Advertisement

Journal of Archaeological Method and Theory

, Volume 21, Issue 1, pp 134–211 | Cite as

The Archaeology of Cosmic Impact: Lessons from Two Mid-Holocene Argentine Case Studies

  • Gustavo Barrientos
  • W. Bruce Masse
Article

Abstract

Cosmic impact is a category of natural catastrophe neglected or misunderstood by most archaeologists in reconstructions of past human population dynamics. We discuss the nature of impact by asteroids and comets and what is known and theorized about the Quaternary Period impact record. As case studies for our exploration of how archaeological method and theory can be productively applied to the study of cosmic impact, we focus on two confirmed Holocene asteroid impacts in central and northeastern Argentina, Rio Cuarto and Campo del Cielo, both likely dating between 6 and 3 cal ky BP. We model and assess the potential destructive effects of these impacts on contemporary hunting and gathering populations using several lines of evidence. The search for Quaternary Period cosmic impacts, along with the documentation of the effects of confirmed cosmic impacts on human populations, particularly of those organized in small-scale social groups, represents a challenge and key opportunity for future archaeological research.

Keywords

Extraterrestrial object collisions Quaternary Period Archaeological evidence and judgment criteria Campo del Cielo and Río Cuarto impact events 

Notes

Acknowledgments

We thank Adolfo Gil, Raven Garvey and Gustavo Neme for giving us the opportunity in 2008 to present an earlier version of this paper in their symposium “Middle Holocene Behavioral Strategies in the Americas” at the 73rd Annual Meeting of the Society for American Archaeology in Vancouver, British Columbia, Canada. Peter Schultz shared information regarding Rio Cuarto and provided illustrations. William Cassidy contributed data and suggestions relating to Campo del Cielo, and along with Shawn Wright provided illustrations. Alberto Cione kindly discussed his own differing impressions about the Rio Cuarto event. Juan Bautista Belardi and Michael Masse for made important criticism and fruitful comments on an earlier version of this paper, while Dee Breger, Payson Sheets, Peter Bobrowsky, and particularly Michael Masse performed detailed editorial reviews of the present paper. Ted Bunch provided data and comment regarding temperature values for wildland fires and the general study of impact glass melts. Floyd McCoy reaffirmed our magnitude (megaton) energy release estimate for the Thera volcanic eruption. David Janecky brought our attention to several useful references. Johannes Wilbert kindly provided assistance with the mythology literature reviewed in the earlier Masse and Masse (2007) study. Several anonymous reviewers provided comments on drafts of the paper that helped to shape and focus our arguments. We alone bear responsibility for the final content of the paper.

References

  1. A’Hearn, M. F. (2006). Whence comets? Science, 314, 1708–1709.Google Scholar
  2. Abbott, D. H., Masse, W. B., Burckle, L., Breger, D., & Gerard-Little, P. (2007). Burckle abyssal impact crater: Did this impact produce a global deluge? In S. P. Papamarinopoulos (Ed.), The Atlantic hypothesis: Searching for a lost land. Book of Proceedings of the International Conference Atlantis 2005 (pp. 179–190). Santorini: Heliotopos.Google Scholar
  3. Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16, 268–281.Google Scholar
  4. Álvarez, A. (1926). El meteorito del Chaco. Buenos Aires: Peuser.Google Scholar
  5. Alvarez, L. W., Alvarez, W., Asaro, F., & Michel, H. V. (1980). Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science, 208, 1095–1108.Google Scholar
  6. Anderson, D. G., Goodyear, A. C., Kennett, D. J., & West, A. (2011). Multiple lines of evidence for possible human population decline/settlement reorganization during the early Younger Dryas. Quaternary International, 242, 570–583.Google Scholar
  7. Andronikov, A. V., Lauretta, D. S., Andronikova, I. E., & Maxwell, R. J. (2011). On the possibility of a late Pleistocene extraterrestrial impact: LA-ICP-MS Analysis of the Black Mat and Usselo Horizon Samples. Meteoritics & Planetary Science, 46(SI, Supplement 1), A11–A11.Google Scholar
  8. Artemieva, N., & Pierazzo, E. (2009). The Canyon Diablo impact event: projectile motion through the atmosphere. MAPS, 44, 25–42.Google Scholar
  9. Artemieva, N., & Pierazzo, E. (2011). The Canyon Diablo impact event: 2. projectile fate and target melting upon impact. Meteoritics & Planetary Science, 46, 805–829.Google Scholar
  10. Asher, D. J. S., Clube, S. V. M., Napier, W. M., & Steel, D. I. (1994). Coherent catastrophism. Vistas in Astronomy, 38, 1–27.Google Scholar
  11. Asphaug, E. (2009). Growth and evolution of asteroids. Annual Review of Earth and Planetary Sciences, 29, 413–448.Google Scholar
  12. Avena, S. A., Parolin, M. L., Boquet, M., Dejean, C. B., Postillone, M. B., Alvarez Trentini, Y., et al. (2010). Mezcla génica y linajes uniparentales en Esquel (Pcia. de Chubut). Su comparación con otras muestras poblacionales argentinas. Journal of Basic & Applied Genetics, 21, 1–14.Google Scholar
  13. Bailey, M. (2011). Risk and natural catastrophes: the long view. In L. Skinns, M. Scott, & T. Cox (Eds.), Risk (pp. 131–158). Cambridge: Cambridge University Press.Google Scholar
  14. Bailey, M. E., Markham, D. J., Massai, S., & Scriven, J. E. (1995). The 1930 August 13, Brazilian Tunguska event. Observatory, 115, 250–253.Google Scholar
  15. Baillie, M. (1999). Exodus to Arthur: catastrophic encounters with comets. London: Batsford.Google Scholar
  16. Baillie, M. G. L. (2007a). The case for significant numbers of extraterrestrial impacts through the Late Holocene. Journal of Quaternary Science, 22, 101–109.Google Scholar
  17. Baillie, M. G. L. (2007b). Tree-rings indicate global environmental downturns that could have been caused by comet debris. In P. Bobrowsky & H. Rickmann (Eds.), Comet/asteroid impacts and human society (pp. 105–122). Berlin: Springer.Google Scholar
  18. Barber, E. W., & Barber, P. T. (2004). When they severed earth from sky: how the human mind shapes myth. Princeton: Princeton University Press.Google Scholar
  19. Barberena, R., Zangrando, A., Gil, A. F., Martínez, G. A., Politis, G. G., Borrero, L. A., & Neme, G. A. (2009). Guanaco (Lama guanicoe) isotopic ecology in southern South America: spatial and temporal tendencies, and archaeological implications. Journal of Archaeological Science, 36, 2666–2675.Google Scholar
  20. Barlow, N. G. (2010). What we know about Mars from its impact craters. Geological Society of America Bulletin, 122, 644–657.Google Scholar
  21. Barrientos, G. (1997). Nutrición y dieta de las poblaciones aborígenes prehispánicas del sudeste de la Región Pampeana. Unpublished Doctoral Dissertation. Facultad de Ciencias Naturales y Museo, La Plata, UNLP.Google Scholar
  22. Barrientos, G. (2009). El estudio arqueológico de la continuidad/discontinuidad biocultural: El caso del sudeste de la Región Pampeana. In R. Barberena, K. Borrazzo, & L. A. Borrero (Eds.), Perspectivas actuales en arqueología argentina (pp. 189–214). Buenos Aires: CONICET-IMHICIHU.Google Scholar
  23. Barrientos, G., & Perez, S. I. (2002). La dinámica del poblamiento humano del Sudeste de la Región Pampeana durante el Holoceno. Intersecciones en Antropología, 3, 41–54.Google Scholar
  24. Barrientos, G., & Perez, S. I. (2005). Was there a population replacement during the Late Mid-Holocene in the Southeastern Pampas of Argentina? Archaeological evidence and paleoecological basis. Quaternary International, 132, 95–105.Google Scholar
  25. Barrientos, G., Perez, S. I., Bernal, V., González, P. N., Béguelin, M., & Del Papa, M. (2005). Changing views about the local evolution of human populations in the Argentine Pampas during the Holocene. In S. R. Zakrzewski & M. Clegg (Eds.), Proceedings of the Fifth Annual Conference of the British Association for Biological Anthropology and Osteoarchaeology (BAR International Series 1383, pp. 93–104). Oxford: Archaeopress.Google Scholar
  26. Bates, F. (1985). Principles of evidence (3rd ed.). Sydney: The Law Book.Google Scholar
  27. Baxter, J., & Atkins, T. (1976). The fire came by: the riddle of the great Siberian explosion. New York: Doubleday.Google Scholar
  28. Beer, T. (Ed.). (2010). Geophysical hazards: minimizing risk, maximizing awareness. New York: Springer.Google Scholar
  29. Belardi, J. B., & Rindel, D. (2008). Taphonomic and archeological aspects of massive mortality processes in guanaco (Lama guanicoe) caused by winter stress in Southern Patagonia. Quaternary International, 180, 38–51.Google Scholar
  30. Bertini, I. (2011). Main Belt comets: a new class of small bodies in the solar system. Planetary and Space Science, 59, 365–377.Google Scholar
  31. Bierhorst, J. (1988). The mythology of South America. New York: William Morrow.Google Scholar
  32. Binford, L. R. (2001). Constructing frames of reference. An analytical method for archaeological theory building using ethnographic and environmental data sets. Berkeley: University of California Press.Google Scholar
  33. Birks, J. W., Crutzen, P. J., & Roble, R. J. (2007). Frequent ozone depletion resulting impacts of asteroids and comets. In P. Bobrowsky & H. Rickmann (Eds.), Comet/asteroid impacts and human society (pp. 225–245). Berlin: Springer.Google Scholar
