Journal of Archaeological Method and Theory

, Volume 25, Issue 2, pp 368–392 | Cite as

Immersive Visualization and Curation of Archaeological Heritage Data: Çatalhöyük and the Dig@IT App

  • Nicola LercariEmail author
  • Emmanuel Shiferaw
  • Maurizio Forte
  • Regis Kopper


Advanced data capture techniques, cost-effective data processing, and visualization technologies provide viable solutions for the documentation of archaeological heritage and material culture. Work at the UNESCO World Heritage site of Çatalhöyük has demonstrated that new digital approaches for capturing, processing, analyzing, and curating stratigraphic data in 3D are now feasible. Real-time visualization engines allow us to simulate the stratigraphy of a site, the three-dimensional surfaces of ancient buildings, as well as the ever-changing morphology of cultural landscapes. Nonetheless, more work needs to be done to address methodological questions such as follows: can three-dimensional models and stratigraphic relationships, based on 3D surfaces and volumes, be used to perform archaeological interpretation? How can a 3D virtual scenario become the interface to cultural data and metadata stored in external online databases? How can we foster a sense of presence and user embodiment in the simulation of ancient cities and archaeological sites? This article aims to provide viable solutions to the methodological challenge of designing a comprehensive digital archaeological workflow from the data acquisition and interpretation in the field to a three-dimensional digital data curation based on interactive visualization, searchable 3D data, and virtual environments. This work describes the results we achieved developing the application Dig@IT, a multi-platform, scalable virtual reality tool able to foster archaeological data analysis, interpretation, and curation in a realistic and highly interactive virtual environment.


3D visualization Çatalhöyük Cyber-archaeology Data curation Virtual reality 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Alshawabkeh, Y. (2005). Using terrestrial laser scanning for the 3D reconstruction of Petra–Jordan. Photogrammetric Week, 5, 39–48.Google Scholar
  2. ArcGIS for Desktop. (2016). ESRI. Accessed October 18.
  3. ARTTRACK5. (2016). Advanced Realtime Tracking. Accessed November 17.
  4. Ashley, M., Tringham, R., & Perlingieri, C. (2011). Last house on the hill: digitally remediating data and media for preservation and access. Journal of Computing and Cultural Heritage, 4(4), 13:1–13: 26. doi: 10.1145/2050096.2050098.
  5. Bayliss, A., Brock, F., Farid, S., Hodder, I., Southon, J., & Taylor, R. E. (2015). Getting to the bottom of it all: a Bayesian approach to dating the start of Çatalhöyük. Journal of World Prehistory, 28(1), 1–26. doi: 10.1007/s10963-015-9083-7.CrossRefGoogle Scholar
  6. Berggren, Å., Dell’Unto, N., Forte, M., Haddow, S., Hodder, I., Issavi, J., Lercari, N., Mazzucato, C., Mickel, A., & Taylor, J. S. (2015). Revisiting reflexive archaeology at Çatalhöyük: integrating digital and 3D technologies at the trowel’s edge. Antiquity, 89(344), 433–448.CrossRefGoogle Scholar
  7. Biehl, P. F., Franz, I., Ostaptchouk, S., Orton, D., Rogasch, J., & Rosenstock, E. (2012). One community and two tells: the phenomenon of relocating tell settlements at the turn of the 7th and 6th millennia in Central Anatolia. Socio-Environmental Dynamics over the Last, 12, 53–66.Google Scholar
  8. Campana, S., Morelli, G., Catanzariti, G., Strutt, K., Ogden, J., Forte, M., & Lercari, N. (2013). 4D surveys at Çatalhöyük (Turkey). In Digital Heritage 2013 International Congress. Marseille.Google Scholar
  9. Çatalhöyük Database. (2016). Accessed August 29.
  10. Çatalhöyük Living Archive. (2016). Accessed August 29.
  11. Çatalhöyük Research Project. (2016). Accessed November 17.
