Journal of Archaeological Method and Theory

, Volume 21, Issue 4, pp 862–898 | Cite as

Taken with a Grain of Salt: Experimentation and the Chemistry of Archaeological Ceramics from Xaltocan, Mexico

  • Wesley D. Stoner
  • John K. Millhauser
  • Enrique Rodríguez-Alegría
  • Lisa Overholtzer
  • Michael D. Glascock
Article

Abstract

Neutron activation analysis (NAA) of ceramics from Xaltocan (n = 651) displays high values for sodium and potassium and low concentrations of many transition metals and rare earth elements compared to other sites in the Basin of Mexico. Given that Xaltocan was situated on an island in the middle of a saline lake, the potential reasons for this chemical signature are diverse. On one hand, if the sodium and potassium were elevated due to some behavioral aspect of the potters, the Xaltocan chemical groups provide a glimpse at the behaviors of Xaltocan potters that permit more precise source designations. On the other hand, if this chemical fingerprint arose due to contamination in a saline post-depositional environment, the Xaltocan chemical groups would not be valid references for provenance studies. To evaluate these alternative hypotheses, we employ several lines of evidence: (1) comparison of the Xaltocan ceramics to over 5,000 NAA assays of clays and ceramics from the Basin of Mexico, (2) experimental doping of clays with water of different salinities and fired to different temperatures, (3) leaching experiments of archaeological pottery sherds (n = 22) recovered from the site of Xaltocan, and (4) laser ablation–inductively coupled plasma–mass spectrometry of the clay and temper fraction of a small sample of Xaltocan ceramics to determine which component is responsible for the elevated sodium and potassium values. The results suggest that the high sodium and potassium values were present in the ceramic paste before firing. We then use these newly established reference groups to better understand the role of Xaltocan in the regional economy. The type of experimentation employed in this study has proven to be an important method for determining the behaviors of ancient potters and distinguishing them from post-depositional processes.

Keywords

Experimental archaeology Ceramics Exchange Chemical analysis Mesoamerica Technological choice 

Notes

Acknowledgments

This research was made possible, in part, through NSF grants #1110793 and #0922374 awarded to the University of Missouri Research Reactor. Additionally, NSF grant #1035319, awarded to John K. Millhauser. Millhauser, funded the initial analysis that led to the redefinition of the Xaltocan ceramic sample into new reference groups. Assistance with preparing samples was provided by Timothy Ferguson, Cody Roush, and Erin Gillespie. We also wish to thank researchers who have submitted samples from Xaltocan over the years, including the late Elizabeth Brumfiel, the late Mary Hodge, Deborah Nichols, Destiny Crider, Christopher Garraty, and Kristen De Lucia. Their initiative has made the Basin of Mexico one of the most thoroughly researched regions through NAA. Discussions with a number of other colleagues, including Jeffrey Ferguson, Matthew Boulanger, and Jaume Buxeda, also helped to facilitate the design of this research or to point out examples in the literature that have conducted similar experiments. James Guthrie helped to run a subsample of saline solution and leached liquids through the ICP–MS. Barry Higgins was consulted several times during the operation of the LA–ICP–MS.

