Advertisement

Journal of Archaeological Method and Theory

, Volume 24, Issue 3, pp 852–885 | Cite as

Geographic Visualization in Archaeology

  • Neha Gupta
  • Rodolphe Devillers
Article

Abstract

Archaeologists are often considered frontrunners in employing spatial approaches within the social sciences and humanities, including geospatial technologies such as geographic information systems (GIS) that are now routinely used in archaeology. Since the late 1980s, GIS has mainly been used to support data collection and management as well as spatial analysis and modeling. While fruitful, these efforts have arguably neglected the potential contribution of advanced visualization methods to the generation of broader archaeological knowledge. This paper reviews the use of GIS in archaeology from a geographic visualization (geovisual) perspective and examines how these methods can broaden the scope of archaeological research in an era of more user-friendly cyber-infrastructures. Like most computational databases, GIS do not easily support temporal data. This limitation is particularly problematic in archaeology because processes and events are best understood in space and time. To deal with such shortcomings in existing tools, archaeologists often end up having to reduce the diversity and complexity of archaeological phenomena. Recent developments in geographic visualization begin to address some of these issues and are pertinent in the globalized world as archaeologists amass vast new bodies of georeferenced information and work towards integrating them with traditional archaeological data. Greater effort in developing geovisualization and geovisual analytics appropriate for archaeological data can create opportunities to visualize, navigate, and assess different sources of information within the larger archaeological community, thus enhancing possibilities for collaborative research and new forms of critical inquiry.

Keywords

Geovisualization GIS Maps Interpretation Computational and digital archaeology Cyber-infrastructures 

Notes

Acknowledgments

This manuscript was prepared during Gupta’s Postdoctoral Fellowship from the Social Science and Humanities Research Council (SSHRC), Canada. Gupta thanks Dr. Harry Lerner (Laval University) for discussion on archaeological practices, and Drs Shawn Graham (Carleton University), Scott Hamilton (Lakehead University), and Ronald Doel (Florida State University) for comments on early drafts. We thank the journal editor and two anonymous reviewers for constructive comments.

Compliance with Ethical Standards

Funding

This manuscript was prepared during Gupta’s Postdoctoral Fellowship from the Social Science and Humanities Research Council (SSHRC), Canada, award number 756-2014-0372.

Conflict of Interest

The authors declare that they have no conflict of interest.

