaeolithic assemblages from Northeast Africa. Journal of Human Evolution, 60(5), 637–664.  https://doi.org/10.1016/j.jhevol.2011.01.001.CrossRefGoogle Scholar
  66. Rots, V., Hayes, E., Cnuts, D., Lepers, C., & Fullagar, R. (2016). Making sense of residues on flaked stone artefacts: learning from blind tests. PLoS One, 11(3), e0150437.  https://doi.org/10.1371/journal.pone.0150437.CrossRefGoogle Scholar
  67. Rots, V., Lentfer, C., Schmid, V. C., Porraz, G., & Conard, N. J. (2017). Pressure flaking to serrate bifacial points for the hunt during the MIS5 at Sibudu Cave (South Africa). PLoS One, 12(4), e0175151.  https://doi.org/10.1371/journal.pone.0175151.CrossRefGoogle Scholar
  68. Sahle, Y., Negash, A., & Braun, D. R. (2012). Variability in ethnographic hidescraper use among the Hadiya of Ethiopia: implications for reduction analysis. African Archaeological Review, 29(4), 383–397.  https://doi.org/10.1007/s10437-012-9114-z.CrossRefGoogle Scholar
  69. Sandgathe, D. M. (2017). Identifying and describing pattern and process in the evolution of hominin use of fire. Current Anthropology, 58, S000–S000.  https://doi.org/10.1086/691459.Google Scholar
  70. Sandgathe, D. M., Dibble, H. L., Goldberg, P., McPherron, S. P., Turq, A., Niven, L., & Hodgkins, J. (2011). Timing of the appearance of habitual fire use. Proceedings of the National Academy of Sciences of the United States of America, 108(29), E298; author reply E299.  https://doi.org/10.1073/pnas.1106759108.CrossRefGoogle Scholar
  71. Schellmann, N. C. (2007). Animal glues: a review of their key properties relevant to conservation. Reviews in Conservation, 3630(8), 55–66.  https://doi.org/10.1179/sic.2007.52.Supplement-1.55.Google Scholar
  72. Schenck, T., & Groom, P. (2016). The aceramic production of Betula pubescens (downy birch) bark tar using simple raised structures. A viable Neanderthal technique? Archaeological and Anthropological Sciences.  https://doi.org/10.1007/s12520-016-0327-y.
  73. Schmidt, P., Porraz, G., Bellot-Gurlet, L., February, E., Ligouis, B., Paris, C., et al. (2015). A previously undescribed organic residue sheds light on heat treatment in the Middle Stone Age. Journal of Human Evolution, 85, 22–34.  https://doi.org/10.1016/j.jhevol.2015.05.001.CrossRefGoogle Scholar
  74. Semenov, S. (1964). Prehistoric technology. London: Cory. Adams & mackay.Google Scholar
  75. Sergant, J., Crombé, P., & Perdaen, Y. (2006). The ‘invisible’ hearths: a contribution to the discernment of Mesolithic non-structured surface hearths. Journal of Archaeological Science, 33(7), 999–1007.  https://doi.org/10.1016/j.jas.2005.11.011.CrossRefGoogle Scholar
  76. Shanks, O. C., Bonnichsen, R., Vella, A. T., & Ream, W. (2001). Recovery of protein and DNA trapped in stone tool microcracks. Journal of Archaeological Science, 28(9), 965–972.  https://doi.org/10.1006/jasc.2000.0628.CrossRefGoogle Scholar
  77. Sheldrick, C., Lowe, J. J., & Reynier, M. J. (1997). Palaeolithic barbed point from Gransmoor, East Yorkshire, England. Proceedings of the Prehistoric Society, 63, 359–370.  https://doi.org/10.1017/S0079497X00002486.CrossRefGoogle Scholar
  78. Sievers, C., & Wadley, L. (2008). Going underground: experimental carbonization of fruiting structures under hearths. Journal of Archaeological Science, 35(11), 2909–2917.  https://doi.org/10.1016/j.jas.2008.06.008.CrossRefGoogle Scholar
  79. Sorensen, A., Roebroeks, W., & van Gijn, A. (2014). Fire production in the deep past? The expedient strike-a-light model. Journal of Archaeological Science, 42(1), 476–486.  https://doi.org/10.1016/j.jas.2013.11.032.CrossRefGoogle Scholar
  80. Stapert, D., & Johansen, L. (1999). Pyrite: making fire in the Stone Age. Antiquity, 73(282), 765–777.  https://doi.org/10.1017/S0003598X00065510.CrossRefGoogle Scholar
  81. Stiner, M., Kuhn, S., Weiner, S., & Bar-Yosef, O. (1995). Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological, 22, 223–237.  https://doi.org/10.1006/jasc.1995.0024.CrossRefGoogle Scholar
  82. Thackeray, A. I. (2000). Middle Stone Age artefacts from the 1993 and 1995 excavations of Die Kelders Cave 1, South Africa. Journal of Human Evolution, 38(1), 147–168.  https://doi.org/10.1006/jhev.1999.0354.CrossRefGoogle Scholar
  83. Tomasso, S., & Rots, V. (2017). What is the use of shaping a tang? Tool use and hafting of tanged tools in the Aterian of Northern Africa. Archaeological and Anthropological Sciences.  https://doi.org/10.1007/s12520-016-0448-3.