References

  1. Abbott, D. R. (2008). The process, location, and history of Hohokam Buff ware production: some experimental and analytical results. Journal of Archaeological Science, 35(2), 388–397.CrossRefGoogle Scholar
  2. Aréchiga Córdoba, E. (2004). El desagüe del Valle de México, siglos XVI-XXI: Una historia paradójica. Arqueología Mexicana, 12(68), 60–65.Google Scholar
  3. Arnold, D. E. (1971). Ethnomineralogy of Ticul, Yucatan potters: etics and emics. American Antiquity, 36(1), 20–40.CrossRefGoogle Scholar
  4. Arnold, D.E. (1985). Ceramic theory and cultural process. Cambridge: Cambridge University Press.Google Scholar
  5. Arnold, P. J., III. (1991). Domestic ceramic production and spatial organization: a Mexican case study in ethnoarchaeology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  6. Arnold, D. E., Neff, H., & Bishop, R. L. (1991). Compositional analysis and “sources” of pottery: an ethnoarchaeological approach. American Anthropologist, 93(1), 70–90.CrossRefGoogle Scholar
  7. Bearat, H., Dufournier, D., Nguyen, N., & Raveau, B. (1989). Influence de NaCl Sur la Couleur et la Composition Chimique des Pates Ceramiques Calcaires au Cours de Leur Cuisson. Revue d'Archéometrie, 13, 43–53.Google Scholar
  8. Bishop, R. L. (1980). Aspects of ceramic compositional modeling. In R. E. Fry (Ed.), Models and methods in regional exchange (pp. 47–65). Washington, DC: Society for American Archaeology.Google Scholar
  9. Bishop, R. L., Rands, R. L., & Holley, G. R. (1982). Ceramic compositional analysis in archaeological perspective. In M. B. Schiffer (Ed.), Advances in archaeological method and theory (Vol. 5, pp. 275–330). New York: Academic.Google Scholar
  10. Blackman, M. J., & Bishop, R. L. (2007). The Smithsonian–NIST partnership: the application of instrumental neutron activation analysis to archaeology. Archaeometry, 49(2), 321–341.CrossRefGoogle Scholar
  11. Blanton, R. E. (1996). The Basin of Mexico market system and the growth of empire. In M. E. Smith & F. F. Berdan (Eds.), Aztec imperial strategies. Washington, DC: Dumbarton Oaks.Google Scholar
  12. Bonifay, M. (2004). Études sur la Céramique Romaine Tardive d'Afrique. Oxford: BAR-IS.Google Scholar
  13. Boulanger, M.T., Fehrenbach, S., & Glascock, M.D. (2012). Experimental evaluation of sample-extraction methods and potential for contamination in ceramic specimens. Archaeometry. doi:10.1111/j.1475-4754.2012.00706.x
  14. Bourdieu. (1977). Outline of a theory of practice (R. Nice, Trans.). Cambridge: University of Cambridge Press.Google Scholar
  15. Bourdieu, P. (1990). The Logic of Practice. Palo Alto: Stanford University Press.Google Scholar
  16. Brumfiel, E. M. (1991). Tribute and commerce in imperial cities: the case of Xaltocan, Mexico. In H. J. M. Claessen, P. van de Velde (Eds.), Early state economics (pp. 177–198). New Brunswick: Transaction.Google Scholar
  17. Brumfiel, E. M. (2005a). Conclusions. In E. M. Brumfiel (Ed.), Production and power at Postclassic Xaltocan (pp. 349–368). Pittsburgh: University of Pittsburgh.Google Scholar
  18. Brumfiel, E. M. (Ed.). (2005b). Production and power at Postclassic Xaltocan. Pittsburgh: University of Pittsburgh.Google Scholar
  19. Brumfiel, E. M., & Hodge, M. D. (1996). Interaction in the Basin of Mexico: the case of Postclassic Xaltocan. In A. Guadalupe Mastache de Escobar (Ed.), Arqueología Mesoamericana: Homenaje a William T. Sanders (pp. 417–437). México: Instituto Nacional de Antropología e Historia, Arqueología Mexicana.Google Scholar