  34. Bland, P. A., & Artemieva, N. A. (2003). Efficient disruption of small asteroids by Earth’s atmosphere. Nature, 424, 288–291.Google Scholar
  35. Bland, P. A., Souza Filho, C. R., Jull, A. J. T., Kelley, S. P., Hough, R. M., Artemieva, N. A., et al. (2002). A possible tektite strewn field in the Argentinian Pampa. Science, 296, 1109–1111.Google Scholar
  36. Blarasín, M. T., & Sánchez, M. L. (1987). Secuencia evolutiva de dunas cuaternarias en el sector de Laguna Oscura, dpto. Río Cuarto. Provincia de Córdoba, República Argentina. In Décimo Congreso Geológico Argentino Actas 3 (pp. 297–300). Argentina: San Miguel de Tucumán.Google Scholar
  37. Blong, R. J. (1982). The time of darkness: local legends and volcanic reality in Papua New Guinea. Seattle: University of Washington Press.Google Scholar
  38. Bloom, A. (1992). A non-impact explanation for elongated depressions near Río Cuarto, Córdoba Province, Argentina. Geological Society of America Annual Meeting, Abstracts with Programs (pp. A136–A137). Geological Society of America.Google Scholar
  39. Bobrowsky, P., & Rickman, H. (Eds.). (2007). Comet/asteroid impacts and human society. Berlin: Springer.Google Scholar
  40. Bocquet-Appel, J. P., & Demars, P. Y. (2000). Populational kinetics in Upper Palaeolithic in Western Europe. Journal of Archaeological Science, 27, 551–570.Google Scholar
  41. Bonadonna, F., Leone, G., & Zanchetta, G. (1995). Composición isotópica de los fósiles de gasterópodos continentales de la provincia de Buenos Aires. Indicaciones paleoclimáticas. In M. T. Alberdi, G. Leone, & E. Tonni (Eds.), Evolución biológica y climática de la Región Pampeana durante los últimos cinco millones de años. Un ensayo de correlación con el Mediterráneo occidental (pp. 77–104). Madrid: Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas.Google Scholar
  42. Borrero, L. A. (2001). Regional taphonomy: background noise and the integrity of the archaeological record. In L. A. Kuznar (Ed.), Ethnoarchaeology of Andean South America. Contributions to archaeological method and theory (pp. 214–254). Ann Arbor: International Monographs in Prehistory Ethnoarchaeological Series 4.Google Scholar
  43. Boslough, M. B. (2010). Younger Dryas boundary (YDB) impact; Physical and statistical impossibility. Geological Society of America Annual Meeting, Abstracts with Programs, 42(5), 172.Google Scholar
  44. Boslough, M. B. E., & Crawford, D. A. (2008). Low-altitude airbursts and the impact threat. International Journal of Impact Engineering, 35, 1441–1448.Google Scholar
  45. Bottke, W. F., Jr. (2007). Understanding the near-Earth object population: the 2004 perspective. In P. Bobrowsky & H. Rickmann (Eds.), Comet/asteroid impacts and human society (pp. 175–187). Berlin: Springer.Google Scholar
  46. Bottke, W. F., Jr., Cellino, F., Paolicchi, P., & Binzel, R. P. (Eds.). (2002). Asteroids III. Tucson: University of Arizona Press.Google Scholar
  47. Bottke, W. F., Vokrouhlický, D., & Nesvorný, D. (2009). An asteroid breakup 160 Myr ago as the probable source of the K/T impactor. Nature, 449, 48–53.Google Scholar
  48. Bourgeois, J., & Weiss, R. (2009). “Chevrons” are not mega-tsunami deposits—a sedimentologic assessment. Geology, 37, 403–406.Google Scholar
  49. Bradtmöller, M., Pastoors, A., Weninger, B., & Weniger, G. (2012). The repeated replacement model—rapid climatic change and population dynamics in late Pleistocene Europe. Quaternary International, 247, 38–49.Google Scholar
  50. Broecker, W. S., Denton, G. H., Edwards, R. L., Cheng, H., Alley, R. B., & Putnam, A. E. (2010). Putting the Younger Dryas cold event into context. Quaternary Science Reviews, 29, 1078–1081.Google Scholar
  51. Bryant, E. (2004). Natural Hazards (2nd ed.). Camridge: Cambridge University Press.Google Scholar
  52. Bryant, E. (2008). Tsunami: the underrated hazard (2nd ed.). New York: Springer.Google Scholar
  53. Buchanan, B., Collard, M., & Edinborough, K. (2008). Paleoindian demography and the extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 105, 11651–11654.Google Scholar
  54. Buchanan, B., Hamilton, M., Edinborough, K., O’Brien, M. J., & Collard, M. (2011). A comment on Steele’s (2010) “Radiocarbon dates as data: quantitative strategies for estimating colonization front speeds and event densities”. Journal of Archaeological Science, 38, 2116–2122.Google Scholar
  55. Bunch, T. E., Hermes, R. E., Moore, A. M. T., Kennett, D. J., Weaver, J. C., Wittke, J. H., et al. (2012). Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proceedings of the National Academy of Sciences of the United States of America. Published online before print June 18, 2012, doi: 10.1073/pnas.1204453109.
  56. Byers, D. A., & Broughton, J. M. (2004). Holocene environmental change, artiodactyl abundances, and human hunting strategies in the Great Basin. American Antiquity, 69, 235–256.Google Scholar
  57. Cabrera, A., & Yepes, J. (1960). Mamíferos sudamericanos. Buenos Aires: Ediar. Cajal, J. L., & Ojeda, R. A. (1994). Camélidos silvestres y mortalidad por tormentas de nieve en la cordillera frontal de la Provincia de San Juan, Argentina. Mastozoología Neotropical, 1, 81–88.Google Scholar
  58. Cajal, J. L., & Ojeda, R. A. (1994). Camélidos silvestres y mortalidad por tormentas de nieve en la cordillera frontal de la Provincia de San Juan, Argentina. Mastozoología Neotropical, 1, 81–88.Google Scholar
  59. Cantú, M. P., & Degiovanni, S. B. (1984). Geomorfología de la región centro sur de la provincial de Córdoba. In Noveno Congreso Geológico Argentino, Actas 4 (pp. 76–92). San Carlos de Bariloche.Google Scholar
  60. Carlini, A. A., & Tonni, E. P. (2000). Mamíferos fósiles del Paraguay. La Plata: Artes Gráficas San Miguel.Google Scholar
  61. Cashman, K. V., & Giordano, G. (Eds.) (2008). Volcanoes and human history. Journal of Volcanology and Geothermal Research, 176, 325–438.Google Scholar
  62. Cassidy, W. A. (2003). Meteorites, ice, and Antarctica: a personal account. Cambridge: Cambridge University Press.Google Scholar
  63. Cassidy, W. A., & Renard, M. L. (1996). Discovering research value in the Campo del Cielo, Argentina, meteorite craters. Meteoritics & Planetary Science, 31, 433–448.Google Scholar
  64. Cassidy, W. A., Villar, L. M., Bunch, T. E., Kohman, T. P., & Milton, D. J. (1965). Meteorites and craters of Campo del Cielo, Argentina. Science, 149, 1055–1064.Google Scholar
  65. Chaisson, E., & McMillan, S. (2011). Astronomy today (7th ed.). San Francisco: Pearson Addison-Wesley.Google Scholar
  66. Chamberlain, A. T. (2006). Demography in archaeology. Cambridge: Cambridge University Press.Google Scholar
  67. Chapman, C. R. (2008). Meteoroids, meteors, and the near-Earth object impact hazard. Earth, Moon, and Planets, 102, 417–424.Google Scholar
  68. Chapman, C. R. (2011). What will happen when the next asteroid strikes? Astronomy, 39(5), 30–35.Google Scholar
  69. Chapman, C. R., & Morrison, D. (1994). Impacts on the Earth by asteroids and comets: assessing the hazard. Nature, 367, 33–40.Google Scholar
  70. Chatterjee, S. (1997). Multiple impacts at the KT boundary and the death of the dinosaurs. 30th International Geological Congress, 26, 31–54.Google Scholar
  71. Chatterjee, S., & Rudra, D. K. (2008). Shiva impact event and its implications for Deccan Volcanism and Dinosaur. Extinction. Palaeobotanist, 57, 235–250.Google Scholar
  72. Chesley, S. R., & Ward, S. N. (2006). A quantitative assessment of the human and economic hazard from impact-generated tsunamis. Natural Hazards, 38, 355–374.Google Scholar
  73. Cione, A. L., Tonni, E. P., San Cristóbal, J., Hernández, P. J., Benítez, A., Bordignon, F., & Perí, J. A. (2002). Putative meteoritic craters in Río Cuarto (Central Argentina) interpreted as eolian structures. Earth Moon Planets, 91, 9–24.Google Scholar
  74. Cleland, C. E. (2002). Methodological and epistemic differences between historical science and experimental science. Philosophy of Science, 69, 474–496.Google Scholar
  75. Clube, V., & Napier, B. (1982). The cosmic serpent. New York: Universe Books.Google Scholar
  76. Clube, V., & Napier, B. (1990). The cosmic winter. Cambridge, MA: Basil Blackwell.Google Scholar
  77. Collard, M., Buchanan, M., Hamilton, M. J., & O’Brien, M. J. (2010). Spatiotemporal dynamics of the Clovis–Folsom transition. Journal of Archaeological Science, 37, 2513–2519.Google Scholar
  78. Collins, G. S., Artemieva, N., Wünnemann, K., Bland, P. A., Reimold, W. U., & Koeberl, C. (2008). Evidence that Lake Cheko is not an impact crater. Terra Nova, 20, 165–168.Google Scholar
  79. Collins, G. S., Melosh, H. J., & Marcus, R. A. (2005). Earth Impact Effects Program: a web-based computer program for calculating the regional consequences of a meteoroid impact on Earth. Meteoritics and Planetary Science, 40, 817–840.Google Scholar
  80. Collins, G. S., Melosh, H. J., & Osinski, G. R. (2012). The impact-cratering process. Elements, 8, 25–30.Google Scholar
  81. Courty, M. A. (1998). The soil record of an exceptional event at 4000 BP in the Middle East. In J. Peiser, T. Palmer, & M. E. Bailey (Eds.), Natural catastrophes during Bronze Age civilizations: archaeological, geological, astronomical, and cultural perspectives (BAR International Series 728, pp. 93–108). Oxford: Archaeopress.Google Scholar
  82. Courty, M. A. (2001). Evidence at Tell Brak for the Late EDIII/Early Akkadian Air Blast Event (4 kyr BP). In D. Oates, J. Oates, & H. McDonald (Eds.), Excavation at Tell Brak. Vol. 2: Nagar in the Third Millennium BC (Vol. 2, pp. 367–372). London: McDonald Institute for Archaeology/British School of Archaeology in Iraq.Google Scholar