  12. Center for Cyber-Archaeology & Sustainability. (2017). Accessed April 27.
  13. Cox, G. (2011). Photo-realistic reality: focusing on artistic space at Çatalhöyük. MSc. Southampton: University of Southampton.Google Scholar
  14. Dell’Unto, N. (2014). The use of 3D models for intra-site investigation in archaeology. In 3D recording and modeling in archaeology and cultural heritage. Theory and Best Practices, edited by Stefano Campana and Fabio Remondino. BAR International Series. Oxford, U.K.: Archaeopress.
  15. Dell’Unto, N., Landeschi, G., Apel, J., & Poggi, G. (2017). 4D recording at the trowel’s edge: using three-dimensional simulation platforms to support field interpretation. Journal of Archaeological Science: Reports, 12(April), 632–645. doi: 10.1016/j.jasrep.2017.03.011.CrossRefGoogle Scholar
  16. Dellepiane, M., Dell’Unto, N., Callieri, M., Lindgren, S., & Scopigno, R. (2013). Archeological excavation monitoring using dense stereo matching techniques. Journal of Cultural Heritage, 14(3), 201–210.CrossRefGoogle Scholar
  17. DiVE. (2016). Duke Immersive Virtual Environment. Accessed December 19.
  18. Doneus, M., & Neubauer, W. (2005a). 3D laser scanners on archaeological excavations. In Proceedings of the XXth International Symposium CIPA, 226–31. Torino.Google Scholar
  19. Doneus, M., & Neubauer, W. (2005b). Laser scanners for 3D documentation of stratigraphic excavations. In E. Baltsavias, A. Gruen, L. Van Gool, & M. Pateraki (Eds.), Recording, modeling and visualization of cultural heritage (pp. 193–203). Leiden: Taylor & Francis/Balkema.Google Scholar
  20. Emele, M. (2000). Virtual spaces, atomic pig-bones and miscellaneous goddesses. In I. Hodder (Ed.), Towards reflexive methods in archaeology: the example at Çatalhöyük (pp. 219–228). Cambridge: McDonald Institute for Archaeological Research.Google Scholar
  21. Forte, M. (2011). 3D digging project. Research Report Çatalhöyük 2010 Archive Report. Stanford University.
  22. Forte, M. (2014). 3D archaeology: new perspectives and challenges—the example of Çatalhöyük. Journal of Eastern Mediterranean Archaeology & Heritage Studies, 2(1), 1–29. doi: 10.5325/jeasmedarcherstu.2.1.0001.CrossRefGoogle Scholar
  23. Forte, M. & Stefano, C. (2016). Digital methods and remote sensing in archaeology. 1st ed. Quantitative Methods in the Humanities and Social Sciences 2199–0956. Springer International Publishing.
  24. Forte, M., & Danelon, N. (2016). UAV’s prospects for mapping archaeological sites: Çatalhöyük and Isaura Vetus (Turkey). San Francisco, CA: In Proceedings of the Archaeological Institute of America 117th Annual Meeting.Google Scholar
  25. Forte, M,, & Lercari, N. (2015). Building 89 3D digging project. Research Report Çatalhöyük 2014 Archive Report. Stanford University.
  26. Forte, M., Dell’Unto, N., Issavi, J., Onsurez, L., & Lercari, N. (2012). 3D archaeology at Çatalhöyük. International Journal of Heritage in the Digital Era, 1(3), 351–378. doi: 10.1260/2047-4970.1.3.351.CrossRefGoogle Scholar
  27. Forte, M., Dell’Unto, N., & Lercari, N. (2014). 3D digging projects—season 2013. Research Report Çatalhöyük 2013 Archive Report. Stanford University.
  28. Forte, M., Dell’Unto, N., Jonsson, K., & Lercari, N. (2015). Interpretation process at Çatalhöyük using 3D. In I. Hodder & A. Marciniak (Eds.), Assembling Çatalhöyük (Vol. 1, pp. 43–57). New York Routledge: Themes in contemporary archaeology.Google Scholar
  29. Forte, M., Danelon, N., Biancifiori, E., Dell’Unto, N., & Lercari, N. (2016). Building 89 and 3D digging project. Research Report Çatalhöyük 2015 Archive Report. Stanford University.