  20. Burton, J. H., & Simon, A. W. (1993). Acid extraction as a simple and inexpensive method for compositional characterization of archaeological ceramics. American Antiquity, 58(1), 45–59.Google Scholar
  21. Buxeda i Garrigos, J. (1999). Alteration and contamination of archaeological ceramics: the pertubation problem. Journal of Archaeological Science, 26(3), 295–313.CrossRefGoogle Scholar
  22. Buxeda i Garrigos, J., Mommsen, H., & Tsolakidou, A. (2002). Alterations of Na, K and Rb concentrations in Mycenaean pottery and a proposed explanation using X-ray diffraction. Archaeometry, 44(2), 187–198.CrossRefGoogle Scholar
  23. Carpenter, A. J., & Feinman, G. M. (1999). The effects of behaviour on ceramic composition: implications for the definition of production locations. Journal of Archaeological Science, 26(7), 783–796.Google Scholar
  24. Carrasco, P. (1999). The Tenochca Empire of Ancient Mexico: the Triple Alliance of Tenochtitlán, Tetzcoco, and Tlacopan. Norman: University of Oklahoma Press.Google Scholar
  25. Chimonas, S. (2005). Occupational history of Prehispanic Xaltocan. In E. M. Brumfiel (Ed.), Production and power at Postclassic Xaltocan (pp. 169–194). Pittsburgh: University of Pittsburgh.Google Scholar
  26. Cortés, H. (1970). Cartas de Relación. México: Porrúa.Google Scholar
  27. Crider, D. L. (2011). Epiclassic and Early Postclassic Interaction in Central Mexico as evidenced by decorated pottery. Ph.D. dissertation, Arizona State University, Tempe, AZ.Google Scholar
  28. Croissier, M. M. (2007). The Zapotec presence at Teotihuacan, Mexico: political ethnicity and domestic identity. Urbana-Champaign: University of Illinois.Google Scholar
  29. Day, P. M., & Kilikoglou, V. (2001). Analysis of ceramics from the kiln. Hesperia Supplement, 30, 111–133.CrossRefGoogle Scholar
  30. Day, P. M., Kiriatzi, E., Tsolakidou, A., & Kilikoglou, V. (1999). Group therapy in Crete: a comparison between analyses by NAA and thin section petrography of Early Minoan pottery. Journal of Archaeological Science, 26(8), 1025–1036.CrossRefGoogle Scholar
  31. De Lucia, K. (2011). Domestic economies and regional transition: household production and consumption in Early Postclassic Mexico. Evanston: Northwestern University.Google Scholar
  32. Cuomo di Caprio, N. (1991). Ceramiche Invetriate Medievali di Agrigento e Delia: Analisi stereoscopica, mineralogico-petrografica e SEM/EDS. In S. Scuto (Ed.), L'eta di Federico II Nella Sicilia Centro Meridionale (pp. 171–183). Rome: Atti Delle Giomate di Studio.Google Scholar
  33. Dussubieux, L., Golitko, M., Williams, P. R., & Speakman, R. J. (2007). Laser ablation-inductively coupled plasma-mass spectrometry analysis applied to the characterization of Peruvian Wari ceramics. In M. D. Glascock, R. J. Speakman, & R. S. Popelka-Filcoff (Eds.), Archaeological chemistry: analytical techniques and archaeological interpretation (ACS Symposium Series No. 968) (pp. 349–363). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  34. Flores, T. (1918). El tequesquite del Lago de Texcoco. México: Departamento de Talleres Graficos de la Secretaria de Fomento.Google Scholar
  35. Frederick, C. D., Winsborough, B., & Popper, V. S. (2005). Geoarchaeological Investigations in the Northern Basin of Mexico. In E. M. Brumfiel (Ed.), Production and Power at Postclassic Xaltocan (pp. 71–116). Pittsburgh: University of Pittsburgh.Google Scholar
  36. Galván Moreno, J. (1945). Cristalización fraccionada por evaporación solar de las aguas del lago de Texcoco. México: Universidad Nacional Autónoma de México.Google Scholar