Reference

  1. Aigner, W., Miksch, S., Muller, W., Schumann, H., & Tominski, C. (2008). Visual methods for analyzing time-oriented data. IEEE Transactions on Visualization and Computer Graphics, 14(1), 47–60.CrossRefGoogle Scholar
  2. Alberti, B., Jones, A., & Pollard, J. (2013). Archaeology after interpretation: returning materials to archaeological theory. Walnut Creek: Left Coast Press.Google Scholar
  3. Aldenderfer, M. S. (2010). Seeing and knowing: on the convergence of archaeological simulation and visualization. In A. Costopoulos & M. W. Lake (Eds.), Simulating change: archaeology into the twenty-first century (pp. 53–68). Salt Lake City: University of Utah Press.Google Scholar
  4. Aldenderfer, M. S., & Maschner, H. D. G. (1996). Anthropology, space, and geographic information systems. New York: Oxford University Press.Google Scholar
  5. Allen, K. M. S., Green, S. W., & Zubrow, E. B. W. (1990). Interpreting space: GIS and archaeology. New York: Taylor & Francis.Google Scholar
  6. Allison, P. (2008). Dealing with legacy data—an introduction. Internet Archaeology, 24. doi: 10.11141/ia.24.8.
  7. Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabriaknt, S. I., Jern, M., Kraak, M.-J., Schumann, H., & Tominski, C. (2010). Space, time and visual analytics. International Journal of Geographical Information Science, 24(10), 1577–1600.CrossRefGoogle Scholar
  8. Andrienko, G., Andrienko, N., Jankowski, P., Kraak, M.-J., Keim, D., MacEachren, A. M., & Wrobel, S. (2007). Geovisual analytics for spatial decision support. Setting the research agenda. International Journal of Geographical Information Science, 21(8), 839–857.CrossRefGoogle Scholar
  9. Andrienko, G., Andrienko, N., Keim, D., MacEachren, A. M., & Wrobel, S. (2011). Editorial. Journal of Visual Languages and Computing, 22, 251–256.CrossRefGoogle Scholar
  10. Atici, L., Kansa, S. W., Lev-Tov, J., & Kansa, E. C. (2013). Other People’s data: a demonstration of the imperative of publishing primary data. Journal of Archaeological Method and Theory, 19, 1–19.Google Scholar
  11. ArcGIS® [Computer software] (2016). Retrieved from http://www.esri.com/software/arcgis/arcgis-for-desktop.
  12. Bailey, G. (2007). Time perspectives, palimpsests and the archaeology of time. Journal of Anthropological Archaeology, 26(2), 198–223.CrossRefGoogle Scholar
  13. Bárdossy, G., & Fodor, J. (2001). Traditional and new ways to handle uncertainty in geology. Natural Resources Research, 10(3), 179–187.CrossRefGoogle Scholar
  14. Barton, M. (2013). Stories of the past or science of the future? Archaeology and computational social science. In A. Bevan & M. W. Lake (Eds.), Computational approaches to archaeological spaces (pp. 151–178). Walnut Creek, CA: Left Coast Press.Google Scholar
  15. Beale, N. (2012). How community archaeology can make use of open data to achieve further its objectives. World Archaeology, 44(4), 612–633.CrossRefGoogle Scholar
  16. Bevan, A. (2012). Spatial methods for Analysing large-scale artefact inventories. Antiquity, 86, 492–506.CrossRefGoogle Scholar
  17. Bevan, A., & Conolly, J. (2004). GIS, archaeological survey, and landscape archaeology on the island of Kythera, Greece. Journal of Field Archaeology, 29(1–2), 123–138.CrossRefGoogle Scholar
  18. Bevan, A., & Lake, M. W. (2013a). Computational approaches to archaeological spaces. Walnut Creek, CA: Left Coast Press.Google Scholar
  19. Bevan, A., & Lake, M. W. (2013b). Introduction: archaeological inferences and computational spaces. In A. Bevan & M. W. Lake (Eds.), Computational approaches to archaeological spaces (pp. 17–26). Walnut Creek, CA: Left Coast Press.Google Scholar
  20. Bevan, A., Crema, E., Li, X., Palmisano, A., et al. (2013). Intensities, interactions, and uncertainties: some new approaches to archaeological distributions. In A. Bevan & M. W. Lake (Eds.), Computational approaches to archaeological spaces (pp. 27–52). Walnut Creek, CA: Left Coast Press.Google Scholar
  21. Bevan, A., Pett, D., Bonacchi, C., Keinan-Schoonbaert, A., Gonzalez, D. L., Sparks, R., Wexler, J., & Wilkin, N. (2014). Citizen archaeologists. Online collaborative research about the human past. Human Computation, 1(2), 185–199. doi: 10.15346/hc.v1i2.9.CrossRefGoogle Scholar
  22. Bimber, O., & Chang, C. K. (2011). Computational archaeology: reviving the past with present-day tools. IEEE Computer, 44(7), 30–31.CrossRefGoogle Scholar
  23. Bodenhamer, D. J., Corrigan, J., & Harris, T. M. (2010). The spatial humanities: GIS and the future of humanities scholarship. Bloomington: Indiana University Press.Google Scholar
  24. Branting, S. (2012). Seven solutions for seven problems with least cost pathways. In D. White & S. Surface-Evans (Eds.), Least cost analysis of social landscapes: archaeological case studies (pp. 209–224). Salt Lake City: University of Utah Press.Google Scholar