  83. Courty, M. A., Crisci, A., Fedoroff, M., Grice, K., Greenwood, P., Mermoux, M., et al. (2008). Regional manifestation of the widespread disruption of soil-landscapes by the 4 kyr BP impact-linked dust event using pedo-sedimentary micro-fabrics. In S. Kapur, A. Mermut, & G. Stoops (Eds.), New trends in soil micromorphology (pp. 211–236). Berlin: Springer.Google Scholar
  84. Daniels, P. (2009). The new solar system: ice worlds, moons, and planets redefined. Washington, D.C.: National Geographic.Google Scholar
  85. De Pater, I., & Lissauer, J. J. (2010). Planetary sciences (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  86. de Silva, S. L., & Francis, P. W. (1991). Volcanoes of the Central Andes. New York: Springer.Google Scholar
  87. del Moral, R., & Grishin, S. Y. (1999). The consequences of volcanic eruptions. In L. R. Walker (Ed.), Ecosystems of disturbed ground (pp. 137–160). Amsterdam: Elsevier Science.Google Scholar
  88. Deloria, V., Jr. (1995). Red Earth, White Lies: Native Americans and the myth of scientific fact. New York: Scribner.Google Scholar
  89. Dinerstein, E., Olson, D. M., Graham, D. J., Webster, A. L., Primm, S. A., Bookbinder, M. P., & Ledec, G. (1995). A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. Washington, D.C.: The World Bank.Google Scholar
  90. Douglass, D. C., Singer, B. S., Kaplan, M. R., Ackert, R. P., Mickelson, D. M., & Cafee, M. W. (2005). Evidence of early Holocene glacial advances in southern South America from cosmogenic surface-exposure dating. Geology, 33, 237–240.Google Scholar
  91. Duncan, M. J., & Levision, H. F. (1997). A disk of scattered icy objects and the origin of Jupiter-family comets. Science, 276, 1670–1672.Google Scholar
  92. Durda, D. D., & Kring, D. A. (2004). Ignition threshold for impact-generated fires. Journal of Geophysical Research, 109, 1–14.Google Scholar
  93. Dypvik, H., Burchell, M., & Claeys, P. (Eds.). (2004). Cratering in marine environments and on ice. Berlin: Springer.Google Scholar
  94. Echaurren, J. C. (2007). Numerical estimations for impact conditions on Campo del Cielo, crater field, South America. Meteoritics & Planetary Science, 42, 5003.Google Scholar
  95. Echo-Hawk, R. C. (2000). Ancient history in the New World: integrating oral traditions and the archaeological record. American Antiquity, 65, 267–290.Google Scholar
  96. Ernstson, K., Mayer, W., Neumair, A., Rappenglück, B., Rappenglück, M. A., Sudhaus, D., & Zeller, K. W. (2010). The Chiemgau crater strewn field: evidence of a Holocene large impact event in southeast Bavaria, Germany. Journal of Siberian Federal University, Engineering and Technologies, 1, 72–103.Google Scholar
  97. Fairbanks, R. G., Mortlock, R. A., Chiu, T., Cao, L., Kaplan, A., Guilderson, T. P., et al. (2005). Radiocarbon calibration curve spanning 10,000 to 50,000 years BP based on paired 230Th/234U/238U and 14C Dates on pristine Corals. Quaternary Science Reviews, 25, 1781–1796.Google Scholar
  98. Farley, K. A. (2009). Late Eocene and late Miocene cosmic dust events: comet showers, asteroid collisions, or lunar impacts? Geological Society of America Special Papers, 452, 27–35.Google Scholar
  99. Fayek, M., Anovitz, L. M., Allard, L. F., & Hull, S. (2012). Framboidal iron oxide: chondrite-like material from the black mat, Murray Springs, Arizona. Earth and Planetary Science Letters, 319–320, 251–258.Google Scholar
  100. Figueiro, G., & Sans, M. (2011). El ADN mitocondrial de Laguna Tres Reyes 1 y el contexto genético del Cono Sur. In M. F. Cesani Comp (Ed.), Libro de resúmenes de las X Jornadas Nacionales de Antropología Biológica (p. 26). City Bell: Asociación de Antropología Biológica Argentina.Google Scholar
  101. Firestone, R. B., West, A., Kennett, J. P., Becker, L., Bunch, T. E., Revay, Z. S., et al. (2007). Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences, 104, 16016–16021.Google Scholar
  102. Fitzhugh, B. (2012). Hazards, impacts, and resilience among hunter–gatherers of the Kuril Islands. In J. Cooper & P. Sheets (Eds.), Surviving sudden environmental change. Answers from archaeology (pp. 19–42). Boulder: University Press of Colorado.Google Scholar
  103. Folco, L., Perchiazzi, N., D’Orazio, M., Frezzotti, M. L., Glass, B. P., & Rochette, P. (2010). Shocked quartz and other mineral inclusions in Australasian microtektites. Geology, 38, 211–214.Google Scholar
  104. Folke, C., Carpenter, S. R., Elmqvist, T., Gunderson, L., Holling, C. S., & Walker, S. B. (2002). Resilience and sustainable development: building adaptive capacity in a world of transformations. Ambio, 31, 437–440.Google Scholar
  105. Folke, C., Carpenter, S., Walker, S. B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. S. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35, 557–581.Google Scholar
  106. Fowler, M. E. (1989). Medicine and surgery of South American camelids: llama, alpaca, vicuña, guanaco. Ames: Iowa State University Press.Google Scholar
  107. French, B. M. (1998). Traces of catastrophe. A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. Lunar and Planetary Institute, Contribution No. 954. Houston: Texas. http://www.lpi.usra.edu/publications/books/CB-954/CB-954.intro.html.
  108. French, B. M., & Koeberl, C. (2010). The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth-Science Reviews, 98, 123–170.Google Scholar
  109. Friend, T. (2011). Vermin of the sky. The New Yorker, February 28, 2011, 22.Google Scholar
  110. Fujiwara, A., Kawaguchi, J., Yeomans, D. K., Abe, M., Mukai, T., Okada, T., et al. (2006). The rubble–pile asteroid Itokawa as observed by Hayabusa. Science, 312, 1330–1334.Google Scholar
  111. Gad-el-Hak, M. (2008). The art and science of large-scale disasters. In M. Gad-el-Hak (Ed.), Large-scale disasters: prediction, control, and mitigation (pp. 5–68). Cambridge: Cambridge University Press.Google Scholar
  112. Gallant, R. A. (2002). Meteorite hunter: the search for Siberian meteorite craters. New York: McGraw-Hill.Google Scholar
  113. Gamble, C., Davies, W., Pettitt, P., & Richards, M. (2004). Climate change and evolving human diversity in Europe during the last glacial. Philosophical Transactions of the Royal Society of London B, 359, 243–254.Google Scholar
  114. Garvey, R. (2008). A behavioural ecological approach to a proposed Middle Holocene occupational gap. Before Farming 2008/2, Article 2.Google Scholar
  115. Gasperini, L., Alvisi, F., Biasini, G., Bonatti, E., Longo, G., Pipan, M., et al. (2007). A possible impact crater for the 1908 Tunguska Event. Terra Nova, 19, 245–251.Google Scholar
  116. Gault, D. E., Quaide, W. L., & Oberbeck, V. R. (1968). Impact cratering mechanics and structures. In B. M. French & N. M. Short (Eds.), Shock metamorphism of natural materials (pp. 87–100). San Francisco: Mono.Google Scholar
  117. Gehrels, T. (Ed.). (1994). Hazards due to comets & asteroids. Tucson: University of Arizona Press.Google Scholar
  118. Gil, A. (2005). Arqueología de La Payunia (Mendoza, Argentina) (BAR International Series 1477). Oxford: Archaeopress.Google Scholar
  119. Gil, A., Zárate, M., & Neme, G. (2005). Mid-Holocene paleoenvironments and the archeological record of southern Mendoza, Argentina. Quaternary International, 132, 81–94.Google Scholar
  120. Giménez Benítez, S. R., López, A. M., & Mammana, L. A. (2000). Meteorites of Campo del Cielo: impact on the Indian Culture. In C. Esteban & J. A. Belmonte (Eds.), Oxford VI and SEAC 99: astronomy and cultural diversity (pp. 335–34). Tenerife: Organismo Autónomo de Museos del Cabildo de Tenerife.Google Scholar
  121. Gisler, G., Weaver, R., & Gittings, M. (2011). Calculations of asteroid impacts into deep and shallow water. Pure and Applied Geophysics, 168, 1187–1198.Google Scholar
  122. Gkiasta, M., Russell, T., Shennan, S., & Steele, S. (2003). Neolithic transition in Europe: the radiocarbon dates revisited. Antiquity, 77, 45–66.Google Scholar
  123. Gladman, B., Michel, P., & Froeschlé. (2000). The near-Earth object population. Icarus, 146, 176–189.Google Scholar
  124. Glass, B. P., Hubrt, H., & Koeberl, C. (2004). Geochemistry of Cenozoic microtektites and clinopyroxene-bearing spherules. Geochimica et Cosmochimica Acta, 68, 3971–4006.Google Scholar
  125. Glass, B. P., & Koeberl, C. (2006). Australasian microtektites and associated impact ejecta in the South China Sea and the Middle Pleistocene supereruption of Toba. Meteoritics and Planetary Science, 41, 305–326.Google Scholar
  126. González, B. A., Palma, R. E., Zapata, B., & Marín, J. C. (2006). Taxonomic and biogeographical status of guanaco Lama guanicoe (Artiodactyla, Camelidae). Mammal Review, 36, 157–178.Google Scholar
  127. Gould, R. A. (Ed.). (2007). Disaster archaeology. Salt Lake City: University of Utah Press.Google Scholar
  128. Grayson, D. K. (2000). Mammalian responses to Middle Holocene climatic change in the Great Basin of the western United Status. Journal of Biogeography, 27, 181–192.Google Scholar
  129. Grün, E., Gustafson, B. A. S., Dermott, S. F., & Fechtig, H. (Eds.). (2001). Interplanetary dust. Berlin: Springer.Google Scholar
  130. Gusiakov, V. K. (2007). Tsunami as a destructive aftermath of oceanic impacts. In P. Bobrowsky & H. Rickmann (Eds.), Comet/asteroid impacts and human society (pp. 247–263). Berlin: Springer.Google Scholar
  131. Gusiakov, V. K. (2012). Expert database on Earth impact structures. http://tsun.sscc.ru/nh/edeis.html. Accessed January 10, 2012.