  37. Garraty, C. P. (2006). Aztec Teotihuacan: political processes at a Postclassic and early Colonial city-state in the Basin of Mexico. Latin American Antiquity, 17(4), 363–387.CrossRefGoogle Scholar
  38. Garraty, C. P. (2007). Intercambio de mercado y consolidación en el corazón del Imperio Azteca. Revista Española de Antropología Americana, 37(2), 139–164.Google Scholar
  39. Gibson, C. (1964). The Aztecs under Spanish rule. Palo Alto: Stanford University Press.Google Scholar
  40. Giddens, A. (1979). Central problems in social theory: action, structure, and contradiction in social analysis. Berkeley: University of California Press.Google Scholar
  41. Glascock, M. D. (1992). Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics. In H. Neff (Ed.), Chemical characterization of ceramic pastes in archaeology (pp. 11–26). Madison: Prehistory.Google Scholar
  42. Golitko, M., Dudgeon, J. V., Neff, H., & Terrell, J. E. (2012). Identification of post-depositional chemical alteration of ceramics from the north coast of New Guinea (Sandaun Province) by time of flight–laser ablation–inductively coupled plasma–mass spectrometry (TOPF–LA–ICP–MS). Archaeometry, 54(1), 80–100.CrossRefGoogle Scholar
  43. Gosselain, O. P. (1992). Bonfire of the enquiries: pottery firing temperatures in archaeology—what for? Journal of Archaeological Science, 19(3), 243–259.CrossRefGoogle Scholar
  44. Gosselain, O. P. (2000). Materializing identities: an African perspective. Journal of Archaeological Method and Theory, 7(3), 187–217.CrossRefGoogle Scholar
  45. Gratuze, B., Blet-Lemarquand, M., & Barrandon, J.-N. (2001). Mass spectrometry with laser sampling: a new tool to characterize archaeological materials. Journal of Radioanalytical and Nuclear Chemistry, 247(3), 645–656.CrossRefGoogle Scholar
  46. Hamilton, D. L. (1997). Basic methods of conserving underwater archaeological material culture. Manuscript on file at the Department of Anthropology, Nautical Archaeology Program, Texas A&M University, College Station.Google Scholar
  47. Hassig, R. (2006). Mexico and the Spanish conquest (2nd ed.). Norman: University of Oklahoma Press.Google Scholar
  48. Hicks, F. (1994). Xaltocan under Mexica Domination. In Caciques and their people: a volume in honor of Ronald Spores (Vol. 89, pp. 67–85). Ann Arbor: Anthropological Papers, Museum of Anthropology, University of MichiganGoogle Scholar
  49. Hodge, M. G., & Neff, H. (2005). Xaltocan in the economy of the Basin of Mexico: a view from ceramic tradewares. In E. M. Brumfiel (Ed.), Production and power at Postclassic Xaltocan (pp. 320–348). Mexico, D.F.: INAH.Google Scholar
  50. Hodge, M.G., Blackman, M.J., Minc, L.D., & Neff, H. (1992). Compositional perspective on ceramic production in the Aztec empire. Chemical Characterization of Ceramic Pastes in Archaeology, 203–220Google Scholar
  51. Hodge, M. G., Blackman, M. J., Mine, L. D., & Neff, H. (1993). Black-on-orange ceramic production in the Aztec empire's heartland. Latin American Antiquity, 4(2), 130–157.CrossRefGoogle Scholar
  52. Kilikoglou, V., Maniatis, Y., & Grimanis, A. P. (1988). The effect of purification and firing of clays on trace element provenance studies. Archaeometry, 30(1), 37–46.CrossRefGoogle Scholar
  53. Kolb, C. C. (1988). Cultural ecology of Classic Teotihuacan Period Copoid ceramics. In Pot for all reasons: ceramic ecology revisited (pp. 147–197). Philadelphia: Laboratory of Anthropology, Temple UniversityGoogle Scholar
  54. Larson, D. O., Sakai, S., & Neff, H. (2005). LA–ICP–MS as a bulk chemical characterization technique: comparison of LA–ICP–MS, MD–ICP–MS, and INAA data on Virgin Branch Azasazi ceramics. In R. J. Speakman & H. Neff (Eds.), Laser ablation ICP–MS in archaeological research (pp. 94–103). Albuquerque: University of New Mexico Press.Google Scholar
