Journal of Archaeological Method and Theory

, Volume 20, Issue 3, pp 381–396 | Cite as

Data Quality in Zooarchaeological Faunal Identification



There is no standard for reporting faunal identifications in zooarchaeology. Zooarchaeologists are open to accusations that reported conclusions are invalid. Other sciences counter such problems through use of quality assurance, consisting of quality control (QC), and assessment (QA). QC is a standard for procedures adopted during laboratory practice. A rarely cited standard was published by Driver in 1992. QA focuses on criteria for faunal identification and is becoming more common in zooarchaeology. QC and QA must be integral parts of zooarchaeology if identifications are to be accepted. The stakes are high because paleobiological datasets are now used to study problems in conservation science.


Zooarchaeology Faunal identification Quality assurance Quality control Quality assessment 



Thank you to Jon Driver and Lee Lyman for offering good ideas and for helping in assembling background literature. Thank you to Chris Darwent for not giving up on the Fryxell Award regarding Lee Lyman; I appreciate Chris’s, Virginia Butler’s, and Mike O’Brien’s organization of the session and the volume. Barney Venables taught me about QA and QC in the context of analytical environmental chemistry. Four reviewers provided helpful comments; thanks especially to Ken Gobalet and Torrey Rick. Finally, thanks to Lee for all of the help, support, and guidance over the years. Mass spectrum and peptide sequence data for Fig. 1 were generated with funding from NSF Archaeometry Technical Development grants nos. 0822196 and 0905020.


  1. Andrefsky, W. (2005). Lithics: macroscopic approaches to analysis (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Balkwill, D. M., & Cumbaa, S. L. (1992). A guide to the identification of postcranial bones of Bos taurus and Bison bison. Syllogeus 71. Ottawa: Canadian Museum of Nature.Google Scholar
  3. Barker, A. (2010). Archaeological protein residues: new data for conservation science. Ethnobiology Letters, 1, 58–65.Google Scholar
  4. Barker, A., Venables, B., Stevens, S. M., Seeley, K. W., Wang, P., & Wolverton, S. (2012). An optimized approach for protein residue extraction and identification from ceramics after cooking. Journal of Archaeological Method and Theory, 9(3), 407–439.CrossRefGoogle Scholar
  5. Betts, M. W., Maschner, H. D. G., Schou, C. D., Schlader, R., Holmes, J., Clement, N., & Smuin, M. (2011). Virtual zooarchaeology: building a web-based reference collection of northern vertebrates for archaeofaunal research and education. Journal of Archaeological Science, 38, 755–762.CrossRefGoogle Scholar
  6. Binford, L. R. (1986). Data, relativism, and archaeological science. Man, 22, 391–404.CrossRefGoogle Scholar
  7. Bochenski, Z. M. (2008). Identification of skeletal remains of closely related species. Journal of Archaeological Science, 35, 1247–150.CrossRefGoogle Scholar
  8. Bochenski, Z. M., & Tomek, T. (2000). Identification of bones of galliform hybrids. Journal of Archaeological Science, 27, 691–698.CrossRefGoogle Scholar
  9. Bovy, K. M. (2011). Archaeological evidence for a double-crested cormorant (Palacrocorax auritus) colony in the Pacific Northwest, USA. Waterbirds, 34, 84–95.CrossRefGoogle Scholar
  10. Bovy, K. M. (2012). Zooarchaeological evidence for sandhill crane (Grus Canadensis) breeding in northwestern Washington State. In S. Wolverton & R. L. Lyman (Eds.), Conservation biology and applied zooarchaeology (pp. 23–41). Tucson: University of Arizona Press.Google Scholar
