Advertisement

Journal of Archaeological Method and Theory

, Volume 24, Issue 3, pp 938–973 | Cite as

Problems of Identification and Quantification in Archaeozoological Analysis, Part II: Presentation of an Alternative Counting Method

  • Eugène Morin
  • Elspeth Ready
  • Arianne Boileau
  • Cédric Beauval
  • Marie-Pierre Coumont
Article

Abstract

Archaeozoologists commonly use Number of Identified SPecimens (NISP) and Minimum Number of Elements (MNE) as measures of anatomical abundances. According to a blind test examining the reproducibility and accuracy of identifications of ungulate remains (Morin et al., Part I, Journal of Archaeological Method and Theory, doi: 10.1007/s10816-016-9300-4), NISP provides estimates of skeletal abundances that are less robust than those based on MNE. However, although results were improved with the latter method, MNE is not free of problems. Here, we show through an analysis of paired NISP-MNE data for 24 classes of elements that MNE is prone to inflate the representation of rare parts (as measured by NISP), a phenomenon more strongly expressed in certain elements than in others. Moreover, some elements show a wide scatter of points, which raises issues of data reproducibility. MNE is also known for being seriously affected by aggregation methods. These fundamental problems severely undermine the value of MNE as a measure of abundance. This article introduces an alternative counting method that avoids many of the weaknesses of MNE. This counting method, called the Number of Distinct Elements (NDE), focuses on the occurrence of pre-determined, invariant landmarks counted on mutually exclusive specimens. Preliminary experimental results suggest that NDE counts are robust predictors of skeletal, and perhaps taxonomic, abundances. Moreover, the NDE approach eliminates the complex and time-consuming task of spreading or drawing specimens to identify fragment overlap. Furthermore, NDE values are additive and easy to calculate. Given these features, the NDE approach represents a compelling alternative to MNE in archaeozoological analysis.

Keywords

Archaeology Faunal analysis Blind test Bone identification Archaeozoology 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10816_2016_9301_MOESM1_ESM.xlsx (84 kb)
ESM 1 (XLSX 83 kb)