  55. Lemonnier, P. (1992). Elements for an anthropology of technology. Ann Arbor: Museum of Anthropology, University of Michigan.Google Scholar
  56. Livingstone-Smith, A. (2000). Bonfire II: the return of pottery firing temperatures. Journal of Archaeological Science, 28, 991–1003.CrossRefGoogle Scholar
  57. Longacre, W. A., Xia, J., & Yang, T. (2000). I want to buy a black pot. Journal of Archaeological Method and Theory, 7(4), 273–293.CrossRefGoogle Scholar
  58. Mathes, W. M. (1970). To save a city: the Desaque of Mexico-Huehuetoca, 1607. The Americas, 26(4), 419–438.CrossRefGoogle Scholar
  59. Matson, F. P. (1971). A study of temperatures used in firing ancient Mesopotamian pottery. In R. H. Brill (Ed.), Science and archaeology (pp. 65–79). Cambridge: MIT.Google Scholar
  60. Millhauser, J. K. (2012). Saltmaking, craft, and community at Late Postclassic and Early Colonial San Bartolome Salinas, Mexico. Doctoral dissertation, Northwestern University.Google Scholar
  61. Millhauser, J. K., Rodríguez-Alegría, E., & Glascock, M. D. (2011). Testing the accuracy of portable X-ray fluorescence to study Aztec and Colonial obsidian supply at Xaltocan, Mexico. Journal of Archaeological Science, 38(11), 3141–3152. doi:10.1016/j.jas.2011.07.018.CrossRefGoogle Scholar
  62. Minc, L.D. (1994). Political economy and market economy under Aztec rule: a regional perspective based on decorated ceramic production and distribution systems in the valley of Mexico. Ph.D. dissertation, University of Michigan, Ann Arbor, MI.Google Scholar
  63. Mitchem, J. M. (1982). Experiments in the manufacturing technology of Pasco series ceramics from peninsular Florida. Paper presented at the Paper presented at the 39th annual Southeastern Archaeological Conference, Memphis, Tennessee.Google Scholar
  64. Montoya Riviero, M.C. (1999). Del desagüe del Valle de México al drenaje profundo. México Desconocido, 30.Google Scholar
  65. Morehart, C. T. (2010). The archaeology of farmscapes: production, place, and the materiality of landscape at Xaltocan, Mexico. Evanston: Northwestern University.Google Scholar
  66. Morehart, C. T., & Eisenberg, D. T. A. (2010). Prosperity, power, and change: modeling maize at Postclassic Xaltocan, Mexico. Journal of Anthropological Archaeology, 29, 94–112.CrossRefGoogle Scholar
  67. Neff, H. (2000). Neutron activation analysis for provenance determination in archaeology. In E. C. a. G. Spoto (Ed.), Modern analytical methods in art and archaeology (pp. 81–134). New York: Wiley.Google Scholar
  68. Neff, H. (2012). Comment: Chemical and mineralogical approaches to ceramic provenance determination. Archaeometry, 54(2), 244–249.Google Scholar
  69. Neff, H., Bishop, R. L., & Sayre, E. V. (1988). Simulation approach to the problem of tempering in compositional studies of archaeological ceramics. Journal of Archaeological Science, 15(2), 159–172.CrossRefGoogle Scholar
  70. Neff, H., Sayre, E. V., & Bishop, R. L. (1989). More observations on the problem of tempering in compositional studies of archaeological ceramics. Journal of Archaeological Science, 16(1), 57–69.CrossRefGoogle Scholar
  71. Neff, H., Cogswell, J. W., & Ross, L. M. J. (2003). Supplementing bulk chemistry in archaeological ceramic provenance investigations. In L. van Zelst (Ed.), Patterns and process: a festschrift in honor of Dr. Edward V. Sayre (pp. 201–226). Washington, DC: Smithsonian Center for Materials Research and Education.Google Scholar