  11. Brown, C. L., & Gustafson, C. E. (1979). A key to postcranial skeletal remains of cattle/bison, elk, and horse. Pullman: Washington State University Laboratory of Anthropology. Reports of Investigations No 57.Google Scholar
  12. Butler, V. L. (2001). Changing fish use on Mangaia, Southern Cook Islands: resource depression and the prey choice model. International Journal of Osteology, 11, 88–100.CrossRefGoogle Scholar
  13. Butler, V. L., & Lyman, R. L. (1996). Taxonomic identifications and faunal summaries: what should we be including in our faunal reports? Society for American Archaeology, Bulletin, 14, 22.Google Scholar
  14. Calder, B. J., Phillips, L. W., & Tybout, A. M. (1982). The concept of external validity. Journal of Consumer Research, 9, 240–244.CrossRefGoogle Scholar
  15. Chomko, S. A. (1990). Identification of North American rodent teeth. In B. M. Gilbert (Ed.), Mammalian osteology (pp. 72–99). Columbia: Missouri Archaeological Society.Google Scholar
  16. Clarkson, C. (2002). An index of invasiveness for the measurement of unifacial and bifacial retouch: a theoretical, experimental and archaeological verification. Journal of Archaeological Science, 29, 65–75.CrossRefGoogle Scholar
  17. Driver, J. C. (1992). Identification, classification and zooarchaeology. Circaea, 9, 35–47.Google Scholar
  18. Driver, J. C. (2011a). Identification, classification and zooarchaeology (featured reprint and invited comments). Ethnobiology Letters, 2, 19–39. Scholar
  19. Driver, J. C. (2011b). Twenty years after identification, classification and zooarchaeology. Ethnobiology Letters, 2, 36–39.Google Scholar
  20. Dunnell, R. C. (1982). Science, social science, and common sense: the agonizing dilemma of modern archaeology. Journal of Anthropological Research, 38, 1–25.Google Scholar
  21. Fothergill, B. (2008). Analysis and interpretation of the fauna from the Bluff Great House. Master’s Thesis, Department of Archaeology, Simon Fraser University.Google Scholar
  22. Frazier, J. (2007). Sustainable use of wildlife: the view from archaeozoology. Journal for Nature Conservation, 15, 163–173.CrossRefGoogle Scholar
  23. Gee, H. E. (1993). The distinction between postcranial bones of Bos primigenius Bojanus, 1827 and Bison priscus Bojanus, 1827 from the British Pleistocene and the taxonomic status of Bos and Bison. Journal of Quaternary Science, 8, 79–92.CrossRefGoogle Scholar
  24. Gobalet, K. W. (2001). A critique of faunal analysis; inconsistency among experts in blind tests. Journal of Archaeological Science, 28, 377–386.CrossRefGoogle Scholar
  25. Gobalet, K. W. (2005). Comment on Size matters: 3-mm sieves do not increase richness in a fishbone assemblage from Arrawarra 1, an Aboriginal Australian shell midden on the mid-north coast of New South Wales, Australia by Vale and Gargett. Journal of Archaeological Science, 32, 643–645.CrossRefGoogle Scholar
  26. Graham, R. W. (1984). Paleoenvironmental implications of the Quaternary distribution of the eastern chipmunk (Tamias striatus) in central Texas. Quaternary Research, 21, 111–114.CrossRefGoogle Scholar
  27. Graham, R. W. (1988). The role of climate change in the design of biological preserves. Conservation Biology, 2, 391–394.CrossRefGoogle Scholar
  28. Grinnell, J. (1922). The role of the accidental. The Auk, 39, 373–380.CrossRefGoogle Scholar
  29. Gustafson, C. E. (1972). Faunal remains from the Marmes Rockshelter and related archaeological sites in the Columbia Basin. Ph.D. Dissertation, Department of Anthropology, Washington State University.Google Scholar
  30. Hager, S. B., & Consentino, B. J. (2006). An identification key to rodent prey in owl pellets from the northwestern and southeastern United States: incisor size to distinguish among genera. The American Biology Teacher, 68, e135–e144.Google Scholar