References

  1. Albarella, U., & Davis, S. J. M. (1996). Mammals and birds from Launceston Castle, Cornwall: decline in status and the rise of agriculture. Circaea, 12, 1–156.Google Scholar
  2. Binford, L. R. (1984). Faunal remains from Klasies River mouth. New York: Academic Press.Google Scholar
  3. Blasco, R. (2011). La amplitud de la dieta cárnica en el Pleistoceno medio peninsular: Una aproximación a partir de la Cova del Bolomor (Tavernes de la Valldigna, Valencia) y del subnivel TD10–1 de Gran Dolina (Sierra de Atapuerca, Burgos). Unpublished Ph.D. dissertation, Universitat Rovira I Virgili, Tarragona.Google Scholar
  4. Boileau, A. (2014). Maya exploitation of animal resources during the Middle Preclassic period: an archaeozoological analysis from Pacbitun, Belize. M.A thesis, Peterborough: Trent University.Google Scholar
  5. Broughton, J. (2004). Prehistoric impacts on California birds: evidence from the Emeryville Shellmound avifauna. Ornithological Monographs, 56.Google Scholar
  6. Bunn, H. T. (1991). A taphonomic perspective on the archaeology of human origins. Annual Review of Anthropology, 20, 433–467.CrossRefGoogle Scholar
  7. Bunn, H. T., & Kroll, E. M. (1986). Systematic butchery by Plio/Pleistocene hominids at Olduvai Gorge, Tanzania. Current Anthropology, 27, 431–452.CrossRefGoogle Scholar
  8. Cannon, M. D. (2013). NISP, bone fragmentation, and the measurement of taxonomic abundance. Journal of Archaeological Method and Theory, 20, 397–419.CrossRefGoogle Scholar
  9. Casteel, R. W. (1977). A consideration of the behavior of the minimum number of individuals index: a problem in faunal characterization. OSSA, 3/4, 14–151.Google Scholar
  10. Castel, J. C. (1999). Comportements de subsistance au Solutréen et au Badegoulien d’après les faunes de Combe-Saunière (Dordogne) et du Cuzoul de Vers (Lot). Unpublished Ph.D. dissertation, Bordeaux: Université de Bordeaux I.Google Scholar
  11. Castel, J. C. (2011). Archéozoologie de l’Aurignacien de l’Abri Castanet (Sergeac, Dordogne, France): Les fouilles 1994–1998. Revue de Paléobiologie, 30, 783–815.Google Scholar
  12. Chase, P. G. (1999). Bison in the context of complex utilization of faunal resources: a preliminary report on the Mousterian zooarchaeology of La Quina (Charente, France). In J.-P. Brugal, F. David, J. G. Enloe, & J. Jaubert (Eds.), Le bison: Gibier et moyen de subsistance des hommes du Paléolithique aux Paléoindiens des grandes plaines (pp. 159–184). Antibes: Éditions ADPCA.Google Scholar
  13. Cho, T.-S. (1998). Étude archéozoologique de la faune du Périgordien supérieur: couches 2, 3, et 4 de l’abri Pataud, Les Eyzies, Dordogne: Paléoécologie, taphonomie, paléoéconomie. Unpublished Ph.D. dissertation, Paris: Muséum National d’Histoire Naturelle.Google Scholar
  14. Claassen, C. (1998). Shells. Cambridge: Cambridge University Press.Google Scholar
  15. Cleghorn, N., & Marean, C. W. (2004). Distinguishing selective transport and in situ attrition: a critical review of analytical approaches. Journal of Taphonomy, 2, 43–67.Google Scholar
  16. Costamagno, S. (1999). Stratégies de chasse et fonction des sites au Magdalénien dans le sud de la France. Unpublished Ph.D. dissertation, Université de Bordeaux I.Google Scholar
  17. David, F., & Poulain, T. (2002). Les mammifères (herbivores, carnivores, petits mammifères). In B. Schmider (Ed.), L’Aurignacien de la Grotte du Renne. Les fouilles d’André Leroi-Gourhan à Arcy-sur-Cure (Yonne) (pp. 49–95). Paris: Éditions CNRS.Google Scholar
  18. David, F., Connet, N., Girard, M., Miskovsky, J.-C., Mourer-Chauviré, C., & Roblin-Jouve, A. (2005). Les niveaux du Paléolithique supérieur à la grotte du Bison (Arcy-sur-Cure, Yonne) couches a à d. Revue Archéologique de l’Est, 54, 5–50.Google Scholar
  19. Davis, S. J. M. (1992). A rapid method for recording information about mammal bones from archaeological sites. London, English Heritage AML report 19/92.Google Scholar
  20. Domínguez-Rodrigo, M. (2012). Critical review of the MNI (minimum number of individuals) as a zooarchaeological unit of quantification. Archaeological and Anthropological Sciences, 4, 47–59.CrossRefGoogle Scholar
  21. Ducos, P. (1968). L’origine des animaux domestiques en Palestine. Publications de l’Institut de Préhistoire de l’Université de Bordeaux: Mémoire no. 6. Bordeaux: Imprimerie Delmas.Google Scholar
  22. Emery, K. F. (2008). A zooarchaeological test for dietary resource depression at the end of the Classic period in the Petexbatun. Human Ecology, 36, 617–634.CrossRefGoogle Scholar
  23. Enloe, J. G. (1993). Subsistence organization in the early Upper Paleolithic: reindeer hunters of the Abri du flageolet. In H. Knecht, A. Pike-Tay, & R. White (Eds.), Before Lascaux: the complex record of the early Upper Paleolithic (pp. 101–115). Boca Raton: CRC Press.Google Scholar
  24. Fernández-Laso, M. C. (2010). Remontajes de restos faunísticos y relaciones entre áreas domésticas en los niveles K, L y M del Abric Romaní (Capellades, Barcelona, España). Unpublished Ph.D. dissertation, Tarragona: Universitat Rovira i Virgili.Google Scholar