  72. Nichols, D. L., Brumfiel, E. M., Neff, H., Hodge, M., Charlton, T. H., & Glascock, M. D. (2002). Neutrons, markets, cities, and empires: a 1000-year perspective on ceramic production and distribution in the Postclassic Basin of Mexico. Journal of Anthropological Archaeology, 21(1), 25–82.CrossRefGoogle Scholar
  73. Nichols, D. L., Elson, C., Cecil, L. G., Neivens de Estrada, N., Glascock, M. D., & Mikkelsen, P. (2009). Chiconautla, Mexico: a crossroads of Aztec trade and politics. Latin American Antiquity, 20(3), 443–472.Google Scholar
  74. Overholtzer, L. (2012). Empires and everyday material practices: a household archaeology of Aztec and Spanish imperialism at Xaltocan, Mexico. Evanston: Northwestern University.Google Scholar
  75. Overholtzer, L., & Stoner, W. D. (2011). Merging the social and the material: life histories of ancient mementos from central Mexico. Journal of Social Archaeology, 11(2).Google Scholar
  76. Palerm, A. (1973). Obras hidráulicas prehispánicas en el sistema lacustre del valle de México. México, D.F.: Instituto Nacional de Antropología.Google Scholar
  77. Parsons, J. R. (2001). The Last Saltmakers of Nexquipayac, Mexico: An Archaeological Ethnography. Ann Arbor: University of Michigan Museum of Anthropology.Google Scholar
  78. Peters, J. M. (2002). A compositional analysis of plainwares from Xaltocan, Mexico. Lux Fiat, 1, 149–157.Google Scholar
  79. Picon, M. (1991). quelques observations complementaires sur les alterations de composition des ceramiques au cours du temps: Cas de quelques alcalins et alcalino-terreux. Revue d'Archéometrie, 15, 117–122.Google Scholar
  80. Pool, C. A. (1990). Ceramic production, resource procurement, and exchange at Matacapan, Veracruz, Mexico. Ph.D. dissertation, Tulane University, New Orleans.Google Scholar
  81. Pool, C. A. (2000). Why a kiln? Firing technology in the Sierra de los Tuxtlas, Veracruz (Mexico). Archaeometry, 42(1), 61–76.CrossRefGoogle Scholar
  82. Reina, R. E., & Hill, R. M. (1974). The traditional pottery of Guatemala. Austin: University of Texas Press.Google Scholar
  83. Rice, P. M. (2005). Pottery analysis: a sourcebook. Chicago: University of Chicago PressGoogle Scholar
  84. Rodríguez-Alegría, E. (2008a). De la Edad de Piedra a la Edad de más Piedra. Cuadernos de Arqueología Mediterránea, XVII, 15–30.Google Scholar
  85. Rodríguez-Alegría, E. (2008b). Narratives of conquest, colonialism, and cutting-edge technology. American Anthropologist, 110(1), 33–41.CrossRefGoogle Scholar
  86. Rodríguez-Alegría, E. (2010). Incumbents and challengers: indigenous politics and the adoption of Spanish material culture in colonial Xaltocan, Mexico. Historical Archaeology, 44(2), 51–71.Google Scholar
  87. Rye, O. S. (1976). Keeping your temper under control. Archaeology and Physical Anthropology in Oceania, XI(2), 106–137.Google Scholar
  88. Rye, O. S. (1981). Pottery technology: principles and reconstruction. Washington, D.C.: Taraxacum.Google Scholar
  89. Rye, O. S., & Evans, C. (1976). Traditional pottery techniques of Pakistan: field and laboratory studies. Washington, DC: Smithsonian Institution.Google Scholar
  90. Sanders, W. T., Parsons, J., & Santley, R. S. (1979). The Basin of Mexico: ecological processes in the evolution of civilization. New York: Academic.Google Scholar
  91. Sayre, E. V., & Harbottle, G. (1979). The analysis by neutron activation of archaeological ceramics related to Teotihuacan: local wares and trade sherds. Brookhaven National Laboratory, Informal Report C-2250.Google Scholar