  31. Haglund, W. D., & Sorg, M. H. (Eds.). (2002). Advances in forensic taphonomy: method, theory, and archaeological perspectives. Boca Raton: CRC Press.Google Scholar
  32. Hargrave, L. L., & Emslie, S. D. (1979). Osteological identification of sandhill crane versus turkey. American Antiquity, 44, 295–299.CrossRefGoogle Scholar
  33. Horsburgh, K. A. (2008). Wild or domesticated? An ancient DNA approach to canid species identification in South Africa’s Western Cape Province. Journal of Archaeological Science, 35, 1474–1480.CrossRefGoogle Scholar
  34. Huber, H. R., Jorgensen, J. C., Butler, V. L., Baker, G., & Stevens, R. (2011). Can salmonids (Oncorhynchus spp.) be identified to species using veterbral morphometrics? Journal of Archaeological Science, 38, 136–146.CrossRefGoogle Scholar
  35. Hyland, D. C., Tersak, J. M., Adovasio, J. M., & Siegel, M. I. (1990). Identification of species of origin of residual blood on lithic material. American Antiquity, 55, 104–112.CrossRefGoogle Scholar
  36. Jacobson, J. A. (2003). Identification of mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus) postcranial remains as a means of determining human subsistence strategies. Plains Anthropologist, 48, 287–297.Google Scholar
  37. Jacobson, J. A. (2004). Determining human ecology on the plains through the identification of mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus) postcranial remains. Ph.D. Dissertation, Department of Anthropology, University of Tennessee, Knoxville.Google Scholar
  38. Kansa, S.W., (ed). (2011). Special forum: digital communication and collaboration: perspectives from zooarchaeology. SAA Archaeological Record, 11, 10–43Google Scholar
  39. Kerlinger, F. (1964). The foundations of behavioural research. New York: Holt.Google Scholar
  40. Lawrence, B. (1951). Post-cranial skeletal characteristics of deer, pronghorn, and sheep-goat with notes on Bos and Bison. Papers of the Peabody Museum of American Archaeology and Ethnology, Harvard University 35(3), whole issue.Google Scholar
  41. Lawrence, B. (1973). Problems in the inter-site comparisons of faunal remains. In J. Matolcsi (Ed.), Domestikationsforschung und geschichte der haustiere (pp. 397–402). Budapest: Akademiai Kiado.Google Scholar
  42. Lindzey, F. G. (1982). Badger. In J. A. Chapman & G. A. Feldhamer (Eds.), Wild mammals of North America: biology, management, and economics (pp. 653–663). Baltimore: Johns Hopkins University Press.Google Scholar
  43. Lister, A. M. (1996). The morphological distinction between bones and teeth of fallow deer (Dama dama) and red deer (Cervus elaphus). International Journal of Osteoarchaeology, 6, 119–143.CrossRefGoogle Scholar
  44. Lyman, R. L. (1986). On the analysis and interpretation of species list data in zooarchaeology. Journal of Ethnobiology, 6, 67–81.Google Scholar
  45. Lyman, R. L. (1988). Zoogeography of Oregon coast mammals: the last 3000 years. Marine Mammal Science, 4, 247–264.CrossRefGoogle Scholar
  46. Lyman, R. L. (2002). Taxonomic identification of zooarchaeological remains. The Review of Archaeology, 23, 13–20.Google Scholar
  47. Lyman, R. L. (2006). Paleozoology in the service of conservation biology. Evolutionary Anthropology, 15, 11–19.CrossRefGoogle Scholar
  48. Lyman, R. L. (2008). Quantitative paleozoology. New York: Cambridge University Press.CrossRefGoogle Scholar
  49. Lyman, R. L. (2010). Paleozoology’s dependence on natural history collections. Journal of Ethnobiology, 30, 126–136.CrossRefGoogle Scholar
  50. Lyman, R. L. (2011a). Comment on Identification, classification, and zooarchaeology. Ethnobiology Letters, 2, 33–34.Google Scholar