  25. Fiore, I., & Tagliacozzo, A. (2008). Oltre lo stambecco: Gli altri mammiferi della struttura abitativa dell’US 26c a Riparo Dalmeri (Trento). Preistoria Alpina, 43, 209–236.Google Scholar
  26. Gerbe, M. (2010). Économie alimentaire et environnement en Quercy au Paléolithique. Étude des associations fauniques de la séquence des Fieux (Lot). Unpublished Ph.D. dissertation, Université́ d’Aix-Marseille.Google Scholar
  27. Giovas, C. M. (2009). The shell game: analytic problems in archaeological mollusc quantification. Journal of Archaeological Science, 36, 1557–1564.CrossRefGoogle Scholar
  28. Grayson, D. K. (1973). On the methodology of faunal analysis. American Antiquity, 38, 432–439.CrossRefGoogle Scholar
  29. Grayson, D. K. (1978a). Minimum numbers and sample size in vertebrate faunal analysis. American Antiquity, 43, 53–65.CrossRefGoogle Scholar
  30. Grayson, D. K. (1978b). Reconstructing mammalian communities: a discussion of Shotwell’s method of paleoecological analysis. Paleobiology, 4, 77–81.CrossRefGoogle Scholar
  31. Grayson, D. K. (1979). On the quantification of vertebrate archaeofaunas. Advances in Archaeological Method and Theory, 2, 199–237.Google Scholar
  32. Grayson, D. K. (1984). Quantitative zooarchaeology: topics in the analysis of archaeological faunas. Orlando: Academic Press.Google Scholar
  33. Grayson, D. K., & Frey, C. J. (2004). Measuring skeletal representation. Journal of Taphonomy, 2, 27–42.Google Scholar
  34. Gutiérrez Zugasti, F. I. (2011). Shell fragmentation as a tool for quantification and identification of taphonomic processes in archaeomalacological analysis: the case of the Cantabrian region (northern Spain). Archaeometry, 53, 614–630.CrossRefGoogle Scholar
  35. Harris, M., Weisler, M., & Faulkner, P. (2015). A refined protocol for calculating MNI in archaeological molluscan shell assemblages: a Marshall Islands case study. Journal of Archaeological Science, 57, 168–179.CrossRefGoogle Scholar
  36. Haws, J. A. (2003). An investigation of late Upper Paleolithic and Epipaleolithic hunter-gatherer subsistence and settlement patterns in Central Portugal. Unpublished Ph.D. dissertation, University of Wisconsin-Madison.Google Scholar
  37. Hudson, J. 1990. Advancing methods in zooarchaeology: an ethnoarchaeological study among the Aka Pygmies. Unpublished Ph.D. dissertation, Santa Barbara: University of California.Google Scholar
  38. Klein, R. G., & Cruz-Uribe, K. (1984). The analysis of animal bones from archaeological sites. Chicago: University of Chicago Press.Google Scholar
  39. Klein, R. G., Cruz-Uribe, K., & Milo, R. G. (1999). Skeletal part representation in archaeofaunas: comments on “explaining the ‘Klasies pattern’: Kua ethnoarchaeology, the Die Kelders middle stone age archaeofauna, long bone fragmentation and carnivore ravaging” by Bartram & Marean. Journal of Archaeological Science, 26, 1225–1234.CrossRefGoogle Scholar
  40. Kuntz, D. (2006). Données nouvelles sur les stratégies d’acquisition et de traitement des carcasses au cours du Magdalénien supérieur dans la vallée de l’Aveyron: L’exemple de La Magdeleine La Plaine (Penne, Tarn). Préhistoire du Sud-Ouest, 13, 151–166.Google Scholar
  41. Lyman, R. L. (1994). Vertebrate taphonomy. New York: Cambridge University Press.CrossRefGoogle Scholar
  42. Lyman, R. L. (2003). Quantification and sampling of faunal remains in owl pellets. Journal of Taphonomy, 1, 3–14.Google Scholar
  43. Lyman, R. L. (2006). Identifying bilateral pairs of deer (Odocoileus sp.) bones: how symmetrical is symmetrical enough? Journal of Archaeological Science, 33, 1237–1255.CrossRefGoogle Scholar
  44. Lyman, R. L. (2008). Quantitative paleozoology. New York: Cambridge University Press.CrossRefGoogle Scholar
  45. Lyman, R. L., & O’Brien, M. J. (1987). Plow-zone zooarchaeology: fragmentation and identifiability. Journal of Field Archaeology, 14, 493–498.CrossRefGoogle Scholar
  46. Magniez, P. (2010). Étude paléontologique des artiodactyles de la grotte Tournal (Bize-Minervois, Aude, France): Étude taphonomique, archéozoologique et paléoécologique des grands mammifères dans leur cadre biostratigraphique et paléoenvironnemental. Unpublished Ph.D. dissertation, Perpignan: Université Via Domitia.Google Scholar
  47. Marean, C. W., & Kim, S. Y. (1998). Mousterian large-mammal remains from Kobeh cave: behavioral implications for Neanderthals and early modern humans. Current Anthropology, 39, 79–113.CrossRefGoogle Scholar
  48. Marean, C. W., Abe, Y., Nilssen, P. J., & Stone, E. C. (2001). Estimating the minimum number of skeletal elements (MNE) in zooarchaeology: a review and a new image-analysis GIS approach. American Antiquity, 66, 333–348.CrossRefGoogle Scholar
  49. Marín Arroyo, A. B. (2009). A comparative study of analytic profile interpretation at El Mirón cave (Cantabria, Spain). Archaeofauna, 18, 79–98.Google Scholar