  92. Sayre, E. V., Dodson, R. W., & Burr Thompson, D. (1957). Neutron activation study of Mediterranean potsherds. American Journal of Archaeology, 61(1), 35–41.CrossRefGoogle Scholar
  93. Schiffer, M. B., & Skibo, J. M. (1987). Theory and experiment in the study of technological change. Current Anthropology, 28(5), 595–622.Google Scholar
  94. Schiffer, M. B., & Skibo, J. M. (1997). The explanation of artifact variability. American Antiquity, 62, 27–50.Google Scholar
  95. Schwedt, A., & Mommsen, H. (2004). Clay paste mixtures identified by neutron activation analysis in pottery of a Roman workshop in Bonn, Germany. Journal of Archaeological Science, 31(9), 1251–1258.Google Scholar
  96. Schwedt, A., & Mommsen, H. (2007). On the influence of drying and firing of clay on the formation of trace element concentration profiles within pottery. Archaeometry, 49(3), 495–509.CrossRefGoogle Scholar
  97. Schwedt, A., Mommsen, H., & Zacharias, N. (2004). Post-depositional elemental alterations in pottery: neutron activation analyses of surface and core samples. Archaeometry, 46(1), 85–101.CrossRefGoogle Scholar
  98. Sillar, B. (2000). The challenge of [technological choices] for materials science approaches in archaeology. Archaeometry, 42, 2–20.CrossRefGoogle Scholar
  99. Sillar, B., & Tite, M. S. (2000). The challenge of 'technological choices' for materials science approaches in archaeology. Archaeometry, 42(1), 2–20.Google Scholar
  100. Speakman, R. J., & Neff, H. (2005). The application of laser ablation ICP–MS to the study of archaeological materials—an introduction. In R. J. Speakman & H. Neff (Eds.), Laser ablation ICP–MS in archaeological research (pp. 1–15). Albuquerque: University of New Mexico Press.Google Scholar
  101. Stark, M. T. (Ed.). (1998). The archaeology of social boundaries. Washington, DC: Smithsonian Institution.Google Scholar
  102. Stark, M. T., Bishop, R. L., & Miksa, E. J. (2000). Ceramic technology and social boundaries: cultural practices in Kalinga clay selection and use. Journal of Archaeological Method and Theory, 7(4), 295–331.CrossRefGoogle Scholar
  103. Stoner, W. D., & Glascock, M. D. (2012). The forest or the trees? Behavioral and methodological considerations for geochemical characterization of heavily-tempered ceramic pastes using NAA and LA–ICP–MS. Journal of Archaeological Science, 39(8), 2668–2683.CrossRefGoogle Scholar
  104. Stoner, W. D., Pool, C. A., Neff, H., & Glascock, M. D. (2008). Exchange of coarse orange pottery in the Middle Classic Tuxtla Mountains, Southern Veracruz, Mexico. Journal of Archaeological Science, 35(5), 1412–1426.CrossRefGoogle Scholar
  105. Tsolakidou, A., Kilikoglou, V., Kiriatzi, E., & Day, P. M. (2002). Investigating petrological and chemical groupings of early Minoan cooking vessels. In V. Kilikoglou, A. Hein, & Y. Maniatis (Eds.), Modern trends in scientific studies on ancient ceramics. BAR International Series 1011 (pp. 19–33). Oxford: Archaeopress.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wesley D. Stoner
    • 1
    • 2
  • John K. Millhauser
    • 3
  • Enrique Rodríguez-Alegría
    • 4
  • Lisa Overholtzer
    • 5
  • Michael D. Glascock
    • 1
  1. 1.Archaeometry LaboratoryUniversity of Missouri Research Reactor CenterColumbiaUSA
  2. 2.Department of AnthropologyUniversity of MissouriColumbiaUSA
  3. 3.Department of Sociology & AnthropologyNorth Carolina State UniversityRaleighUSA
  4. 4.Department of AnthropologyUniversity of Texas at AustinAustinUSA
  5. 5.Department of AnthropologyWichita State UniversityWichitaUSA

Personalised recommendations