  84. Villa, P., Soriano, S., Tsanova, T., Degano, I., HIGHAM, T. F. G., D’Errico, F., et al. (2012). Border Cave and the beginning of the Later Stone Age in South Africa. PNAS, 109(33), 13208–13213.  https://doi.org/10.1073/pnas.1202629109.CrossRefGoogle Scholar
  85. Villa, P., Pollarolo, L., Degano, I., Birolo, L., Pasero, M., Biagioni, C., et al. (2015). A milk and ochre paint mixture used 49,000 years ago at Sibudu, South Africa. PLoS One, 10(6), 1–12.  https://doi.org/10.1371/journal.pone.0131273.CrossRefGoogle Scholar
  86. Wadley, L. (2005). Putting ochre to the test: replication studies of adhesives that may have been used for hafting tools in the Middle Stone Age. Journal of Human Evolution, 49(5), 587–601.  https://doi.org/10.1016/j.jhevol.2005.06.007.CrossRefGoogle Scholar
  87. Wadley, L. (2010). Compound-adhesive manufacture as a behavioral proxy for complex cognition in the Middle Stone Age. Current Anthropology, 51(s1), S111–S119.  https://doi.org/10.1086/649836.CrossRefGoogle Scholar
  88. Wadley, L., Hodgskiss, T., & Grant, M. (2009). Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9590–9594.  https://doi.org/10.1073/pnas.0900957106.CrossRefGoogle Scholar
  89. Weedman, K. J. (2006). An ethnoarchaeological study of hafting and stone tool diversity among the gamo of Ethiopia. Journal of Archaeological Method and Theory, 13, 188–237.  https://doi.org/10.1007/s10816-006-9010-4.CrossRefGoogle Scholar
  90. Weiner, J., & Floss, H. (2004). Eine Schwefelkiesknolle aus dem Aurig nacien vom Vog elherd, Baden-Württemberg ­ Zu den Anfängen der Feuererzeugung im europäischen Paläolithikum. Archäologische Informationen, 27(1), 59–78.Google Scholar
  91. Wendt, W. E. (1976). ‘Art Mobilier’ from the Apollo 11 Cave, South West Africa: Africa’s oldest dated works of art. South African Archaeological Bulletin, 31(121–122), 5–11.  https://doi.org/10.2307/3888265.CrossRefGoogle Scholar
  92. Werts, S. P., & Jahren, A. H. (2007). Estimation of temperatures beneath archaeological campfires using carbon stable isotope composition of soil organic matter. Journal of Archaeological Science, 34(6), 850–857.  https://doi.org/10.1016/j.jas.2006.05.007.CrossRefGoogle Scholar
  93. Wragg-Sykes, R. (2015). To see a world in a hafted tool: birch pitch composite technology, cognition and memory in Neanderthals. Settlement, Society and Cognition in Human Evolution. Landscapes in Mind, 117–137.  https://doi.org/10.1017/CBO9781139208697.008.
  94. Wynn, T. (2009). Hafted spears and the archaeology of mind. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9544–9545.  https://doi.org/10.1073/pnas.0904369106.CrossRefGoogle Scholar
  95. Yaroshevich, A., Nadel, D., & Tsatskin, A. (2013). Composite projectiles and hafting technologies at Ohalo II (23ka, Israel): analyses of impact fractures, morphometric characteristics and adhesive remains on microlithic tools. Journal of Archaeological Science, 40(11), 4009–4023.  https://doi.org/10.1016/j.jas.2013.05.017.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.TraceoLab/PrehistoryUniversity of LiègeLiègeBelgium
  2. 2.Chercheur Qualifié du FNRSUniversity of LiègeLiègeBelgium

Personalised recommendations