Journal of Archaeological Method and Theory

, Volume 24, Issue 3, pp 886–937 | Cite as

Problems of Identification and Quantification in Archaeozoological Analysis, Part I: Insights from a Blind Test

  • Eugène Morin
  • Elspeth Ready
  • Arianne Boileau
  • Cédric Beauval
  • Marie-Pierre Coumont


In archaeozoology, counts are generally considered as replicable data that accurately represent the initial abundances of elements, individuals, or taxa, although perhaps only at the ordinal scale. However, few studies have tested these assumptions with control data. To improve our knowledge of these issues, we conducted a blind test that involved the analysis of two large experimental samples composed of modern ungulate specimens of known element and taxon. Because the samples differed in level of fragmentation, the blind test provides substantial information on the impact of bone processing on faunal identification and quantification. Our results suggest that Number of Identified SPecimens (NISP) and Minimum Number of Elements (MNE) provide measures of abundance for whole assemblages and for samples limited to non-long bones that are both replicable and accurate at the ratio scale. However, the same metrics generally failed, even at the ordinal level, to predict abundances in analyses restricted to long bones and long bone portions. Given these mixed results, it seems judicious, in agreement with the current majority view among archaeozoologists, to treat faunal tallies as ordinal-level information. Despite issues of reproducibility and the difficulty of aggregating counts with MNE, the blind test also indicates that this measure is more robust at predicting skeletal abundances than NISP. Substantial variations in rates of long bone fragmentation and identification probably explain the poorer performance of NISP in the blind test.


Archaeology Blind test Faunal analysis Bone identification Archaeozoology 



The authors would like to express their gratitude to Denis Ferrer from “Les viandes de la petite nation” for his curiosity, constant support, and for providing us with much of the skeletal material used in this paper. Our gratitude also goes to Henry Bunn, Curtis Marean, Travis Pickering, John Speth, and Larry Todd for their suggestions concerning the protocol of the blind test. Moreover, we thank Virginia Butler, Mike Cannon, Lee Lyman, John Speth, and the anonymous reviewers for insightful comments made on various drafts of the paper. We are indebted to the many volunteers who helped in the processing, cleaning, labeling, and counting of the thousand specimens assembled for the experiments. Lastly, these analyses would not have been possible without the considerable efforts that the participants put into the blind test. As emphasized by one of the anonymous reviewers, they deserve a medal for their service to this research project.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10816_2016_9300_MOESM1_ESM.doc (1.1 mb)
ESM 1 (DOC 1.13 mb)