  25. Cartwright, W. (1997). New media and their application to the production of map products. Computers & Geosciences, 23(4), 447–456.CrossRefGoogle Scholar
  26. Chapman, H. (2006). Landscape archaeology and GIS. Letchworth Garden City, UK: Tempus Press.Google Scholar
  27. Clark, C. D., Garrod, S. M., & Parker Pearson, M. (1998). Landscape archaeology and remote sensing in southern Madagascar. International Journal of Remote Sensing, 19(8), 1461–1477.CrossRefGoogle Scholar
  28. Conolly, J., & Lake, M. W. (2006). Geographical information Systems in Archaeology. New York: Cambridge University Press.CrossRefGoogle Scholar
  29. Constantinidis, D. (2007). TIME to look for a temporal GIS. In A. Figueiredo & G. Leite Velho (Eds.), The world is in your eyes CAA2005 computer applications and quantitative methods in archaeology. Proceedings of the 33rd conference, Tomar, March 2005 (pp. 407–411). Tomar: CAA Portugal.Google Scholar
  30. Cooper, A., & Green, C. (2016). Embracing the complexities of ‘big data’ in archaeology: the case of the English landscape and identities project. Journal of Archaeological Method and Theory, 22(1). doi: 10.1007/s10816-015-9240-4.
  31. Costa, S., Beck, A., Bevan, A. H., & Ogden, J. (2013). Defining and advocating open data in archaeology. In G. Earl, T. Sly, A. Chrysanthi, P. Murrieta-Flores, C. Papadopoulos, I. Romanowska, & D. Wheatley (Eds.), Archaeology in the digital era. Papers from the 40th annual conference of computer applications and quantitative methods in archaeology Southampton 26–29 March 2012 (pp. 449–456). Amsterdam: University Press.Google Scholar
  32. Costopoulos, A., & Lake, M. W. (2010). Simulating change: archaeology into the twenty-first century. Salt Lake City: University of Utah Press.Google Scholar
  33. Cox, R. J., & Wallace, D. A. (2002). Archives and the public good: accountability and records in modern society. Westport, Conn: Quorum Book.Google Scholar
  34. Crema, E. (2012). Modelling temporal uncertainty in archaeological analysis. Journal of Archaeological Method and Theory, 19, 440–461.CrossRefGoogle Scholar
  35. Crema, E. (2013). Cycles of change in Jomon settlement: a case study from eastern Tokyo Bay. Antiquity, 87, 1169–1181.CrossRefGoogle Scholar
  36. Crema, E., Bevan, A., & Lake, M. W. (2010). A probabilistic framework for assessing spatio-temporal point patterns in the archaeological record. Journal of Archaeological Science, 37, 1118–1130.CrossRefGoogle Scholar
  37. De Roo, B., Ooms, K., Bourgeois, J., & De Maeyer, P. (2013). Bridging archaeology and GIS: influencing factors for a 4D archaeological GIS. In M. Ioannides, N. Magnenat-Thalmann, E. Fink, A. Yen, & E. Quak (Eds.), EuroMed 2014: digital heritage: progress in cultural heritage documentation, preservation and protection, Limassol, Cyprus, 3–8 November 2014 (pp. 186–195). Hockley, UK: Multi-Science Publishing Co. Ltd.Google Scholar
  38. de Runz, C., & Desjardin, E. (2010). Imperfect spatiotemporal information analysis in a GIS: application to archaeological information completion hypothesis. In R. Jeansoulin, O. Papini, H. Prade, & S. Schockaert (Eds.), Methods for handling imperfect spatial information (pp. 341–356). Berlin: Springer.CrossRefGoogle Scholar
  39. de Runz, C., Desjardin, E., Piantoni, F., Herbin, M. (2007). Using fuzzy logic to manage uncertain multi-modal data in an archaeological GIS. Poster for International Symposium on Spatial Data Quality—ISSDQ 2007.Google Scholar
  40. Deufemia, V., Paolino, L., Tortora, G., Traverso, A., Mascardi, V., Ancona, M., Martelli, M., Bianchi, N., & De Lumley, H. (2012). Investigative analysis across documents and drawings: visual analytics for archaeologists. In G. Tortora, S. Levialdi, & M. Tucci (Eds.), Proceedings of the international working conference on advanced visual interfaces (AVI '12) (pp. 539–546). New York: ACM. doi: 10.1145/2254556.2254658.CrossRefGoogle Scholar
  41. Devillers, R., & Jeansoulin, R. (Eds.) (2006). Fundamentals of spatial data quality. Newport Beach, CA: ISTE.Google Scholar
  42. Digital Index of North American Archaeology. (2016). http://ux.opencontext.org/archaeology-site-data/, Accessed April 25, 2016.
  43. Djindjian, F. (2008). Webmapping in the historical and archaeological sciences: an introduction. Archeologia e Calcolatori, 19, 9–16.Google Scholar
  44. Dodge, M., McDerby, M., & Turner, M. (2008). The power of geographical visualizations. In M. Dodge, M. McDerby, & M. Turner (Eds.), Geographic visualization: concepts, tools and applications (pp. 1–10). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  45. Doerr, M., Schaller, K., Theodoridou, M. (2010). Integration of complementary archaeological sources. In F. Nicolucci and S. Hermon (Eds.) Beyond the artifact. Digital interpretation of the past. Proceedings of CAA2004, Prato 13–17 April 2004 (pp. 64–69). Budapest: Archaeolingua.Google Scholar