  30. GNU General Public License v3.0. (2017). Accessed May 19.
  31. Grossner, K., Hodder, I., Meeks, E., Engel, C., & Mickel, A. (2012) A living archive for Çatalhöyük.” In Proceedings of the 2012 Computer Applications and Quantitative Methods in Archaeology (CAA).
  32. Havemann, S., Settgast., V., Berndt, R., Eide, Ø., & Fellner, D. W. (2009). The Arrigo showcase reloaded—towards a sustainable link between 3D and semantics. Journal of Computing and Cultural Heritage 2(1): 4:1–4:13. doi: 10.1145/1551676.1551680.
  33. Hodder, I. (1997a). ‘Always momentary, fluid and flexible’: towards a reflexive excavation methodology. Antiquity, 71(273), 691–700.CrossRefGoogle Scholar
  34. Hodder, I. (1997b). Re-opening Çatalhöyük. In I. Hodder (Ed.), On the surface: Çatalhöyük 1993–1995. Çatalhöyük Research Project. British Institute for Archaeology at Ankara Monograph (Vol. 1, p. 22). Cambridge: McDonald Institute for Archaeological Research.Google Scholar
  35. Hodder, I. (2000). Towards reflexive method in archaeology: the example at Çatalhöyük. 28. McDonald institute for archaeological research and British institute of archaeology at Ankara.Google Scholar
  36. Hodder, I. (2011). Human-thing entanglement: towards an integrated archaeological perspective. Journal of the Royal Anthropological Institute, 17(1), 154–177.CrossRefGoogle Scholar
  37. Hodder, I., & Cessford, C. (2004). Daily practice and social memory at Çatalhöyük. American Antiquity, 17–40.Google Scholar
  38. Hodder, I., & Hutson, S. (2003). Reading the past: current approaches to interpretation in Archaeology. Cambridge University Press.Google Scholar
  39. Hodder, I., & Pels, P. (2010). History houses: a new interpretation of architectural elaboration at Çatalhöyük. In I. Hodder (Ed.), Religion in the emergence of civilization: Çatalhöyük as a case study (pp. 163–186). Cambridge University Press.Google Scholar
  40. Hyvönen, E. (2009). Semantic portals for cultural heritage. In S. Staab & R. Studer (Eds.), Handbook on Ontologies (pp. 757–778). Berlin Heidelberg: International Handbooks on Information Systems. Springer. doi: 10.1007/978-3-540-92673-3_34.CrossRefGoogle Scholar
  41. Kakali, C., Lourdi, I., Stasinopoulou, T., Bountouri, L., Papatheodorou, C., Doerr, M., & Gergatsoulis, M. (2007). Integrating Dublin core metadata for cultural heritage collections using ontologies. International Conference on Dublin Core and Metadata Applications, 0(0), 128–139.Google Scholar
  42. Lercari, N. (2014a). Terrestrial laser scanning at Çatalhöyük: new methodologies, results, and research perspectives. Durham, NC: In proceedings of the age of sensing-5th international conference on remote sensing in archaeology.Google Scholar
  43. Lercari, N. (2014b). Dig@IT - An immersive VR app for archaeology.
  44. Lercari, N. (2016a). Simulating history in virtual worlds. In Y. Sivan (Ed.) Handbook on 3D3C Platforms (pp. 337–352). Springer International Publishing.Google Scholar
  45. Lercari, N. (2016b). Terrestrial laser scanning in the age of sensing. In M. Forte & S. Campana (Eds.), Digital methods and remote sensing in archaeology: Quantitative methods in the humanities and social sciences 2199–0956 (pp. 3–33). Springer International Publishing.
  46. Lercari, N. (2017). 3D visualization and reflexive archaeology: a virtual reconstruction of Çatalhöyük history houses. Digital Applications in Archaeology and Cultural Heritage. doi: 10.1016/j.daach.2017.03.001.