  51. Lyman, R. L. (2011b). A history of paleoecological research on sea otters and pinnipeds of the eastern Pacific rim. In T. J. Braje & T. C. Rick (Eds.), Human impacts on seals, sea lions, and sea otters: integrating archaeology and ecology in the northeast Pacific (pp. 19–40). Berkeley: University of California Press.Google Scholar
  52. Lyman, R. L. (2012a). A historical sketch on the concepts of archaeological association, context, and provenience. Journal of Archaeological Method and Theory, 19, 207–240.CrossRefGoogle Scholar
  53. Lyman, R. L. (2012b). Human-behavioral and paleoecological implications of terminal Pleistocene fox remains at the Marmes Site (45FR50), eastern Washington state, USA. Quaternary Science Reviews, 41, 39–48.CrossRefGoogle Scholar
  54. Maschner, H. D. G., Betts, M. W., & Schou, C. D. (2011). Virtual Zooarchaeology of the Arctic Project (VZAP). SAA Archaeological Record, 11, 41–43.Google Scholar
  55. Maxwell, J. A. (1992). Understanding and validity in qualitative research. Harvard Educational Review, 62, 279–300.Google Scholar
  56. Meagher, M. (1986). Bison bison. Mammalian Species, 266, 1–8.Google Scholar
  57. Monchot, H., & Gendron, D. (2010). Disentangling long bones of foxes (Vulpes vulpes and Alopex lagopus) from arctic archaeological sites. Journal of Archaeological Science, 37, 799–806.CrossRefGoogle Scholar
  58. Moss, M. L., & Erlandson, J. M. (2010). Diversity in north Pacific shellfish assemblages: the barnacles of Kit’n’Kaboodle Cave, Alaska. Journal of Archaeological Science, 37, 3359–3369.CrossRefGoogle Scholar
  59. Moss, M. L., Yang, D. Y., Newsome, S. D., Speller, C. F., McKechnie, I., McMillan, A. D., Losey, R. J., & Koch, P. L. (2006). Historical ecology and biogeography of north Pacific pinnipeds: isotopes and ancient DNA from three archaeological assemblages. Journal of Island and Coastal Archaeology, 1, 165–190.CrossRefGoogle Scholar
  60. Munro, N. D., Bar-Oz, G., & Hill, A. C. (2011). An exploration of character traits and linear measurements from sexing mountain gazelle (Gazella gazella) skeletons. Journal of Archaeological Science, 38, 1253–1265.CrossRefGoogle Scholar
  61. Olsen, S. J. (1968). Fish, amphibian and reptile remains from archaeological sites. Cambridge: Peabody Museum.Google Scholar
  62. Pérez-Bendito, D., & Rubio, S. (1999). Quality assurance in environmental analysis. In D. Pérez-Bendito & S. Rubio (Eds.), Environmental analytical chemistry (pp. 35–57). Amsterdam: Elsevier.Google Scholar
  63. Randklev, C. R., & Lundeen, B. J. (2012). Prehistoric biogeography and conservation status of threatened freshwater mussels (Mollusca: Unionidae) in the upper Trinity River drainage, Texas. In S. Wolverton & R. L. Lyman (Eds.), Conservation biology and applied zooarchaeology (pp. 68–91). Tucson: University of Arizona Press.Google Scholar
  64. Rea, A. M. (1986). Verification and reverification: problems in archaeolofaunal studies. Journal of Ethnobiology, 6, 9–18.Google Scholar
  65. Resh, V. H., & Unzicker, J. D. (1975). Water quality monitoring and aquatic organisms: the importance of species identification. Water Pollution Control Federation, 47, 9–19.Google Scholar
  66. Reynolds, H. W., Glaholt, R. D., & Hawley, A. W. L. (1982). Bison. In J. A. Chapman & G. A. Feldhamer (Eds.), Wild mammals of North America: biology, management, and economics (pp. 972–1007). Baltimore: Johns Hopkins University Press.Google Scholar
  67. Rick, T. C., & Lockwood, R. (2012). Integrating paleobiology, archaeology, and history to inform biological conservation. Conservation Biology. doi: 10.1111/j.1523-1739.2012.01920.x.