  46. Doyle, J. A., Garrison, T. G., & Houston, S. D. (2012). Watchful realms: integrating GIS analysis and political history in the southern Maya lowlands. Antiquity, 86(333), 792–807.CrossRefGoogle Scholar
  47. Dykes, J., MacEachren, A. M., & Kraak, M.-J. (2005). Exploring geovisualization. Amsterdam: Elsevier.Google Scholar
  48. Ebert, D. (2004). Applications of archaeological GIS. Canadian Journal of Archaeology, 28, 319–341.Google Scholar
  49. Evans, T. N. L. (2015). A reassessment of archaeological Grey literature: semantics and paradoxes. Internet Archaeology, 40. doi: 10.11141/ia.40.6.
  50. Evans, T. L., & Daly, P. T. (Eds.) (2006). Digital archaeology: bridging method and theory. New York: Routledge.Google Scholar
  51. Fairbairn, D., Andrienko, G., Andrienko, N., Buziek, G., & Dykes, J. (2001). Representation and its relationship with cartographic visualization. Cartography and Geographic Information Science, 28(1), 13–28.Google Scholar
  52. Gaffney, V., & van Leusen, M. (1995). Postscript-GIS, environmental determinism and archaeology: a parallel text. In G. R. Lock & Z. Stančič (Eds.), Archaeology and geographical information systems: a European perspective (pp. 367–382). Bristol, PA: Taylor & Francis.Google Scholar
  53. Graham, S., & Weingart, S. (2015). The equifinality of archaeological networks: an agent-based exploratory lab approach. Journal of Archaeological Method and Theory 22(1):248–274.Google Scholar
  54. Green, C. (2011). It’s about time: temporality and intra-site GIS. In E. Jerem, F. Redő, & V. Szeverényi (Eds.), On the road to reconstructing the past. Computer applications and quantitative methods in archaeology (CAA). Proceedings of the 36th international conference. Budapest, April 2–6, 2008 (pp. 206–211). Budapest: Archaeolingua.Google Scholar
  55. Gupta, N. (2013). What do spatial approaches to the history of archaeology tell us? Insights from post-colonial India. Complutum (Special Issue on History of Archaeology), 24(2), 189–201.Google Scholar
  56. Hägerstrand, T. (1970). What about people in regional science? Papers/regional science association. Regional Science Association Meeting, 24, 7–21.CrossRefGoogle Scholar
  57. Harley, J. B. (1988). Maps, knowledge and power. In D. Cosgrove & S. Daniels (Eds.), The iconography of landscape (pp. 277–312). New York: University of Cambridge Press.Google Scholar
  58. Harrower, M., & Fabrikant, S. (2008). The role of map animation for geographic visualization. In M. Dodge, M. McDerby, & M. Turner (Eds.), Geographic visualization: concepts, tools and applications (pp. 49–65). New York: John Wiley & Sons, Ltd..CrossRefGoogle Scholar
  59. Harrower, M., & Sheeshy, B. (2005). Designing better map interfaces: a framework for panning and zooming. Transactions in GIS, 9(2), 1–16.CrossRefGoogle Scholar
  60. Herzog, I. (2013). Least-cost networks. In G. Earl, T. Sly, A. Chrysanthi, P. Murrieta-Flores, C. Papadopoulos, I. Romanowska, & D. Wheatley (Eds.), CAA 2012, Archaeology in the Digital Era. Series: Computer Applications and Quantitative Methods in Archaeology (pp. 240–251). Amsterdam: Amsterdam University Press.Google Scholar
  61. Herzog, I. (2014). Least-cost paths—some methodological issues. Internet Archaeology, 36. doi: 10.11141/ia.36.5.
  62. Holdaway, S., & Wandsnider, L. (2008). Time in archaeology : time perspectivism revisited. Salt Lake City: University of Utah Press.Google Scholar
  63. Huggett, J. (2013). Disciplinary issues: challenging the research and practice of computer applications in archaeology. In G. Earl, T. Sly, A. Chrysanthi, P. Murrieta-Flores, C. Papadopoulos, I. Romanowska, & D. Wheatley (Eds.), Archaeology in the digital era. Series: computer applications and quantitative methods in archaeology (pp. 13–24). Amsterdam: Amsterdam University Press.Google Scholar
  64. Huggett, J. (2015). Challenging digital archaeology. Open Archaeology, 1(1), 79–85.Google Scholar
  65. Huisman, O., Santiago, I. F., Kraak, M.-J., & Retsios, B. (2009). Developing a geovisual analytics environment for investigating archaeological events: extending the space-time cube. Cartography and Geographic Information Science, 36(3), 225–236.CrossRefGoogle Scholar
  66. Johnson, I. (1999). Mapping the fourth dimension: the TimeMap project. In L. Dingwall, S. Lucie, V. Exon, S. Gaffney, M. Laflin, & V. Leusen (Eds.), Archaeology in the age of the internet. CAA97. Computer applications and quantitative methods in archaeology. Proceedings of the 25th anniversary conference, University of Birmingham, April 1997 (pp. section 2). BAR International Series 750. Oxford: Archaeopress.Google Scholar
  67. Johnson, I. (2002). Contextualising archaeological information through interactive maps. Internet Archaeology, 12. doi: 10.11141/ia.12.9.