  47. Lercari, N., Toffalori, E., Spigarolo, M. & Onsurez, L. (2011). Virtual heritage in the cloud: new perspectives for the virtual museum of Bologna. In VAST: International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage. The Eurographics Association. 153–160.Google Scholar
  48. Lercari, N., Maurizio F., Zielinski, D., Kopper, R., & Lai, R. (2013). Çatalhöyük at DiVE. Virtual reconstruction and immersive visualization of a Neolithic building. In Proceedings of the 2013 Digital Heritage International Congress. Vol. 2. Marseille, France.Google Scholar
  49. Lercari, N., Forte, M., Shiferaw, E., & Kopper, R. (2014a). Reshaping remote sensing and virtual reality at Çatalhöyük. In Proceedings of the Age of Sensing 5th International Conference on Remote Sensing in Archaeology. Durham, NC.Google Scholar
  50. Lercari, N., Matthiesen, S., Zielinski, D., & Kopper, R. (2014b). Towards an immersive interpretation of Çatalhöyük at DiVE. In ASOR Annual Meeting 2014. San Diego: American School of Oriental Research.Google Scholar
  51. Lercari, N., Zielinski D., Shiferaw, K., Forte, M., & Kopper, R. (2017a). Dig@IT on GitHub. Duke University and University of California Merced. Accessed May 19.
  52. Lercari, N., Shiferaw, E., Forte, M., & Kopper, R. (2017b). Data from: immersive visualization and curation of archaeological heritage data: Çatalhöyük and the Dig@IT App. UC San Diego Library Digital Collections. doi: 10.6075/J0CN71VP
  53. Levy, T. E. (2013). Cyber-archaeology and world cultural heritage: insights from the Holy Land. Bulletin of the American Academy of Arts & Sciences, 66, 26–33.Google Scholar
  54. Mickel, A. (2015). Reasons for redundancy in reflexivity: the role of diaries in archaeological epistemology. Journal of Field Archaeology, 40(3), 300–309.CrossRefGoogle Scholar
  55. MiddleVR for Unity. (2016). MiddleVR. Accessed November 28.
  56. Morgan, C. L. (2009). (Re)building Çatalhöyük: changing virtual reality in archaeology. Archaeologies: Journal of the World Archaeological Congress, 5(3), 468–487. doi: 10.1007/s11759-009-9113-0.CrossRefGoogle Scholar
  57. Niccolucci, F., Hermon, S., & Doerr, M. (2015). The formal logical foundations of archaeological ontologies. In J. A. Barceló & I. Bogdanovic (Eds.), Mathematics and Archaeology (pp. 86–99). Boca Raton, FL: CRC Press Taylor and Francis Group.CrossRefGoogle Scholar
  58. Oculus Rift. (2016). Oculus. Accessed August 30.
  59. Opitz, R. (2015). Three dimensional field recording in archaeology: an example from Gabii. In B. R. Olson & R. William (Eds.), 3D Imaging in Mediterranean Archaeology (pp. 73–86). Dakota: The Digital Press @ The University of NorthGoogle Scholar
  60. Opitz, R., & Cowley, D. C. (2013). Interpreting archaeological topography: lasers, 3D data, observation, visualisation and applications. In R. S. Opitz & Cowley, D. C. (Eds.). Interpreting archaeological topography: 3D Data, visualisation and observation, Oxbow Books.Google Scholar
  61. Opitz, R., & Johnson, T. (2016). Interpretation at the controller’s edge: designing graphical user interfaces for the digital publication of the excavations at Gabii (Italy). Open Archaeology, 2, 1–17.CrossRefGoogle Scholar
  62. Opitz, R., & Limp, W. F. (2015). Recent developments in high-density survey and measurement (HDSM) for archaeology: implications for practice and theory. Annual Review of Anthropology, 44(1), 347–364. doi: 10.1146/annurev-anthro-102214-013845.CrossRefGoogle Scholar
  63. Opitz, R., Mogetta, M., & Terrenato, N. (2016). A Mid-Republican house from Gabii. University of Michigan Press.
  64. Perry, S., Chapman, R., & Wylie, A. (2014). Crafting knowledge with (digital) visual media in archaeology. Material Evidence: Learning from Archaeological Practice, 189–210.Google Scholar
  65. Pollefeys, M., Gool, L. C., Vergauwen, M., Cornelis, K., Verbiest, F., & Tops, J. (2001). Image-based 3D acquisition of archaeological heritage and applications. In Proceedings of the 2001 Conference on Virtual Reality, Archeology, and Cultural Heritage, 255–262. VAST ‘01. New York, NY, USA: ACM. doi: 10.1145/584993.585033.