  1. Bartram, L. E., & Marean, C. W. (1999). Explaining the “Klasies Pattern”: Kua ethnoarchaeology, the Die Kelders Middle Stone Age archaeofauna, long bone fragmentation and carnivore ravaging. Journal of Archaeological Science, 26, 9–29.CrossRefGoogle Scholar
  2. Binford, L. R. (1978). Nunamiut ethnoarchaeology. New York: Academic Press.Google Scholar
  3. Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15, 483–502.CrossRefGoogle Scholar
  4. Bökönyi, S. (1970). A new method for the determination of the number of individuals in animal bone material. American Journal of Archaeology, 74, 291–292.CrossRefGoogle Scholar
  5. Bouchud, J. (1962). Nouvelles recherches sur le renne quaternaire en France. In G. G. Simpson (Ed.), Problèmes actuels de paléontologie (pp. 417–432). Paris: Éditions du CNRS.Google Scholar
  6. Bouchud, J. (1975). Étude de la faune de l’Abri Pataud. In H. L. Movius (Ed.), Excavation of the Abri Pataud, Les Eyzies (Dordogne) (pp. 69–153). Cambridge: Peabody Museum of Archaeology and Ethnology.Google Scholar
  7. Breitburg, E. (1991). Verification and reliability of NISP and MNI methods of quantifying taxonomic abundance: A view from historic site zooarchaeology. In J. R. Purdue, W. E. Klippel & B. W. Styles (Eds), Beamers, bobwhites, and blue-points: Tributes to the career of Paul W. Parmalee (pp. 153–162). Springfield: Illinois State Museum Scientific Papers Vol. 23.Google Scholar
  8. Buckley, M., Whitcher Kansa, S., Howard, S., Campbell, S., Thomas-Oates, J., & Collins, M. (2010). Distinguishing between archaeological sheep and goat bones using a single collagen peptide. Journal of Archaeological Science, 37, 13–20.CrossRefGoogle Scholar
  9. Bunn, H. T. (1991). A taphonomic perspective on the archaeology of human origins. Annual Review of Anthropology, 20, 433–467.CrossRefGoogle Scholar
  10. Cannon, M. D. (1999). A mathematical model of the effects of screen size on zooarchaeological relative abundance measures. Journal of Archaeological Science, 26, 205–214.CrossRefGoogle Scholar
  11. Cannon, M. D. (2013). NISP, bone fragmentation, and the measurement of taxonomic abundance. Journal of Archaeological Method and Theory, 20, 397–419.CrossRefGoogle Scholar
  12. Casteel, R. W. (1977). A consideration of the behavior of the minimum number of individuals index: a problem in faunal characterization. OSSA, 3/4, 141–151.Google Scholar
  13. Dirrigl Jr., F. J. (2001). Bone mineral density of wild turkey (Meleagris gallopavo) skeletal elements and its effect on differential survivorship. Journal of Archaeological Science, 28, 817–832.CrossRefGoogle Scholar
  14. Dirrigl Jr., F. J. (2002). Differential identifiability between chosen North American gallinaceous skeletons and the effect of differential survivorship. Acta Zoologica Cracoviensia, 45, 357–367.Google Scholar
  15. Domínguez-Rodrigo, M. (2012). Critical review of the MNI (minimum number of individuals) as a zooarchaeological unit of quantification. Archaeological and Anthropological Sciences, 4, 47–59.CrossRefGoogle Scholar
  16. Driver, J. C. (1992). Identification, classification and zooarchaeology. Circaea, 9, 35–47.Google Scholar
  17. Driver, J. C. (2011). Twenty years after “identification, classification and zooarchaeology”. Ethnobiology Letters, 2, 36–39.CrossRefGoogle Scholar
  18. Ducos, P. (1968). L’origine des animaux domestiques en Palestine. Bordeaux: Imprimerie Delmas: Publications de l’Institut de Préhistoire de l’Université de Bordeaux: Mémoire no. 6.Google Scholar
  19. Faith, T. J. (2007). Sources of variation in carnivore tooth-mark frequencies in a modern spotted hyena (Crocuta crocuta) den assemblage, Amboseli Park, Kenya. Journal of Archaeological Science, 34, 1601–1609.CrossRefGoogle Scholar
  20. Gobalet, K. W. (2001). A critique of faunal analysis; inconsistency among experts in blind tests. Journal of Archaeological Science, 28, 377–386.CrossRefGoogle Scholar
  21. Grayson, D. K. (1973). On the methodology of faunal analysis. American Antiquity, 38, 432–439.CrossRefGoogle Scholar
  22. Grayson, D. K. (1978). Minimum numbers and sample size in vertebrate faunal analysis. American Antiquity, 43, 53–65.CrossRefGoogle Scholar
  23. Grayson, D. K. (1979). On the quantification of vertebrate archaeofaunas. Advances in Archaeological Method and Theory, 2, 199–237.Google Scholar