  68. Johnson, I. (2004). Aoristic analysis: seeds of a new approach to mapping archaeological distributions through time. In M. de S. Wien, R. K. Erbe, & S. Wien (Eds.), [enter the past] the E-way into the four dimensions of cultural heritage. CAA2003. Computer applications and quantitative methods in archaeology, proceedings of the 31st conference, Vienna, Austria, April 2003. BAR international series 1227 (pp. 448–452). Oxford: British Archaeological Reports.Google Scholar
  69. Johnson, I. (2008). Mapping the fourth dimension: a ten year retrospective. Archeologia e Calcolatori, 19, 31–43.Google Scholar
  70. Jones, E. E. (2006). Using viewshed analysis to explore settlement choice: a case study of the Onondaga Iroquois. American Antiquity, 71(3), 523–538.CrossRefGoogle Scholar
  71. Jones, E. E. (2010). An analysis of factors influencing sixteenth and seventeenth century Haudenosaunee (Iroquois) settlement locations. Journal of Anthropological Archaeology, 29, 1–14.CrossRefGoogle Scholar
  72. Journal of Open Archaeology Data (2016). About the Journal. .http://openarchaeologydata.metajnl.com/about/, Accessed 25 April 2016
  73. Kansa, E. C. (2005). A community approach to data integration: authorship and building meaningful links across diverse archaeological data sets. Geosphere, 1(2), 97–109.CrossRefGoogle Scholar
  74. Kansa, E. C. (2011). Introduction: new directions for the digital past. In E. C. Kansa, S. W. Kansa, & E. Watrall (Eds.), Archaeology 2.0: new approaches to communication and collaboration (pp. 1–25). Los Angeles, CA: Cotsen Institute of Archaeology Press.Google Scholar
  75. Kansa, E. C. (2012). Openness and Archaeology’s information ecosystem. World Archaeology, 44(4), 498–520.CrossRefGoogle Scholar
  76. Kansa, E. C., & Kansa, S. W. (2014). Data publishing and Archaeology's information ecosystem. Near Eastern Archaeology (NEA), 77(3), 223–227.CrossRefGoogle Scholar
  77. Kansa, E. C., Kansa, S. W., & Watrall, E. (Eds.) (2011). Archaeology 2.0: new approaches to communication and collaboration. Los Angeles, CA: Cotsen Institute of Archaeology Press.Google Scholar
  78. Katsianis, M., Tsipidis, S., Kotsakis, K., & Kousoulakou, A. (2008). A 3D digital workflow for archaeological intra-site research using GIS. Journal of Archaeological Science, 35, 655–667.CrossRefGoogle Scholar
  79. Keim, D. A., Andrienko, G., Fekete, J.-D., Görg, C., & Kohlhammer, J. (2008). Visual analytics: definition, process, and challenges. Konstanz: Bibliothek der Universität Konstanz.Google Scholar
  80. Keinan, A. (2014). MicroPasts: an experiment in crowdsourcing and crowdfunding archaeology. British Archaeology, 139, 50–55.Google Scholar
  81. Kinkeldey, C., MacEachren, A. M., & Schiewe, J. (2014). How to assess visual communication of uncertainty? A systematic review of geospatial uncertainty visualisation user studies. The Cartographic Journal, 51(4), 372–386. doi: 10.1179/1743277414Y.0000000099.CrossRefGoogle Scholar
  82. Kintigh, K. (2006). The promise and challenge of archaeological data integration. American Antiquity, 71(3), 567–578.CrossRefGoogle Scholar
  83. Kintigh, K. (2013). Sustaining Database Semantics. In F. Contreras, M. Farjas, & F. J. Melero (Eds.), Proceedings of the 38th annual conference on computer applications and quantitative methods in archaeology, Granada, Spain, April 2010 (pp. 585–590). BAR international series 2494. Oxford: Archaeopress.Google Scholar
  84. Kintigh, K. (2015). ). Extracting information from archaeological texts. Open Archaeology, 1(1) ISSN (Online), 2300–6560. doi: 10.1515/opar-2015-0004.CrossRefGoogle Scholar
  85. Kintigh, K., Altschul, J. H., Kinzig, A. P., Limp, W. F., Michener, W. K., Sabloff, J. A., Hackett, E. J., Kohler, T. A., Ludäscher, B., & Lynch, C. A. (2015). Cultural dynamics, deep time, and data: planning cyberinfrastructure investments for archaeology. Advances in Archaeological Practice, 3(1), 1–15.CrossRefGoogle Scholar
  86. Knowles, A. K. (2008). GIS and history. In A. K. Knowles & A. Hiller (Eds.), Placing history: how maps, spatial data, and GIS are changing historical scholarship (pp. 1–25). Redlands, CA: ESRI Press.Google Scholar
  87. Kolar, J., Macek, M., Tkáč, P., & Szabó, P. (2015). Spatio-temporal modelling as a way to reconstruct patterns of past human activities. Archaeometry. doi: 10.1111/arcm.12182.Google Scholar
  88. Kosiba, S. (2011). The politics of locality: pre-Inka social landscapes of the Cusco region. In P. Johansen & A. Bauer (Eds.), The archaeology of politics: the materiality of political practice and action in the past (pp. 114–150). Cambridge: Cambridge Scholars Publishing.Google Scholar
  89. Kosiba, S., & Bauer, A. M. (2013). Mapping the political landscape: toward a GIS analysis of environmental and social difference. Journal of Archaeological Method and Theory, 20(1), 61–101.CrossRefGoogle Scholar
  90. Koussoulakou, A., & Stylianidis, E. (1999). The use of GIS for the visual exploration of archaeological spatio-temporal data. Cartography and Geographic Information Science, 26(2), 152–160.CrossRefGoogle Scholar