  132. Gusiakov, V. K., Abbott, D. H., Bryant, E. A., Masse, W. B., & Breger, D. (2010). Megatsunami of the World oceans: chevron dune formation, micro-ejecta, and rapid climate change as the evidence of recent oceanic bolide impacts. In T. Beer (Ed.), Geophysical hazards: minimizing risk, maximizing awareness (pp. 197–227). Berlin: Springer.Google Scholar
  133. Gutiérrez, M., & Martínez, G. (2008). Trends in the faunal human exploitation during the late Pleistocene and early Holocene in the Pampean region (Argentina). Quaternary International, 191, 53–68.Google Scholar
  134. Hamacher, D. W., & Norris, R. P. (2009). Australian Aboriginal geomythology: eyewitness accounts of cosmic impacts? Archaeoastronomy, 22, 60–93.Google Scholar
  135. Hamilton, M. J., & Buchanan, B. (2007). Spatial gradients in Clovis-age radiocarbon dates across North America suggest rapid colonization from the north. Proceedings of the National Academy of Sciences, 104, 15625–15630.Google Scholar
  136. Harris, R. S., & Schultz, P. H. (2007). The record of Late Cenozoic impacts in the Argentine Pampas: consequences of hypervelocity collisions into soft sedimentary target. Geological Society of America Annual Meeting, Abstracts with Programs, 39(6), 371.Google Scholar
  137. Harris, R. S., Schultz, P. H., Tancredi, G., & Ishitsuka, J. (2008a). Preliminary petrologic analysis of impact deformation in the Carancas (Peru) cratering event. 39 th Lunar and Planetary Science Conference, extended abstract no. 2446.Google Scholar
  138. Harris, R. S., Schultz, P. H., Tancredi, G., & Ishitsuka, J. (2008b). Petrology of ejecta from the Carancas (Peru) crater: insights into the dynamics of an unusual impact event. Asteroids, Comets, and Meteorites 2008. Lunar Planetary Sciences Institute, Abstract 8302.Google Scholar
  139. Harris, R. S., Schultz, P. H., & Zarate, M. (2007). La Dulce Crater: evidence for a 2.8 km impact structure in the eastern pampas of Argentina. 38th Annual Lunar and Planetary Science Conference, extended abstract no. 2243.Google Scholar
  140. Hartmann, W. K., & Miller, R. (2005). The grand tour: a traveler’s guide to the Solar System. New York: Workman.Google Scholar
  141. Haynes, C. V., Jr., Boerner, J., Domanik, K., Lauretta, D., Ballenger, J., & Goreva, J. (2010). The Murray Springs Clovis site, Pleistocene extinction, and the question of extraterrestrial impact. Proceedings of the National Academy of Sciences of the United States of America, 107, 4010–4015.Google Scholar
  142. Higgins, M. D., Lajeunesse, P., St-Onge, P., Locat, J., Duchesne, M., Ortiz, J., et al. (2011). Bathymetric and petrological evidence for a young (Pleistocene?) 4-km diameter impact crater in the Gulf of Saint Lawrence, Canada. 42 nd Lunar and Planetary Science Conference, abstract no. 1504.Google Scholar
  143. Hildebrand, A. R., Penfield, G. T., Kring, D. A., Pilkington, M., Zanoguera, A. C., Jacobsen, S. B., & Boynton, W. B. (1991). Chicxulub Crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology, 19, 867–871.Google Scholar
  144. Hiscock, P. (1985). The need for a taphonomic perspective in stone artefact analysis. Queensland Archaeological Research, 2, 82–95.Google Scholar
  145. Hodge, P. (1994). Meteorite craters and impact structures of the Earth. Cambridge: Cambridge University Press.Google Scholar
  146. Hoffman, S. M., & Oliver-Smith, A. (Eds.). (2002). Catastrophe & culture: the anthropology of disaster. Santa Fe: School of American Research Press.Google Scholar
  147. Holliday, V. T., & Meltzer, D. J. (2010). The 12.9-ka ET impact hypothesis and North American Paleoindians. Current Anthropology, 51, 575–607.Google Scholar
  148. NASA Home (2012). Asteroid nudged by sunlight: Most precise measurement of the Yarkovsky effect. http://www.nasa.gov/topics/universe/features/yarkosky-asteroid.html. Accessed June 5, 2012.
  149. Housley, R. A., Gamble, C. S., Street, M., & Pettitt, P. B. (1997). Radiocarbon evidence for the Lateglacial human recolonisation of Northern Europe. Proceedings of the Prehistoric Society, 63, 25–54.Google Scholar
  150. Hsieh, H. H., & Jewitt, D. (2006). A population of comets in the Main Asteroid Belt. Science, 214, 561–563.Google Scholar
  151. Hughen, K. A., Southon, J. R., Lehman, S. J., & Overpeck, J. T. (2000). Synchronous radiocarbon and climate shift during the last deglaciation. Science, 290, 1951–1954.Google Scholar
  152. Ide, S., Baltay, A., & Beroza, G. C. (2011). Shallow dynamic overshoot and energetic deep rupture in the 2011 M w 9.0 Tohoku-Oki Earthquake. Science, 332, 1426–1529.Google Scholar
  153. Ingram, G. (1992). Preliminary report on heat stress in working llamas—1991. http://home.att.net/~lostcreekllamas/tempstudyone.html. Accessed 3 January, 2008.
  154. Iriondo, M. H. (1997). Models of deposition of loess and loessoids in the Upper Quaternary of South America. Journal of South American Earth Sciences, 10, 71–79.Google Scholar
  155. Iriondo, M. H. (1999). Climatic change in the South American plains: records of a continental-scale oscillation. Quaternary International, 57–58, 93–112.Google Scholar
  156. Iriondo, M. H. (2006). A comment on volume 132 of Quaternary International. Quaternary International, 142–143, 247–248.Google Scholar
  157. Israde-Alcántara, I., Bischoff, J. L., Dominguez-Vázquez, G., Li, H.-C., DeCarli, P. S., Bunch, T. E., et al. (2012). Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences, 109(13)], E738-E747; published ahead of print March 5, 2012, doi: 10.1073/pnas.1110614109.
  158. Jenniskens, P. (2006). Meteor showers and their parent comets. Cambridge: Cambridge University Press.Google Scholar
  159. Jones, S. C. (2010). Palaeoenvironmental response to the ~74 ka Toba ash-fall in the Jurreru and middle Son valleys in southern and north-central India. Quaternary Research, 73, 336–350.Google Scholar
  160. Jones, T. P. (2002). Reply “Extraterrestrial impacts and wildfires.” Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 407–408.Google Scholar
  161. Jones, T. P., & Lim, B. (2000). Extraterrestrial impacts and wildfires. Palaeogeography, Palaeoclimatology, Palaeoecology, 164, 57–66.Google Scholar
  162. Jourdan, F., Moynier, F., Koeberl, C., & Eroglu, S. (2011). 40AR/39AR age of the Lonar crater and consequence for the geochronology of planetary impacts. Geology, 39, 671–674.Google Scholar
  163. Jourdan, F., & Reimold, W. U. (2012). Impact!—bolides, craters, and catastrophes. Elements, 8, 19–24.Google Scholar
  164. Jourdan, F., Reimold, W. U., & Deutsch, A. (2012). Dating terrestrial impact structures. Elements, 8, 49–53.Google Scholar
  165. Karner, D. B., Levine, J., Muller, R. A., Asaro, F., Ram, M., & Stolz, M. R. (2003). Extraterrestial accretion from the GISP2 ice core. Geochemica et Cosmochimica Acta, 67, 751–763.Google Scholar
  166. Karttunen, H., Kröger, P., Oja, H., Poutanen, M., & Donner, K. J. (Eds.). (2007). Fundamental astronomy (5th ed.). Berlin: Springer.Google Scholar
  167. Kasperson, J. X., Kasperson, R. E., Turner, B. L., II, Hsieh, W., & Schiller, A. (2005). Vulnerability to global environmental change. In J. X. Kasperson & R. E. Kasperson (Eds.), The social contours of risk: risk analysis, corporations & the globalization of risk (pp. 245–285). Sterling, VA: Earthscan.Google Scholar
  168. Kay, C. E. (1998). Are ecosystems structured from the top-down or bottom-up: a new look at an old debate. Wildlife Society Bulletin, 26, 484–498.Google Scholar
  169. Kenkmann, T., Artemieva, N. A., Wünnemann, K., Poelchau, M. H., Elbeshhausen, D., & Núñez del Prado, H. (2009). The Carancas meteorite impact crater, Peru: geologic surveying and modeling of crater formation and atmospheric passage. Meteoritics & Planetary Science, 44, 985–1000.Google Scholar
  170. Kennett, D. J. (2010). Comment on “The 12.9 ka ET impact hypothesis and North American Paleoindians,” by V. T. Holliday and D. J. Meltzer. Current Anthropology, 51, 591–592.Google Scholar
  171. Kennett, J. P. (2011). Younger Dryas onset marked by dramatic environmental and biotic change. 2011 Meeting of the International Union for Quaternary Research, Bern, Switzerland Abstract Details http://www.inqua2011.ch/?a=programme&subnavi=abstract&id=1666&sessionid=60. Accessed December 17, 2011.
  172. Kennett, D. J., Kennett, J. P., West, A., Mercer, C., Que Hee, S. S., Bement, L., et al. (2009). Nanodiamonds in the Younger Dryas boundary sediment layer. Science, 323, 94.Google Scholar
  173. Kennett, J. P., & Teller, J. T. (Conveners) (2011). Session 60 “The enigmatic Younger Dryas climatic episode,” 2011 Meeting of the International Union for Quaternary Research, Bern, Switzerland. http://www.inqua2011.ch/?a=programme&subnavi=abstractlist. Accessed November 25, 2011.