  24. Grayson, D. K. (1984). Quantitative zooarchaeology: topics in the analysis of archaeological faunas. Orlando: Academic Press.Google Scholar
  25. Grayson, D. K., & Frey, C. J. (2004). Measuring skeletal representation. Journal of Taphonomy, 2, 27–42.Google Scholar
  26. Higham, C. F. W. (1968). Faunal sampling and economic prehistory. Zeitschrift fur Saugertierkunde, 33, 297–305.Google Scholar
  27. Hudson, J. (1990). Advancing methods in zooarchaeology: an ethnoarchaeological study among the Aka Pygmies. Santa Barbara: Unpublished Ph.D. dissertation, University of California.Google Scholar
  28. Klein, R. G. (1989). Why does skeletal part representation differ between smaller and larger bovids at Klasies River mouth and other archaeological sites? Journal of Archaeological Science, 6, 363–381.CrossRefGoogle Scholar
  29. Klein, R. G., & Cruz-Uribe, K. (1984). The analysis of animal bones from archaeological sites. Chicago: University of Chicago Press.Google Scholar
  30. Lyman, R. L. (1994a). Vertebrate taphonomy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. Lyman, R. L. (1994b). Quantitative units and terminology in zooarchaeology. American Antiquity, 59, 36–71.CrossRefGoogle Scholar
  32. Lyman, R. L. (2002). Taxonomic identification of zooarchaeological remains. The Review of Archaeology, 23, 13–20.Google Scholar
  33. Lyman, R. L. (2008). Quantitative paleozoology. New York: Cambridge University Press.CrossRefGoogle Scholar
  34. Lyman, R. L. (2010). Paleozoology’s dependence on natural history collections. Journal of Ethnobiology, 30, 126–136.CrossRefGoogle Scholar
  35. Lyman, R. L. (2012). The influence of screen-mesh size, and size and shape of rodent teeth on recovery. Journal of Archaeological Science, 39, 1854–1861.CrossRefGoogle Scholar
  36. Lyman, R. L., & Fox, G. L. (1987). A critical evaluation of bone weathering data as an indication of bone assemblage formation. Journal of Archaeological Science, 16, 293–317.CrossRefGoogle Scholar
  37. Lyman, R. L., & O’Brien, M. J. (1987). Plow-zone zooarchaeology: fragmentation and identifiability. Journal of Field Archaeology, 14, 493–498.CrossRefGoogle Scholar
  38. Marean, C. W., & Frey, C. J. (1997). The animal bones from caves to cities: reverse utility curves as methodological artifacts. American Antiquity, 62, 698–711.CrossRefGoogle Scholar
  39. Marean, C. W., & Kim, S. Y. (1998). Mousterian large-mammal remains from Kobeh Cave: behavioral implications for Neanderthals and early modern humans. Current Anthropology, 39, 79–113.CrossRefGoogle Scholar
  40. Marean, C. W., & Spencer, L. M. (1991). Impact of carnivore ravaging on zooarchaeological measures of element abundance. American Antiquity, 56, 645–658.CrossRefGoogle Scholar
  41. Marean, C. W., Abe, Y., Nilssen, P. J., & Stone, E. C. (2001). Estimating the minimum number of skeletal elements (MNE) in zooarchaeology: a review and a new image-analysis GIS approach. American Antiquity, 66, 333–348.CrossRefGoogle Scholar
  42. Marshall, F., & Pilgram, T. (1993). NISP vs MNI in quantification of body-part representation. American Antiquity, 58, 261–269.CrossRefGoogle Scholar
  43. Morin, E. (2010). Taphonomic implications of the use of bone as fuel. Palethnologie, 2, 209–217.Google Scholar
  44. Morin, E. (2012). Reassessing Paleolithic subsistence: the Neandertal and modern human foragers of Saint-Césaire, France. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  45. Morin, E. and Soulier, M. -C. (2016). New criteria for the archaeological identification of bone grease processing. American Antiquity (in press).Google Scholar
  46. Morlan, R. E. (1994). Bison bone fragmentation and survivorship: a comparative method. Journal of Archaeological Science, 21, 797–807.CrossRefGoogle Scholar
  47. Nascou, A. L. (2012). Variation in arctic wolf (Canis lupus arctos) and spotted hyena (Crocuta crocuta) gnawing damage on an experimental faunal assemblage. Peterborough: Unpublished M.A. thesis, Department of Anthropology, Trent University.Google Scholar
  48. O’Connor, T. (2000). The archaeology of animal bones. Stroud: Sutton Publishing.Google Scholar
  49. Parmalee, P. W. (1985). Identification and interpretation of archaeologically derived animal remains. In R. I. Gilbert Jr. & J. H. Mielke (Eds.), The analysis of prehistoric diets (pp. 61–95). New York: Academic Press.Google Scholar