  91. Kraak, M.-J. (2005). Timelines, temporal resolution, temporal zoom and time geography. In In ICC proceedings of the 22nd International Cartographic Conference: mapping approaches into a changing world, 9–16 July 2005, a Courna. Spain: International Cartographic Association (ICA) ISBN: 0-958-46093-0.Google Scholar
  92. Kraak, M-J. & Koussoulakou, A. (2005). A visualization environment for the space-time-cube. In P. F. Fisher (Ed.), Developments in spatial data handling: 11th International Symposium on Spatial Data Handling (pp. 189–200). New York: SpringerGoogle Scholar
  93. Kratochvílová, A. (2012). Visualization of spatio-temporal data in GRASS GIS. Department of Mapping and Cartography, Faculty of Civil Engineering Branch Geoinformatics, Czech Technical University in Prague. Unpublished Master’s Thesis.Google Scholar
  94. Langran, G. (1992). Time in geographic information systems. London: Taylor and Francis.Google Scholar
  95. Lee, C., Devillers, R., & Hoeberb, O. (2014). Navigating spatio-temporal data with temporal zoom and pan in a multi-touch environment. International Journal of Geographical Information Science. doi: 10.1080/13658816.2013.861072.Google Scholar
  96. Llobera, M. (2003). Extending GIS-based visual analysis: the concept of Visualscapes. International Journal of Geographical Information Science, 17(1), 25–48.CrossRefGoogle Scholar
  97. Llobera, M. (2007). Reconstructing visual landscapes. World Archaeology, 39(1), 51–69. doi: 10.1080/00438240601136496.CrossRefGoogle Scholar
  98. Llobera, M. (2011). Archaeological visualization: towards an archaeological information science (AISc). Journal of Archaeological Method and Theory, 18, 193–223.CrossRefGoogle Scholar
  99. Lloyd, D., & Dykes, J. (2011). Human-centered approaches in geovisualization design: investigating multiple methods through a long-term case study. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2498–2507.CrossRefGoogle Scholar
  100. Lock, G. R. (2000). Beyond the map: archaeology and spatial technologies. Washington, DC: IOS Press.Google Scholar
  101. Lock, G.R & Harris, T. (1997). Analysing change through time within a cultural landscape: conceptual and functional limitations of a GIS approach. In Urban Origins in Eastern Africa. World Archaeological Congress, One World Series http://www.arkeologi.uu.se/digitalAssets/36/36108_1lockall.pdf.
  102. Lock, G. R., & Stančič, Z. (Eds.) (1995). Archaeology and geographical information systems: a European perspective. Bristol, PA: Taylor & Francis.Google Scholar
  103. Lucas, G. (2005). The archaeology of time. New York: Routledge.Google Scholar
  104. Lucas, G. (2012). Understanding the archaeological record. New York: Cambridge University Press.Google Scholar
  105. MacEachren, A. (1995). How maps work: representation, visualization and design. New York: Guilford Press.Google Scholar
  106. MacEachren, A., & Ganter, J. H. (1990). A pattern identification approach to cartographic visualization. Cartographica, 27(2), 64–81.CrossRefGoogle Scholar
  107. MacEachren, A., & Kraak, M.-J. (1997). Exploratory cartographic visualization: advancing the agenda. Computers & Geosciences, 23(4), 335–343. doi: 10.1016/S0098-3004(97)00018-6.
  108. Maguire, D. J. (1991). An overview and definition of GIS. In D. J. Maguire, M. F. Goodchild, & D. W. Rhind (Eds.), Geographical information systems: principles and applications (pp. 9–20). New York: Wiley.Google Scholar
  109. Maschner, H. D. G. (1996). Theory, technology, and the future of geographic information systems in archaeology. In H. D.G. Maschner (Ed.). New methods, old problems: geographic information systems in modern archaeological research (pp. 301–308). Occasional Paper, no. 23. Carbondale: Center for Archaeological Investigations, Southern Illinois University at Carbondale.Google Scholar
  110. McCool, J.-P. P. (2014). PRAGIS: a test case for a web-based archaeological GIS. Journal of Archaeological Science, 41, 133–139.CrossRefGoogle Scholar
  111. McCoy, M. D., & Ladefoged, T. N. (2009). New developments in the use of spatial Technology in Archaeology. Journal of Archaeological Research, 17, 263–295.CrossRefGoogle Scholar
  112. Mehrer, M., & Wescott, K. (2006). GIS and archaeological site location modeling. Boca Raton, FL: Taylor & Francis.Google Scholar
  113. Miller, P., & Richards, J. (1995). The good, the bad, and the downright misleading: archaeological adoption of computer visualisation. In J. Huggett & N. Ryan (eds.). CAA94. Computer applications and quantitative methods in archaeology 1994 (BAR international series 600) (pp. 19–22). Oxford: Tempus Reparatum.Google Scholar
  114. Mlekuz, D. (2010). Exploring the topography of movement. In S. Polla & P. Verhagen (Eds.), Computational approaches to the study of movement in archaeology. Theory, practice and interpretation of factors and effects of long term landscape formation and transformation (pp. 5–22). Boston: De Gruyter.Google Scholar