  174. Kerr, R. A. (2008). Experts find no evidence for a mammoth-killer impact. Science, 319, 1331–1332.Google Scholar
  175. Kerr, R. A. (2010). Mammoth-killer impact flunks out. Science, 329, 1140–1141.Google Scholar
  176. Koeberl, C. (1994). Tektite origin by hypervelocity asteroidal or cometary impact: target rocks, source craters, and mechanisms. In B. O. Dessler, R. A. F. Grieve, & V. L. Sharpton (Eds.), Large impact structures and planetary evolution (pp. 133–152). Boulder: Geological Society of America Special Paper 293.Google Scholar
  177. Koeberl, C., Brandstätter, F., Glass, B. P., Hecht, L., Mader, D., & Reimold, W. U. (2007). Uppermost impact fallback layer in the Bosumtwi crater (Ghana): mineralogy, geochemistry, and comparison with Ivory Coast tektites. Meteoritics & Planetary Science, 42, 709–729.Google Scholar
  178. Koessler-Ilg, B. (2000). Cuentan los araucanos. Mitos, leyendas y tradiciones (5th ed.). Buenos Aires: Del Nuevo Extremo.Google Scholar
  179. Kolesnikov, E. M., Rasmussen, K. L., Hou, Q., Xie, L., & Kolesnikova, N. V. (2007). Nature of the Tunguska impactor based on peat material from the explosion area. In P. Bobrowsky & H. Rickman (Eds.), Comet/asteroid impacts and human society (pp. 291–301). Berlin: Springer.Google Scholar
  180. Kring, D. A. (1997). Air blast produced by the Meteor Crater impact event and a reconstruction of the affected environment. Meteoritics & Planetary Science, 32, 517–530.Google Scholar
  181. Kring, D. A. (2000). Impact events and their effect on the origin, evolution, and distribution of life. GSA Today, 10(8), 1–7.Google Scholar
  182. Kring, D. A. (2007). Guidebook to the geology of Barringer Meteorite Crater Arizona (a.k.a. Meteor Crater). Houston: Lunar and Planetary Institute. Contribution No. 1355.Google Scholar
  183. Krinov, Y. L. (1966). Giant meteorites. New York: Pergamon.Google Scholar
  184. Krinov, E. L. (1971). New studies of the Sikhote-Alin iron meteorite shower. Meteoritics, 6, 127–138.Google Scholar
  185. Kromer, B., Friedrich, M., Hughen, K. A., Kaiser, F., Remmele, S., Schaub, M., & Talamo, S. (2004). Late Glacial 14C-ages from a floating, 1270-ring pine chronology. Radiocarbon, 46, 1203–1209.Google Scholar
  186. Krot, A. N. (2011). Planetary science: bringing part of an asteroid back home. Science, 333, 1098–1099.Google Scholar
  187. Kurbatov, A. V., Mayewski, P. A., Steffensen, J. P., West, A., Kennett, D. J., Kennett, J. P., et al. (2010). Discovery of a nonodiamond-rich layer in the Greenland ice sheet. Journal of Glaciology, 56(199), 749–759.Google Scholar
  188. L’Heureux, G. L. (2008). El estudio arqueológico del proceso coevolutivo entre las poblaciones humanas y las poblaciones de guanaco en Patagonia Meridional y Norte de Tierra del Fuego. BAR International Series 1751. Oxford: Archaeopress.Google Scholar
  189. Langbroek, M., & Roebroeks, W. (2000). Extraterrestrial evidence on the age of hominids from Java. Journal of Human Evolution, 38, 595–600.Google Scholar
  190. Le Pichon, A., Antier, K., Cansi, Y., Hernandez, B., Minaya, E., Burgoa, B., et al. (2008). Evidence for a meteoritic origin of the September 15, 2007, Carancas crater. Meteoritics & Planetary Science, 43, 1797–1809.Google Scholar
  191. Leary, N., & Beresford, S. (2009). Vulnerability of people, places and systems to environmental change. In G. Knight & J. Jaeger (Eds.), Integrated regional assessment of global climate change (pp. 117–149). Cambridge: Cambridge University Press.Google Scholar
  192. Levi-Strauss, C. (1969). The raw and the cooked. New York: Harper & Row.Google Scholar
  193. Levi-Strauss, C. (1973). From honey to ashes. New York: Harper & Row.Google Scholar
  194. Lewis, J. S. (1996). Rain of iron and ice: the very real threat of comet and asteroid bombardment. New York: Addison Wesley.Google Scholar
  195. Li, J.-Y., Kuchner, M. J., Allen, R. J., & Sheppard, S. S. (2011). Measuring the sizes, shapes, surface features and rotations of Solar System objects with interferometry. Icarus, 211, 1007–1021.Google Scholar
  196. Liberman, R. G., Niello, F., di Tada, M. L., Fifield, L. K., Masarik, J., & Reedy, R. C. (2002). Campo del Cielo iron meteorite: sample shielding and meteoroid’s preatmospheric size. Meteoritics & Planetary Science, 37, 295–300.Google Scholar
  197. Littleton, J., & Allen, H. (2007). Hunter–gatherer burials and the creation of persistent places in southeastern Australia. Journal of Anthropological Archaeology, 26, 283–298.Google Scholar
  198. Longo, G. (2007). The Tunguska event. In P. Bobrowsky & H. Rickman (Eds.), Comet/asteroid impacts and human society (pp. 303–330). Berlin: Springer.Google Scholar
  199. Loponte, D. (1996–1998). Arqueología, etnohistoria y estado sanitario de L. guanicoe (Mammalia, Artiodactyla, Camelidae) en la Pampa Ondulada. Palimpsesto, 5, 41–65.Google Scholar
  200. Loponte, D. (2008). Arqueología del humedal del Paraná inferior (Bajíos Ribereños Meridionales). Series monográficas “Arqueología de la Cuenca del Plata.”. Buenos Aires: Instituto Nacional de Antropología y Pensamiento Latinoamericano.Google Scholar
  201. Louderback, L. A., Grayson, D. K., & Llobera, M. (2011). Middle-Holocene climates and human population densities in the Great Basin, western USA. The Holocene, 21, 366–373.Google Scholar
  202. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.Google Scholar
  203. Ma, P., Aggrey, K., Tonzola, C., Schnabel, C., de Nicola, P., Herzog, G. F., et al. (2004). Beryllium-10 in Australasian tektites: constraints on the location of the source crater. Geochimica et Cosmochimica Acta, 68, 3883–3896.Google Scholar
  204. MacCraken, M. C. (2007). The climatic effects of asteroid and comet impacts: consequences for an increasingly interconnected society. In P. Bobrowsky & H. Rickman (Eds.), Comet/asteroid impacts and human society (pp. 277–289). Berlin: Springer.Google Scholar
  205. MacDonagh, E. J. (1949). Los guanacos de Curámalal. Notas del Museo de la Plata, Zoología, 14, 505–537.Google Scholar
  206. Mahaney, W. C., Krinsley, D., Langworthy, K., Kalm, V., Havics, T., Hart, K. M., et al. (2011). Fired glaciofluvial sediment in the northwestern Andes: biotic aspects of the Black Mat. Sedimentary Geology, 237, 73–83.Google Scholar
  207. Mainzer, A., Grav, T., Bauer, J., Masiero, J., McMillan, R. S., Cutri, R. M., et al. (2011). NEOWISE observations of near-Earth objects: preliminary results. The Astrophysical Journal, 743, 156–172.Google Scholar
  208. Mancini, M. V., Paez, M. M., Prieto, A. R., Stutz, S., Tonillo, M., & Vilanova, I. (2005). Mid-Holocene climatic variability reconstruction from pollen records (32°–52°S, Argentina). Quaternary International, 132, 47–59.Google Scholar
  209. Marcus, R., Melosh, H. J., & Collins, G. (2010). Earth impact effects program. http://impact.ese.ic.ac.uk/ImpactEffects/. Accessed 5 January, 2012.