  68. Rick, T. C., Erlandson, J. M., & Vellanoweth, R. L. (2001). Paleocoastal marine fishing on the Pacific coast of the Americas: perspectives from Daisy Cave, California. American Antiquity, 66, 595–613.CrossRefGoogle Scholar
  69. Searjantson, D. (2009). Birds. Cambridge: Cambridge University Press.Google Scholar
  70. Smith, M. L., & Glass, G. V. (1987). Research and evaluation in education and the social sciences. Needham Hieghts: Allyn and Bacon.Google Scholar
  71. Szabo, K. (2009). Molluscan remains from Fiji. In G. Clark & A. Anderson (Eds.), The early prehistory of Fiji (pp. 183–211). Canberra: Australia National University Press. Terra Australis No. 31.Google Scholar
  72. Tarcan, C. G. (2005). Counting sheep: fauna, contact, and colonialism at Zuni Pueblo, New Mexico, AD 1300 to 1900. Ph.D. Dissertation, Department of Archaeology, Simon Fraser University.Google Scholar
  73. Thomas, D. H. (1978). The awful truth about statistics in archaeology. American Antiquity, 43, 231–244.CrossRefGoogle Scholar
  74. Valentine, K., Duffield, D. A., Patrick, L. E., Hatch, D. R., Butler, V. L., Hall, R. L., & Lehman, N. (2008). Ancient DNA reveals genotypic relationships among Oregon populations of the sea otter (Enhydra lutris). Conservation Genetics, 9, 933–938.CrossRefGoogle Scholar
  75. von den Driesch, A. (1976). A guide to the measurement of animal bones from archaeological sites. Cambridge: Harvard University Peabody Museum Bulletin No. 1.Google Scholar
  76. Winter, G. (2000). A comparative discussion of the notion of ‘validity’ in qualitative and quantitative research. The Qualitative report, 4, 3/4 Accessed 3 January 2011.
  77. Wolverton, S. (2002). Zooarchaeological evidence of prairie taxa in central Missouri during the mid-Holocene. Quaternary Research, 58, 200–204.CrossRefGoogle Scholar
  78. Wolverton, S. (2008). Harvest pressure and environmental carrying capacity: an ordinal-scale models of effects on ungulate prey. American Antiquity, 73, 179–199.Google Scholar
  79. Wolverton, M. L. (2009). Research design, hypothesis testing, and sampling. The Appraisal Journal, 77, 370–382.Google Scholar
  80. Wolverton, S., & Lyman, R. L. (Eds.). (2012). Conservation biology and applied zooarchaeology. Tucson: University of Arizona Press.Google Scholar
  81. Wolverton, S., Randklev, C. R., & Barker, A. (2011). Ethnobiology as a bridge between science and ethics: an applied paleozoological perspective. In E. N. Anderson, D. Pearsall, E. Hunn, & N. Turner (Eds.), Ethnobiology (pp. 115–132). New York: Wiley-Blackwell.CrossRefGoogle Scholar
  82. Yang, D. Y., Woiderski, J. R., & Driver, J. C. (2005). DNA analysis of archaeological rabbit remains from the American Southwest. Journal of Archaeological Science, 32, 567–578.CrossRefGoogle Scholar
  83. Zeder, M. A., & Lapham, H. A. (2010). Assessing the reliability of criteria used to identify postcranial bones in sheep, Ovis, and goats, Capra. Journal of Archaeological Science, 37, 2887–2905.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Geography and Institute of Applied ScienceUniversity of North TexasDentonUSA

Personalised recommendations