  115. Molyneaux, B. (Ed.) (1997). The cultural life of images: visual representation in archaeology. New York: Routledge.Google Scholar
  116. Murray, T. (1999). Time and archaeology. London: Routledge.CrossRefGoogle Scholar
  117. O’Sullivan, D. (2005). Geographical information science: time changes everything. Progress in Human Geography, 29, 749–756.CrossRefGoogle Scholar
  118. Ogao, P., & Kraak, M.-J. (2002). Defining visualization operations for temporal cartographic animation design. International Journal of Applied Earth Observation and Geoinformation: JAG, 4(1), 23–31.CrossRefGoogle Scholar
  119. ORBIS: The Stanford Geospatial Network Model of the Roman World (2015). Stanford University Libraries. http://orbis.stanford.edu/ Accessed June 2016.
  120. Pérez-Martína, E., Herrero-Tejedora, T. R., Gómez-Elviraa, M. A., Rojas-Solab, J. I., Conejo-Martina, M. A., et al. (2011). Graphic study and geovisualization of the old windmills of La Mancha (Spain). Applied Geography. doi: 10.1016/j.apgeog.2011.01.006.Google Scholar
  121. PeriodO. (2016). Gazetteer of period definitions for linking and visualizing data. http://perio.do/Accessed June 2016.
  122. Perry, S. (2013). Archaeological visualization and the manifestation of the discipline: model-making at the Institute of Archaeology, London. In B. Alberti, A. M. Jones, & J. Pollard (Eds.), Archaeology after interpretation: returning materials to archaeological theory (pp. 281–303). Walnut Creek: Left Coast Press.Google Scholar
  123. Peterson, M. P. (1995). Interactive and animated cartography. Englewood Cliffs, N.J: Prentice Hall.Google Scholar
  124. Peuquet, D. J., & Duan, N. (1995). An event-based spatio-temporal data model (ESTDM) for temporal analysis of geographic data. International Journal of Geographical Information Systems, 9, 2–24.CrossRefGoogle Scholar
  125. Plewe, B. (2002). The nature of uncertainty in historical geographic information. Transactions in GIS, 6(4), 431–456.CrossRefGoogle Scholar
  126. Polla, S., & Verhagen, P. (Eds.) (2014). Computational approaches to the study of movement in archaeology: theory, practice and interpretation of factors and effects of long term landscape formation and transformation. Boston: De Gruyter.Google Scholar
  127. Prinz, T., Walter, S., Wieghardt, A., Karberg, T., & Schreiber, T. (2014). GeoArchaeology Web 2.0: geospatial information services facilitate new concepts of Web-based data visualization strategies in archaeology—two case studies from surveys in Sudan (Wadi) and Turkey (Doliche). Archaeological Discovery, 2, 91–106. doi: 10.4236/ad.2014.24011.CrossRefGoogle Scholar
  128. QGIS [Computer software] (2016). Retrieved from http://www.qgis.org/en/site/.
  129. Rabinowitz, A. (2014). It’s about time: historical periodization and Linked Ancient World Data. ISAW Papers 7 (22). Accessed June 2016. http://dlib.nyu.edu/awdl/isaw/isaw-papers/7/rabinowitz/
  130. Retchless, D. P. (2014). Sea level rise maps: how individual differences complicate the cartographic communication of an uncertain climate change hazard. Cartographic Perspectives, 77, 17–32.CrossRefGoogle Scholar
  131. Richards, J., Jeffrey, S., Waller, S., Ciravegna, F., Chapman, S., & Zhang, Z. (2012). The archaeology data service and the Archaeotools project: faceted classification and natural language processing. In E. C. Kansa, S. W. Kansa, & E. Watrall (Eds.), Archaeology 2.0: new approaches to communication and collaboration (pp. 31–56). Los Angeles, CA: Cotsen Institute of Archaeology Press.Google Scholar
  132. Robertson, E., Seibert, J., Fernandez, D., & Zender, M. (Eds.) (2006). Space and spatial analysis in archaeology. Calgary: University of Calgary Press.Google Scholar
  133. Roth, R., & Harrower, M. (2009). Addressing map interface usability: learning from the lakeshore nature preserve interactive map. Cartographic Perspectives, 60, 46–66.Google Scholar
  134. Salisbury, R., & Keeler, D. (Eds.) (2007). Space—archaeology’s final frontier? An intercontinental approach. Newcastle, UK: Cambridge Scholars Publishing.Google Scholar
  135. Scheidel, W. (2015). ORBIS: the Stanford geospatial network model of the Roman World. Princeton/Stanford Working Papers in Classics. http://orbis.stanford.edu/assets/Scheidel_64.pdf. Accessed June 2016.
  136. Scianna, A., & Villa, B. (2011). GIS applications in archaeology. Archeologia e Calcolatori, 22, 337–363.Google Scholar
  137. Smiles, S., & Moser, S. (2005). Envisioning the past: archaeology and the image. Malden, MA: Blackwell.CrossRefGoogle Scholar
  138. Snow, D. R., Gahegan, M., Giles, C. L., Hirth, K. G., Milner, G. R., Mitra, P., Wang, J. Z., et al. (2006). Cybertools and archaeology. Science, 311(5763), 958–959.CrossRefGoogle Scholar