  210. Mark, K. (1987). Meteorite craters. Tucson: University of Arizona Press.Google Scholar
  211. Marlon, J. R., Bartlein, P. J., Walsh, M. K., Harrison, S. P., Brown, K. J., Edwards, M. E., et al. (2009). Wildfire responses to abrupt climate change in North America. Proceedings of the National Academy of Sciences, 106, 2519–2524.Google Scholar
  212. Martínez, G. A., & Gutiérrez, M. A. (2004). Tendencias en la explotación humana de la fauna durante el Pleistoceno final-Holoceno en la Región Pampeana (Argentina). In G. L. Mengoni Goñalons (Ed.), Zooarchaeology of South America (BAR, International Series 1298, pp. 81–98). Oxford: Archaeopress.Google Scholar
  213. Marvin, U. B. (2006). Meteorites in history: an overview from the Renaissance to the 20th century. In G. J. H. McCall, A. J. Bowden, & R. J. Howarth (Eds.), The history of meteoritics and key meteorite collections; Fireballs, falls and finds (pp. 15–71). London: Geological Society of London Special Publication 256.Google Scholar
  214. Mason, B. G., Pyle, D. M., & Oppenheimer, C. (2004). The size and frequency of the largest explosive eruptions on Earth. Bulletin of Volcanology, 66, 735–748.Google Scholar
  215. Masse, W. B. (1995). The celestial basis of civilization. Vistas in Astronomy, 39, 463–477.Google Scholar
  216. Masse, W. B. (1998). Earth, air, fire, & water: the archaeology of Bronze Age cosmic catastrophes. In B. J. Peiser, T. Palmer, & M. E. Bailey (Eds.), Natural catastrophes during Bronze Age civilisations: archaeological, geological, astronomical, and cultural perspectives (BAR International Series 728, pp. 53–92). Oxford: Archaeopress.Google Scholar
  217. Masse, W. B. (2007). The archaeology and anthropology of Quaternary period cosmic impact. In P. Bobrowsky & H. Rickman (Eds.), Comet/asteroid impacts and human society (pp. 25–70). Berlin: Springer.Google Scholar
  218. Masse, W. B. (2012). The celestial engine at the heart of traditional Hawaiian culture. In M. A. Rappenglück, B. Rappenglück, & N. Campion (Eds.), Astronomy and power: how worlds are structured (BAR International Series). Oxford: Archaeopress. In press.Google Scholar
  219. Masse, W. B., Barber, E. W., Piccardi, L., & Barber, P. T. (2007). Exploring the nature of myth and its role in science. In L. Piccardi & W. B. Masse (Eds.), Myth and geology (pp. 9–28). London: Geological Society of London Special Publication 273.Google Scholar
  220. Masse, W. B., Carter, L. A., & Somers, G. F. (1991). Waha'ula heiau: the symbolic and regional context of Hawai'i Island's ‘Red Mouth’ temple. Asian Perspectives, 30, 19–56.Google Scholar
  221. Masse, W. B., Forte, M., Janecky, D. R., & Barrientos, G. (2010). Virtual impact: visualizing the potential effects of cosmic impact in human history. In M. Forte (Ed.), Cyber-archaeology (BAR International Series 2177, pp. 31–45). Oxford: Archaeopress.Google Scholar
  222. Masse, W. B., & Masse, M. J. (2007). Myth and catastrophic reality: using myths to identify cosmic impacts and massive Plinian eruptions in Holocene South America. In L. Piccardi & W. B. Masse (Eds.), Myth and geology (pp. 177–202). London: Geological Society of London Special Publication 273.Google Scholar
  223. Mayr, E. (1997). This is biology: the science of the living world. Cambridge: Mass. Belknap Press of Harvard University Press.Google Scholar
  224. McCafferty, P., & Baillie, M. (2005). The Celtic gods: comets in Irish mythology. Stroud, Gloucestershire: Tempus.Google Scholar
  225. McCormac, F. G., Hogg, A. G. G., Blackwell, P. G., Buck, C. E., Higham, T. F. G., & Reimer, P. J. (2004). SHCal04 Southern Hemisphere Calibration 0–1000 cal BP. Radiocarbon, 46, 1087–1092.Google Scholar
  226. McFarland, J. (2009). The day the Earth trembled. http://star.arm.ac.uk/impact-hazard/Brazil.html. Accessed November 25, 2011.
  227. McGhee, R. (1996). Ancient people of the Arctic. Vancouver: UBC Press.Google Scholar
  228. McLean, D. M. (1979). Global warming and late Pleistocene mammalian extinctions. Geological Society of America, Southeastern Section meeting, Abstracts, p. 205Google Scholar
  229. McLean, D. M. (1981). Size factor in the late Pleistocene mammalian extinctions. American Journal of Science, 281, 1144–1152.Google Scholar
  230. McLean, D. M. (1991). A climate change mammalian population collapse mechanism. In E. Kainlauri, A. Johansson, I. Kurki-Suonio, & M. Geshwiler (Eds.), Energy and environment (pp. 93–100). Atlanta: ASHRAE.Google Scholar
  231. McLean, D. M. (1994). The Deccan Traps volcanism-greenhouse dinosaur extinction theory. http://filebox.vt.edu/artsci/geology/mclean/Dinosaur_Volcano_Extinction/pages/studentv.html. Accessed March 3, 2011.
  232. Medina, M., & Rivero, D. (2007). Zooarqueología, Lama guanicoe y dinámica evolutiva del Chaco Serrano. Mundo de Antes, 5, 211–234.Google Scholar
  233. Melosh, H. J. (2007). Physical effects of comet and asteroid impacts: beyond the crater rim. In P. Bobrowsky & H. Rickman (Eds.), Comet/asteroid impacts and human society (pp. 211–224). Berlin: Springer.Google Scholar
  234. Melosh, H. J. (2011). Planetary surface processes. Cambridge: Cambridge University Press.Google Scholar
  235. Melosh, H. J., & Collins, G. S. (2005). Meteor Crater formed by low-velocity impact. Nature, 434, 157.Google Scholar
  236. Melott, A. L., Thomas, B. C., Dreschhoff, G., & Johnson, C. K. (2010). Cometary airburst and atmospheric chemistry; Tunguska and a candidate Younger Dryas event. Geology, 38, 355–358.Google Scholar
  237. Members, C. O. H. M. A. P. (1988). Climatic change of the last 18,000 years: observations and model simulations. Science, 241, 1043–1052.Google Scholar
  238. Mercer, J. H. (1982). Holocene glacial variations in southern Patagonia. Striae, 18, 35–40.Google Scholar
  239. Merino, M. L., Jorge, L., & Cajal, J. L. (1993). Estructura social de la población de guanacos (Lama guanicoe Muller, 1776) en la costa norte de Península Mitre, Tierra del Fuego, Argentina. Studies on Neotropical Fauna and Environment, 28, 129–138.Google Scholar
  240. Métraux, A. (1946). Myths of the Toba and Pilagá Indians of the Gran Chaco. Philadelphia: American Folklore Society.Google Scholar
  241. Mignan, A., Grossi, P., & Muir-Wood, R. (2011). Risk assessment of Tunguska-type airbursts. Natural Hazards, 56, 869–880.Google Scholar
  242. Misawa, K., Kohno, M., Tomiyama, T., Noguschi, T., Nakamura, T., Nagao, K., et al. (2010). Two extraterrestrial dust horizons found in the Dome Fuji ice core, East Antarctica. Earth and Planetary Science Letters, 289, 287–297.Google Scholar
  243. Morello, J. (1984). Perfil ecológico de Sudamérica (Vol. 1: Características estructurales de Sudamérica y su relación con espacios semejantes del planeta). Barcelona: Ediciones de Cultura Hispánica.Google Scholar
  244. Morrison, D. (2010). Did a cosmic impact kill the mammoths? The Skeptical Inquirer, 34, 14–18.Google Scholar
  245. Morrison, D., Harris, A. W., Sommer, G., Chapman, C. R., & Carusi, A. (2002). Dealing with the impact hazard. In W. Bottke, A. Cellino, P. Paolicchi, & R. P. Binzel (Eds.), Asteroids III (pp. 739–754). Tucson: University of Arizona Press.Google Scholar
  246. Muhs, D. R., & Zárate, M. (2001). Late Quaternary eolian records of the Americas and their paleoclimatic significance. In V. Markgraf (Ed.), Interhemispheric climate linkages (pp. 183–215). San Diego: Academic.Google Scholar
  247. Mumby, P. J., Vitolo, R., & Stephenson, D. B. (2011). Temporal clustering of tropical cyclones and its ecosystem impacts. Proceedings of the National Academy of Sciences of the United States of America, 108, 17626–17630.Google Scholar
  248. Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T., & Yang, Z. (2010). Identification of Younger Dryas outburst flood path from Lake Agassiz to the Artic Ocean. Nature, 464, 740–743.Google Scholar
  249. Myagkov, N. N. (1998). Model of a strong volcanic blast and a method of estimating the mass ejected. Geophysical Journal International, 133, 209–211.Google Scholar
  250. Napier, W. M. (2010). Palaeolithic extincts and the Taurid Complex. Monthly Notices of the Royal Astronomical Society, 405, 1901–1906.Google Scholar
  251. Napier, B., & Asher, D. (2009). The Tunguska impact and beyond. Astronomy and Geophysics, 50, 18–26.Google Scholar
  252. NASA Jet Propulsion Laboratory (2012a). Near-Earth asteroid discovery statistics. http://neo.jpl.nasa.gov/stats/. Accessed July 28, 2012.
  253. NASA Jet Propulsion Laboratory (2012b). JPL Solar System dynamics. http://ssd.jpl.nasa.gov/. Accessed July 22, 2012.
  254. NASA National Space Science Data Center (2012). Near Earth object fact sheet. http://nssdc.gsfc.nasa.gov/planetary/factsheet/neofact.html. Accessed July 22, 2012.
  255. National Research Council of the National Academies. (2010). Defending planet Earth: near Earth object surveys and hazard mitigation strategies. Washington, D.C.: The National Academies Press.Google Scholar
  256. Neme, G., & Gil, A. (2009). Human occupation and increasing Mid-Holocene aridity. Southern Andean perspectives. Current Anthropology, 50, 149–163.Google Scholar
  257. Norton, O. R., & Chitwood, L. (2008). Field guide to meteors and meteorites. New York: Springer.Google Scholar
  258. Oliver-Smith, A., & Hoffman, S. M. (Eds.). (1999). The angry Earth: disaster in anthropological perspective. New York: Routledge.Google Scholar
  259. Paine, M., & Peiser, B. (2004). The frequency and predicted consequences of cosmic impacts in the last 65 million years. In R. P. Norris & F. H. Stootman (Eds.), Bioastronomy 2002: life among the stars. IAU Symposium, Vol. 213 (pp. 289–294). San Francisco: Astronomical Society of the Pacific.Google Scholar
  260. Perez, S. I. (2002a). El poblamiento del sudeste de la Región Pampeana: un análisis de morfometría geométrica. Relaciones de la Sociedad Argentina de Antropología (n.s.), 27, 163–176.Google Scholar
  261. Perez, S. I. (2002b). Variabilidad temporal en la morfología craniofacial en muestras de restos humanos del Sudeste de la Región Pampeana: Implicaciones para la discussion del poblamiento regional durante el Holoceno. In D. L. Mazzanti, M. A. Berón, & F. W. P. Oliva (Eds.), Del mar a los salitrales: Diez mil años de historia pampeana en el umbral del Tercer Milenio (pp. 155–167). Mar del Plata: Universidad Nacional de Mar del Plata and Sociedad Argentina de Antropología.Google Scholar
  262. Perez, S. I. (2006). El poblamiento holocénico del sudeste de la Región Pampeana: Un estudio de morfometría geométrica. Unpublished Doctoral Dissertation. Facultad de Ciencias Naturales y Museo, UNLP.Google Scholar
  263. Perlmutter, S., & Muller, R. A. (1988). Evidence for comet showers in meteorite ages. Icarus, 74, 369–373.Google Scholar
  264. Peros, M. C., Muñoz, S. E., Gaweski, K., & Viau, A. E. (2010). Prehistoric demography of North America inferred from radiocarbon data. Journal of Archaeological Science, 37, 656–664.Google Scholar
  265. Piccardi, L., & Masse, W. B. (Eds.). (2007). Myth and geology. Geological Society of London Special Publication 273.Google Scholar
  266. Pierazzo, E., Garcia, R. R., Kinnison, D. E., Marsh, D. R., Lee-Taylor, J., & Crutzen, P. J. (2010). Ozone perturbation from medium-size asteroid impacts in the ocean. Earth and Planetary Science Letters, 299, 263–272.Google Scholar
  267. Pinter, N., & Ishman, S. E. (2008). Impacts, mega-tsunami and other extraordinary claims. GSA Today, 18, 37–38.Google Scholar
  268. Pinter, N., Scott, A. C., Daulton, T. L., Podoll, A., Koeberl, C., Anderson, R. S., & Ishman, S. E. (2011). The Younger Dryas impact hypothesis: a réquiem. Earth-Science Reviews, 106, 247–264.Google Scholar
  269. Planetary and Space Science Centre (2011). Earth impact database. http://www.unb.ca/passc/ImpactDatabase/. Accessed July 22, 2012.