  50. Payne, S. (1972a). Partial recovery and sample bias: the results from some sieving experiments. In E. S. Higgs (Ed.), Papers in economic prehistory (pp. 49–64). Cambridge: Cambridge University Press.Google Scholar
  51. Payne, S. (1972b). On the interpretation of bone samples from archaeological sites. In E. S. Higgs (Ed.), Papers in economic prehistory (pp. 65–81). Cambridge: Cambridge University Press.Google Scholar
  52. Perkins, D. (1973). A critique on the methods of quantifying faunal remains from archaeological sites. In J. Matolcsi (Ed.), Domestikationsforschung und Geschichte der Haustiere (pp. 367–369). Budapest: Akademiai Kiado.Google Scholar
  53. Pickering, T. R., Marean, C. W., & Domínguez-Rodrigo, M. (2003). Importance of limb bone shaft fragments in zooarchaeology: a response to “on in situ attrition and vertebrate body part profiles” (2002) by M.C. Stiner. Journal of Archaeological Science, 30, 1469–1482.CrossRefGoogle Scholar
  54. Pickering, T. R., Egeland, C. P., Schnell, A. G., Osborne, D. L., & Enk, J. (2006). Success in identification of experimentally fragmented limb bone shafts: implications for estimates of skeletal element abundance in archaeofaunas. Journal of Taphonomy, 4, 97–108.Google Scholar
  55. Poplin, F. (1977). Problèmes d’ostéologie quantitative relatifs à l’étude de l’écologie des hommes fossiles. Bulletin de l’Association Française pour l’Étude du Quaternaire, Supplément, 47, 63–68.Google Scholar
  56. Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology (Second ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  57. Selvaggio, M. M. (1994). Carnivore tooth marks and stone tool butchery marks on scavenged bones: archaeological implications. Journal of Human Evolution, 27, 215–228.CrossRefGoogle Scholar
  58. Shotwell, J. A. (1958). Inter-community relationships in Hemphillian (Mid-Pliocene) mammals. Ecology, 39, 271–282.CrossRefGoogle Scholar
  59. Sokal, R. R., & Rohlf, F. J. (1969). Biometry: the principles and practice of statistics in biological research. San Francisco: W. H. Freeman.Google Scholar
  60. Turner, A. (1989). Sample selection, schlepp effects and scavenging: the implications of partial recovery for interpretations of the terrestrial mammal assemblage from Klasies River mouth. Journal of Archaeological Science, 16, 1–11.CrossRefGoogle Scholar
  61. Uerpmann, H. P. (1973). Animal bone finds and economic archaeology: a critical study of the osteoarchaeological method. World Archaeology, 4, 307–322.CrossRefGoogle Scholar
  62. Val, A., & Mallye, J.-B. (2011). Taphonomie du fouilleur: Influence de la maille de tamis sur la représentation anatomique des petits animaux à fourrure. British Archaeological Report International Series, 2269, 93–100.Google Scholar
  63. VanPool, T. L., & Leonard, R. D. (2011). Quantitative analysis in archaeology. London, UK: Blackwell Publishing.Google Scholar
  64. Villa, P., Castel, J.-C., Beauval, C., Bourdillat, V., & Goldberg, P. (2004). Human and carnivore sites in the European Middle and Upper Palaeolithic: similarities and differences in bone modification and fragmentation. Revue de Paléobiologie, 23, 705–730.Google Scholar
  65. Watson, J. P. N. (1972). Fragmentation analysis of animal bone samples from archaeological sites. Archaeometry, 14, 221–228.CrossRefGoogle Scholar
  66. Watson, J. P. N. (1979). The estimation of the relative frequencies of mammalian species: Khirokitia 1972. Journal of Archaeological Science, 6, 127–137.CrossRefGoogle Scholar
  67. Welker, F., Soressi, M., Rendu, W., Hublin, J.-J., & Collins, M. (2015). Using ZooMS to identify fragmentary bone from the Late Middle/Early Upper Palaeolithic sequence of les Cottés, France. Journal of Archaeological Science, 54, 279–286.CrossRefGoogle Scholar
  68. Wolverton, S. (2013). Data quality in zooarchaeological faunal identification. Journal of Archaeological Method and Theory, 20, 381–396.CrossRefGoogle Scholar
  69. Zar, J. H. (2010). Biostatistical analysis (5th ed.). Upper Saddle River: Pearson Prentice-Hall.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of AnthropologyTrent UniversityPeterboroughCanada
  2. 2.PACEA, Bâtiment B18, UMR5199Université de BordeauxPessac CedexFrance
  3. 3.Department of AnthropologyStanford UniversityStanfordUSA
  4. 4.Department of AnthropologyUniversity of FloridaGainesvilleUSA
  5. 5.Archéosphère2 rue des noyersQuirbajouFrance
  6. 6.ANRAS, CEF La PoujadeLimayracColombièsFrance

Personalised recommendations