  139. STEMgis [Computer software] (2016). Retrieved from http://www.discoverysoftware.co.uk/STEMgis.htm.
  140. Stine, R. (2000). Finding the forge: geographic visualization in archaeology. Historical Archaeology, 34(4), 61–73.CrossRefGoogle Scholar
  141. Surface-Evans, S. (2012). Cost catchments: a least cost application for modeling hunter-gatherer land use. In D. White & S. Surface-Evans (Eds.), Least cost analysis of social landscapes: archaeological case studies (pp. 128–153). Salt Lake City: University of Utah Press.Google Scholar
  142. Thomson, J., Hetzler, E., MacEachren, A. M., Gahegan, M., & Pavel, M. (2005). A typology for visualizing uncertainty. In Proceedings of SPIE, 5669, 146–157. doi: 10.1117/12.587254.CrossRefGoogle Scholar
  143. TimeMap® Project. (2015). Overview of TimeMap: time-based interactive mapping. [http://sydney.edu.au/arts/timemap/] Maintained by Digital Innovation Group, University of Sydney. Accessed June 2016.
  144. Tsipidis, S., Koussoulakou, A., & Kotsakis, K. (2012). Geovisualization and archaeology: supporting excavation site research. In A. Raus (Ed.), Advances in cartography and GIScience, volume 2, selection from ICC 2011, Paris (pp. 85–107). New York: Springer.Google Scholar
  145. User-friendly Desktop Internet GIS (uDig) [Computer software] (2016). Retrieved from http://udig.refractions.net/
  146. von Groote-Bidlingmaier, C., Hilbert, K., Schwer, J., Timpf, S. (2015). Interactive WebGIS for archaeological settlement pattern analysis—a requirement analysis. 27th International Cartographic Conference (ICC). Aug. 2015, Rio de Janeiro. http://icaci.org/files/documents/ICC_proceedings/ICC2015/papers/33/fullpaper/T33-1009_1428677938.pdf Accessed June 2016.
  147. Waters, D. J. (2007). Doing much more than we have so far attempted. Educause Review, 42(5), 8–9.Google Scholar
  148. Waters, M. R., & Kuehn, D. D. (1996). The Geoarchaeology of place: the effect of geological processes on the preservation and interpretation of the archaeological record. American Antiquity, 61(3), 483–497. doi: 10.2307/281836.CrossRefGoogle Scholar
  149. Watrall, E. (2012). IAKS: a web 2.0 archaeological knowledge management system. In E. C. Kansa, S. W. Kansa, & E. Watrall (Eds.), Archaeology 2.0: new approaches to communication and collaboration (pp. 171–184). Los Angeles, CA: Cotsen Institute of Archaeology Press.Google Scholar
  150. Watters, M. S. (2006). Geovisualization: an example from the Catholme ceremonial complex. Archaeological Prospection, 13, 282–290.CrossRefGoogle Scholar
  151. Wells, J., Kansa, E. C., Kansa, S. W., Yerka, S., Anderson, D., Bissett, T., Myers, K., & DeMuth, R. (2014). Web-based discovery and integration of archaeological historic properties inventory data: the digital index of north American archaeology (DINAA). Literary and Linguistic Computing, 29(3), 349–360. doi: 10.1093/llc/fqu028.CrossRefGoogle Scholar
  152. Wells, J., Parr, C., & Yerka, S. (2015). Archaeological experiences with free and open source geographic information systems and geospatial freeware: implementation and usage examples in the compliance, education, and research sectors. In A. T. Wilson & B. Edwards (Eds.), Open source archaeology: ethics and practice (pp. 130–146). Warsaw: De Gruyter Open. doi: 10.1515/9783110440171-010.Google Scholar
  153. Wheatley, D., & Gillings, M. (Eds.) (2002). Spatial technology and archaeology: the archaeological applications of GIS. Boca Raton: CRC Press.Google Scholar
  154. Wobst, H. M. (1978). Archaeo-ethnology of hunter-gatherers or the tyranny of the ethnographic record in archaeology. American Antiquity, 43(2), 303–309.CrossRefGoogle Scholar
  155. Xia, L., & Kraak, M.-J. (2008). The time wave: a new method of visual exploration of geo-data in time–space. The Cartographic Journal, 45(3), 193–200.CrossRefGoogle Scholar
  156. Yubero-Gómez, M., Rubio-Campillo, X., & López-Cachero, J. (2015). The study of spatiotemporal patterns integrating temporal uncertainty in late prehistoric settlements in northeastern Spain. Archaeological and Anthropological Sciences. doi: 10.1007/s12520-015-0231-x.Google Scholar
  157. Zoghlami, A., de Runz, C., Akdag, H., & Pargny, D. (2012). Through a fuzzy spatiotemporal information system for handling excavation data. In J. Gensel, D. Josselin, & D. Vandenbroucke (Eds.), Bridging the geographic information sciences: international AGILE’2012 conference, Avignon (France), April, 24–27, 2012 (pp. 179–196). New York: Springer.CrossRefGoogle Scholar
  158. Zuk, T., & Carpendale, S. (2007). Visualization of uncertainty and reasoning. In A. Butz (Ed.), Smart graphics: 8th international symposium, SG 2007, Kyoto, Japan, June 25–27, 2007 (pp. 164–177). doi: 10.1007/978-3-540-73214-3_15.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of GeographyMemorial University of NewfoundlandSt John’sCanada

Personalised recommendations