  270. Politis, G. G. (1984). Arqueología del área Interserrana bonaerense. Unpublished Doctoral Dissertation. Facultad de Ciencias Naturales y Museo, UNLP.Google Scholar
  271. Politis, G. G., Barrientos, G., & Scabuzzo, C. (2010). Los entierros de Arroyo Seco 2. In G. G. Politis, M. A. Gutiérrez, & C. Scabuzzo (Eds.), Estado actual de la investigaciones en el sitio Arroyo Seco 2 (Región Pampeana, Argentina). Olavarría: Facultad de Ciencias Sociales. In press.Google Scholar
  272. Politis, G. G., Prates, L., Merino, M., & Tognelli, M. F. (2011). Distribution parameters of guanaco (Lama guanicoe), pampas deer (Ozotoceros bezoarticus) and marsh deer (Blastocerus dichotomus) in Central Argentina: archaeological and paleoenvironmental implications. Journal of Archaeological Science, 38, 1405–1416.Google Scholar
  273. Politis, G. G., & Salemme, M. (1990). Pre-hispanic mammal exploitation and hunting strategies in the eastern Pampas subregion of Argentina. In L. Davis & B. Reeves (Eds.), Hunters of the recent past (pp. 353–372). London: Unwin Hyman.Google Scholar
  274. Politis, G. G., & Tonni, E. (1980). La distribución del guanaco (Mammalia, Camelidae) en la Pcia. de Buenos Aires durante el Pleistoceno Tardío y Holoceno. Los factores climáticos como causas de su retracción. Ameghiniana, 17, 53–66.Google Scholar
  275. Pollack, J. B., Toon, O. B., Ackerman, T. P., McKay, C. P., & Turco, R. P. (1983). Environmental effects of an impact-generated dust cloud: implications for the Cretaceous–Tertiary Extinctions. Science, 219, 287–289.Google Scholar
  276. Porter, S. C. (2000). Onset of neoglaciation in the Southern Hemisphere. Journal of Quaternary Science, 15, 395–408.Google Scholar
  277. Prasad M. S., Mahale, V. P., & Kodagali, V. N. (2007). New sites of Australasian microtektite in the central Indian Ocean: implications for the location and size of source crater. Journal of Geophysical Research, 112, E06007. doi: 10.1029/2006JE002857.
  278. Prasad, M. S., Roy, S. K., & Gupta, A. (2010). Changes in abundance and nature of microimpact craters on the surfaces of Australasian microtektites with distance from the proposed source crater location. Meteoritics & Planetary Science, 45, 990–1006.Google Scholar
  279. Pyne, S. J., Andrews, P. L., & Laven, R. D. (1996). Introduction to wildland fire (2nd ed.). New York: Wiley.Google Scholar
  280. Quattrocchio, M. E., Borromei, A. M., Deschanps, C. M., Grill, S. C., & Zavala, C. A. (2008). Landscape evolution and climate changes in the Late Pleistocene-Holocene, southern Pampa (Argentina): evidence from palynology, mammals and sedimentology. Quaternary International, 181, 123–138.Google Scholar
  281. Raedeke, K. J. (1976). El guanaco de Magallanes, distribución y biología. Publicación Técnica no. 4. Santiago: Corporación Nacional Forestal de Chile, Ministerio de Agricultura, Chile.Google Scholar
  282. Rappenglück, B., Rappenglück, M. A., Ernstson, K., Mayer, W., Neumair, A., Sudhaus, D., & Liritzis, I. (2010). The fall of Phaethon: a Graeco-Roman geomyth preserves the memory of a meteorite impact in southern Bavaria (south-east Germany). Antiquity, 84, 428–439.Google Scholar
  283. Rappenglück, B., Rappenglück, M. A., Ernstson, K., Mayer, W., Neumair, A., Sudhaus, D., & Liritzis, I. (2011). Reply to Doppler et al. ‘Response to “The fall of Phaethon: a Graeco-Roman geomyth preserves the memory of a meteorite impact in southern Bavaria (south-east Germany) (Antiquity 84).”. Antiquity, 85, 278–280.Google Scholar
  284. Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., et al. (2004). IntCal04: Terrestrial radiocarbon age calibration, 0–26 cal kyr B.P. Radiocarbon, 46, 1029–1058.Google Scholar
  285. Riede, F. (2009). Climate and demography in early prehistory: using calibrated 14C dates as population proxies. Human Biology, 81, 309–337.Google Scholar
  286. Ringuelet, R. A., & Aramburu, R. H. (1957). Enumeración sistemática de los vertebrados de la provincia de Buenos Aires. La Plata: Ministerio de Asuntos Agrarios. Publicación N° 119.Google Scholar
  287. Romero, C. E. (1927). Llamas, alpacas, vicuñas y guanacos. Buenos Aires: Gurfinkel.Google Scholar
  288. Rubin, A. E., & Grossman, J. N. (2010). Meteorite and meteoroid: new comprehensive definitions. Meteoritics & Planetary Science, 45, 114–122.Google Scholar
  289. Rubtsov, V. (2009). The Tunguska mystery. Berlin: Springer.Google Scholar
  290. San Cristóbal, J. O. (1999). El más probable origen de las escorias y tierras cocidas. Resúmenes, XV Jornadas Argentinas de Paleontología de Vertebrados. Ameghiniana, 36(4).Google Scholar
  291. Scheffers, A., Scheffers, S. R., Kelletat, D., Abbott, D. H., & Bryant, E. A. (2008). Chevrons: enigmatic coastal features. Zeitschrift für Geomorphologie, 52, 375–402.Google Scholar
  292. Schiffer, M. B. (1987). Formation processes in the archaeological record. Albuquerque: University of New Mexico Press.Google Scholar
  293. Schulte, P., Aleret, L., Arenillas, I., Arz, J. A., Barton, P. J., Brown, P. R., et al. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science, 327, 1214–1218.Google Scholar
  294. Schulte, P., Deutsch, A., Salge, T., Berndt, J., Kontny, A., MacLeod, K. G., et al. (2009). A dual-layer Chicxulub ejecta sequence with shocked carbonates from the Cretaceous–Paleogene (K–Pg) boundary, Demerara Rise, western Atlantic. Geochimica et Cosmochimica Acta, 73, 1180–1204.Google Scholar
  295. Schultz, P. H. (1991). Atmospheric effects of oblique impacts. In Proceedings of the Lunar and Planetary Science Conference 22 (pp. 1191–1192). Houston: Lunar and Planetary Institute.Google Scholar
  296. Schultz, P. H., Harris, R. S., Tancredi, G., & Ishitsuka, J. (2008a). Implications of the Carancas meteorite impact. 39th Lunar and Planetary Science Conference, extended abstract no. 2409.Google Scholar
  297. Schultz, P. H., Koeberl, C., Bunch, T., Grant, J., & Collins, W. (1994). Ground truth for oblique impact processes: new insight from the Rio Cuarto, Argentina, crater field. Geology, 22, 889–892.Google Scholar
  298. Schultz, P. H., & Lianza, R. E. (1992). Recent grazing impacts on the Earth recorded in the Rio Cuarto crater field, Argentina. Nature, 355, 232–237.Google Scholar
  299. Schultz, P. H., Zarate, M., Hames, W., Camilión, C., & King, J. (1998). A 3.3 Ma impact in Argentina and possible consequences. Science, 282, 2061–2063.Google Scholar
  300. Schultz, P. H., Zárate, M., Hames, W. E., Harris, R. S., Bunch, T. E., Koeberl, C., et al. (2006). The record of Miocene impacts in the Argentine Pampas. Meteoritics & Planetary Science, 41, 749–771.Google Scholar
  301. Schultz, P. H., Zárate, M., Hames, B., Koeberl, C., Bunch, T., Storzer, D., et al. (2004). The Quaternary impact record from the Pampas, Argentina. Earth and Planetary Sciences Letters, 219, 221–238.Google Scholar
  302. Scott, A. C., Pinter, N., Collinson, M. E., Hardiman, M., Anderson, R. S., Brain, A. P. R., et al. (2010). Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas “impact layer. Geophysical Research Letters, 37, L14302. doi: 10.1029/2010GL043345, 5 pages.Google Scholar
  303. Sheets, P. (1999). The effects of explosive volcanism on ancient egalitarian, ranked, and stratified societies in Middle America. In A. Oliver-Smith & S. Hoffman (Eds.), The angry Earth: disaster in anthropological perspective (pp. 36–58). Routledge: New York.Google Scholar
  304. Sheets, P. D., & Grayson, D. K. (1979). Volcanic activity and human ecology. New York: Academic.Google Scholar
  305. Smit, J. (1999). The global stratigraphy of the Cretaceous–Tertiary boundary impact ejecta. Annual Review of Earth and Planetary Sciences, 27, 75–113.Google Scholar
  306. Smith, C., Russell, S., & Benedix, G. (2009). Meteorites. London: The Natural History Museum.Google Scholar
  307. Snyder, D., Masse, W. B., & Carucci, J. (2011). Dynamic settlement, landscape modification, resource utilization, and the value of oral tradition in Palauan archaeology. In J. Liston, G. Clark, & D. Alexander (Eds.), Pacific island heritage: archaeology, identity, community (Terra Australis 35, pp. 155–180). Canberra: ANU E Press, Australian National University.Google Scholar
  308. Spriggs, M. (1989). The dating of the island Southeast Asian Neolithic: An attempt at chronometric hygiene and linguistic correlation. Antiquity, 63, 587–613.Google Scholar
  309. Steel, D. (1995). Rogue asteroids and doomsday comets. New York: Wiley.Google Scholar
  310. Steel, D. (1996). A “Tunguska” event in British Guyana in 1935? Meteorite! February. http://meteoritemag.uark.edu/back%20issues/NZ/feb96_2.html. Accessed August 12, 2011.