  50. Mason, R. D., Peterson, M. L., & Tiffany, J. A. (1998). Weighing vs. counting: measurement reliability and the California school of midden analysis. American Antiquity, 63, 303–324.CrossRefGoogle Scholar
  51. Mason, R. D., Peterson, M. L., & Tiffany, J. A. (2000). Weighing and counting shell: a response to Glassow and Claassen. American Antiquity, 65, 757–761.CrossRefGoogle Scholar
  52. Morin, E. (2012). Reassessing Paleolithic subsistence: the Neandertal and modern human foragers of Saint-Césaire, France. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  53. Niven, L., Steele, T. E., Rendu, W., Mallye, J.-B., McPherron, S. P., et al. (2012). Neanderthal mobility and large-game hunting: the exploitation of reindeer during the Quina Mousterian at Chez-Pinaud Jonzac (Charente-Maritime, France). Journal of Human Evolution, 63, 624–635.CrossRefGoogle Scholar
  54. Payne, S. (1972). On the interpretation of bone samples from archaeological sites. In E. S. Higgs (Ed.), Papers in economic prehistory (pp. 65–81). Cambridge: Cambridge University Press.Google Scholar
  55. Pickering, T. R., Marean, C. W., & Domínguez-Rodrigo, M. (2003). Importance of limb bone shaft fragments in zooarchaeology: a response to "on in situ attrition and vertebrate body part profiles" (2002) by M.C. Stiner. Journal of Archaeological Science, 30, 1469–1482.CrossRefGoogle Scholar
  56. Psathi, E. (2003). Les sites moustériens de la Caverna delle Fate et de l’Arma delle Manie (Ligurie, Italie). Étude paléontologique et archéozoologique des faunes des grands mammifères. Unpublished Ph.D. dissertation, Paris: Muséum National d’Histoire Naturelle.Google Scholar
  57. Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology (Second ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  58. Romandini, M., Nannini, N., Tagliacozzo, A., & Peresani, M. (2014). The ungulate assemblage from layer A9 at Grotta di Fumane, Italy: a zooarchaeological contribution to the reconstruction of Neanderthal ecology. Quaternary International, 337, 11–27.CrossRefGoogle Scholar
  59. Rosell, J. (2001). Patrons d’aprofitament de les biomasses animals durant el Pleistocè inferior i mig (Sierra de Atapuerca, Burgos) I superior (Abric Romaní, Barcelona). Unpublished Ph.D. dissertation, Tarragona: Universitat Rovira i Virgili.Google Scholar
  60. Rosell, J., Blasco, R., Rivals, F., Chacón, M. G., Menéndez, L., Morales, J. I., Rodríguez, A., Cebrià, A., Carbonell, E., & Serrat, D. (2010). A stop along the way: the role of Neanderthal groups at level III of Teixoneres cave (Moià, Barcelona, Spain). Quaternaire, 21(2), 139–154.CrossRefGoogle Scholar
  61. Soulier, M.-C. (2013). Entre alimentaire et technique: L’exploitation animale aux débuts du Paléolithique supérieur. Stratégies de subsistance et chaînes opératoires de traitement du gibier à Isturitz, La Quina aval, Roc-de-Combe et Les Abeilles. Unpublished Ph.D. dissertation, Université de Toulouse.Google Scholar
  62. Stiner, M. C. (2002). On in situ attrition and vertebrate body part profiles. Journal of Archaeological Science, 29, 979–991.CrossRefGoogle Scholar
  63. Surmély, F., Fontana, L., Bourdelle, Y., & Liabeuf, R. (1997). Nouveaux éléments apportés à l’étude du site magdalénien d’Enval (Vic-le-Comte, Puy-de-Dôme, France) et du peuplement de la Limagne d’Auvergne. Bulletin de la Société Préhistorique Française, 94, 172–181.CrossRefGoogle Scholar
  64. Thomas, K. D., & Mannino, M. A. (2016). Making numbers count: beyond minimum numbers of individuals (MNI) for the quantification of mollusc assemblages from shell matrix sites. Quaternary International, in press.Google Scholar
  65. Tolmie, C. (2013). Animals for food, animals for tools: fauna as a source of raw material at Abri Cellier, Dordogne, and the Grotte du Renne, Arcy-sur-Cure. Unpublished Ph.D. dissertation, University of Iowa.Google Scholar
  66. Valensi, P., Crégut-Bonnoure, E., & Defleur, A. (2012). Archaeozoological data from the Mousterian level from Moula-Guercy (Ardèche, France) bearing cannibalised Neanderthal remains. Quaternary International, 252, 48–55.CrossRefGoogle Scholar
  67. Valensi, P., Michel, V., El Guennouni, K., & Liouville, M. (2013). New data on human behavior from a 160,000 year old Acheulean occupation level at Lazaret cave, south-East France: an archaeozoological approach. Quaternary International, 316, 123–139.CrossRefGoogle Scholar
  68. Watson, J. P. N. (1979). The estimation of the relative frequencies of mammalian species: Khirokitia 1972. Journal of Archaeological Science, 6, 127–137.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Anthropology, DNA Block CTrent UniversityPeterboroughCanada
  2. 2.PACEA, Bâtiment B18, UMR5199Université de BordeauxPessac CEDEXFrance
  3. 3.Department of AnthropologyStanford UniversityStanfordUSA
  4. 4.Department of AnthropologyUniversity of FloridaGainesvilleUSA
  5. 5.ArchéosphèreQuirbajouFrance
  6. 6.ANRAS, CEF La PoujadeColombièsFrance

Personalised recommendations