  66. Pollefeys, M., Nistér, D., Frahm, J.-M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., et al. (2008). Detailed real-time urban 3D reconstruction from video. International Journal of Computer Vision, 78(2–3), 143–167. doi: 10.1007/s11263-007-0086-4.CrossRefGoogle Scholar
  67. Power, C., Lewis, A., Petrie, H., Green, K., Richards, J., Eramian, M., Chan, B., Walia, E., Sijaranamual, I., & De Rijke, M. (2017). Improving archaeologists’ online archive experiences through user-centred design. Journal on Computing and Cultural Heritage, 10(1), 3:1–3:20. doi: 10.1145/2983917.CrossRefGoogle Scholar
  68. Poyart, E., Snyder, L., Friedman, S., & Faloutsos, P. (2011). VSim: real-time visualization of 3D digital humanities content for education and collaboration. In Proceedings of the 12th International Conference on Virtual Reality, Archaeology and Cultural Heritage VAST’11. Aire-la-Ville (pp.129–135) Switzerland: Eurographics Association. doi: 10.2312/VAST/VAST11/129-135.
  69. Razer, H. (2016). Sixense. Accessed November 28.
  70. Remondino, F. (2013). Worth a thousand words—photogrammetry for archaeological 3D surveying. In R. S. Opitz & D. C. Cowley (Eds.). Interpreting archaeological topography: 3D data, visualisation and observation, Oxbow Books.Google Scholar
  71. Remondino, F., & El-Hakim, S. (2006). Image-based 3D modelling: a review. The Photogrammetric Record, 21(115), 269–291. doi: 10.1111/j.1477-9730.2006.00383.x.CrossRefGoogle Scholar
  72. Seifert, C., Bailer, W., Orgel, T., Gantner, L., Kern, R., Ziak, H., Petit, A., Schlötterer, J., Zwicklbauer, S., & Granitzer, M. (2017). Ubiquitous access to digital cultural heritage. Journal on Computing and Cultural Heritage, 10(1), 4:1–4:27. doi: 10.1145/3012284.CrossRefGoogle Scholar
  73. Smith, N. G., Knabb, K., DeFanti, C., Weber, P., Schulze, J., Prudhomme, A., Kuester, F., Levy, T. E., & DeFanti, T. A. (2013). ArtifactVis2: managing real-time archaeological data in immersive 3D environments. In 2013 Digital Heritage International Congress (DigitalHeritage), 1:363–70. doi: 10.1109/DigitalHeritage.2013.6743761.
  74. Snyder, L. M. (2014). VSim: scholarly annotations in real-time 3D environments. In DH-CASE II: Collaborative Annotations on Shared Environments: Metadata, Tools and Techniques in the Digital Humanities, 2. ACM.
  75. STEM System. (2016). Sixense. Accessed October 18.
  76. Unity 3D. (2016). Unity Technologies. Accessed August 30.
  77. WAVE. (2016). UC Merced WAVE. Accessed December 15.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Social Sciences, Humanities, and ArtsUniversity of California MercedMercedUSA
  2. 2.Department of Computer Science, LSRCDuke UniversityDurhamUSA
  3. 3.Department of Classics and Department of Art, Art History & Visual StudiesDuke UniversityDurhamUSA
  4. 4.Department of Mechanical Engineering and Materials Science and Duke Immersive Virtual Environment, Edmund T. Pratt Jr. School of EngineeringDuke UniversityDurhamUSA

Personalised recommendations