  311. Steele, J. (2010). Radiocarbon dates as data: Quantitative strategies to estimating colonization front speed and event densities. Journal of Archaeological Science, 37, 2017–2030.Google Scholar
  312. Stuart, J. S., & Binzel, R. P. (2004). Bias-corrected population, size-distribution, and impact hazard for the near-Earth objects. Icarus, 170, 295–311.Google Scholar
  313. Surovell, T. A., & Brantingham, P. J. (2007). A note on the use of temporal frequency distributions in studies of prehistoric demography. Journal of Archaeological Science, 34, 1868–1877.Google Scholar
  314. Surovell, T. A., Finley, J. B., Smith, G. M., Brantingham, P. J., & Kelly, R. (2009a). Correcting temporal frequency distributions for taphonomic bias. Journal of Archaeological Science, 36, 1715–1724.Google Scholar
  315. Surovell, T. A., Holliday, V. T., Gingerich, J. A. M., Ketron, C., Haynes, C. V., Hilman, I., et al. (2009b). An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 106, 18155–18158.Google Scholar
  316. Suslov, I. M. (2006). Questioning witnesses in 1926 about the Tunguska catastrophe. RIAP Bulletin, 10, 16–20.Google Scholar
  317. Svetsov, V. V. (2002). Comment on “Extraterrestrial impacts and wildfires. Paleogeography, Paleoclimatology, Paleoecology, 185, 403–405.Google Scholar
  318. Tancredi, G., Ishitsuka, J., Schultz, P. H., Harris, R. S., Brown, P., ReVelle, D. O., et al. (2009). A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact. Meteoritics & Planetary Science, 44, 1967–1984.Google Scholar
  319. Thenhaus, P. C., Campbell, K. W., & Khater, M. M. (2011). Spatial and temporal earthquake clustering: part 1—global earthquake clustering. Oakland, CA: EQECAT.Google Scholar
  320. Tian, H., Schryvers, D., & Clayes, P. (2011). Nanodiamonds do not provide unique evidence for a Younger Dryas impact. Proceedings of the National Academy of Sciences of the United States of America, 108, 40–44.Google Scholar
  321. Tonello, M. S., & Prieto, A. R. (2010). Tendencias climáticas para los pastizales pampeanos durante el Pleistoceno tardío-Holoceno: Estimaciones cuantitativas basadas en secuencias polínicas fósiles. Ameghiniana, 47, 501–514.Google Scholar
  322. Tonni, E., Cione, A., & Figini, A. (1999). Predominance of arid climates indicated by mammals in the pampas of Argentina during the Late Pleistocene and Holocene. Paleogeography, Paleoclimatology, Paleoecology, 147, 257–281.Google Scholar
  323. Toon, O. B., Zahnle, K., Morrison, D., Turco, R. P., & Covey, C. (1997). Environmental perturbations caused by the impacts of asteroids and comets. Reviews of Geophysics, 35, 41–78.Google Scholar
  324. Torrence, R., & Grattan, J. (Eds.). (2002). Natural disasters and cultural change. New York: Routledge.Google Scholar
  325. U.S. Congress, Office of Technology. (1989). The containment of underground nuclear explosions. OTA-ISC-414. Washington, D.C: U.S. Government Printing Office.Google Scholar
  326. U.S. Geological Survey. (2000). Mount St. Helens—from the 1980 eruption to 2000. USGS Fact Sheet 036–00. Washington, D.C: Department of the Interior.Google Scholar
  327. U.S. Geological Survey. (2011). Magnitude 9.0 Sumatra—Andaman Islands earthquake FAQ. http://earthquake.usgs.gov/earthquakes/eqinthenews/2004/us2004slav/faq.php. Accessed March 26, 2011.
  328. van der Slujis, M. A. (2009). Review of myth and geology. Myth & Symbol, 5(2), 58–74.Google Scholar
  329. van Ginneken, M., Folco, L., Perchiazzi, N., Rochette, P., & Bland, P. A. (2010). Meteoritic ablation debris from the Transarctic Mountains: evidence for a Tunguska-like impact over Antarctica ca. 480 ka ago. Earth and Planetary Science Letters, 293, 104–113.Google Scholar
  330. van Hoesel, A., Hoek, W. Z., Braadbaart, F., van der Plicht, J., Pennock, G. M., & Drury, M. R. (2012). Nanodiamonds and wildfire evidence in the Usselo horizon postdate the Allerød-Younger Dryas boundary. Proceedings of the National Academy of Sciences of the United States of America, 109, 7648–7653.Google Scholar
  331. Vansina, J. (1985). Oral tradition as history. Madison: University of Wisconsin Press.Google Scholar
  332. Vesconi, M. A., Wright, S. P., Spagnuolo, M., Jacob, R., Cerrutti, C., Garcia, L., et al. (2011). Comparison of four meteoritic penetration funnels in the Campo del Cielo crater field, Argentina. Meteoritics & Planetary Science, 46, 935–949.Google Scholar
  333. Veski, S., Heinslau, A., Poska, A., Saarse, L., & Vassiljev, J. (2007). The physical and social effects of the Kaali meteorite impact—a review. In P. Bobrowsky & H. Rickman (Eds.), Comet/asteroid impacts and human society (pp. 265–275). Berlin: Springer.Google Scholar
  334. Villalba, L., & Bonacic, C. (2006). Rediscovering the guanaco in the Paraguay Chaco. The Camelid Quarterly, March, 2006, 1–2.Google Scholar
  335. Vitaliano, D. B. (1973). Legends of the Earth: their geologic origins. Bloomington: University of Indiana Press.Google Scholar
  336. Vitaliano, D. B. (2007). Geomythology: geological origins of myths and legends. In L. Piccardi & W. B. Masse (Eds.), Myth and geology (pp. 1–7). London: Geological Society of London Special Publication 273.Google Scholar
  337. Vizcaìno, S. F., Fariña, R. A., Zárate, M., Bargo, M. S., & Schultz, P. (2004). Paleoecological implications of the Mid-Pliocene faunal turnover in the Pampean region (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology, 213, 101–113.Google Scholar
  338. Wasson, J. T. (2003). Large aerial bursts: an important class of terrestrial accretionary events. Astrobiology, 3, 163–179.Google Scholar
  339. Watt, N., Bouchet, R. A., & Lee, C. A. (2011). Exploration of tektite formation processes through water and metal content measurements. Meteoritics & Planetary Science, 46(S1), 1–8.Google Scholar
  340. Weninger, B. (1997). Studien zur dendrochronologischen Kalibration von archäologischen 14 C-Daten. Frankfurt: Habelt Verlag.Google Scholar
  341. Weninger, B., & Jöris, O. (2007). Towards an absolute chronology at the middle to Upper Palaeolithic transition in Western Eurasia: A new GreenlandHulu time-scale based on U/Th ages. www.calpal.de. Accessed 9 March, 2008.
  342. Wheeler, K. (1983). The fall of Japan. Morristown: Time-Life.Google Scholar
  343. Whiteley, P. M. (2002). Archaeology and oral tradition: the scientific importance of dialogue. American Antiquity, 67, 405–415.Google Scholar
  344. Wilbert, J. (Ed.). (1978). Folk literature of the Gê Indians. Los Angeles: UCLA Latin American Center Publications.Google Scholar
  345. Wilbert, J., & Simoneau, K. (1978). Folk literature of the Gê Indians. UCLA Latin American studies 44. Los Angeles. Los Angeles: UCLA Latin American Center Publications.Google Scholar
  346. Wilbert, J., & Simoneau, K. (Eds.) (1982a). Folk literature of the Toba Indians (Vol. 1). UCLA Latin American Center Publications.Google Scholar
  347. Wilbert, J., & Simoneau, K. (Eds.) (1982b). Folk literature of the Mataco Indians. UCLA Latin American Center Publications.Google Scholar
  348. Wilbert, J., & Simoneau, K. (Eds.) (1984a). Folk literature of the Gê Indians (Vol. 2). UCLA Latin American Center Publications.Google Scholar
  349. Wilbert, J., & Simoneau, K. (Eds.) (1984b). Folk literature of the Tehuelche Indians. UCLA Latin American Center Publications.Google Scholar
  350. Wilbert, J., & Simoneau, K. (Eds.) (1985). Folk literature of the Chorote Indians. UCLA Latin American Center Publications.Google Scholar
  351. Wilbert, J., & Simoneau, K. (Eds.) (1987). Folk literature of the Nivaklé Indians. UCLA Latin American Center Publications.Google Scholar
  352. Wilbert, J., & Simoneau, K. (Eds.) (1988). Folk literature of the Mocoví Indians. UCLA Latin American Center Publications.Google Scholar
  353. Wilbert, J., & Simoneau, K. (Eds.) (1989). Folk literature of the Toba Indians (Vol. 2). UCLA Latin American Center Publications.Google Scholar
  354. Wilbert, J., & Simoneau, K. (Eds.) (1992). Folk literature of South American Indians: General index. UCLA Latin American Center Publications.Google Scholar
  355. Williams, A. (2012). The use of summed radiocarbon probability distributions in archaeology: a review of methods. Journal of Archaeological Science, 39, 578–589.Google Scholar
  356. Wilmshurst, J. M., Hunt, T., Lipo, C., & Anderson, A. (2011). High precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. Proceedings of the National Academy of Sciences of the United States of America, 108, 1815–1820.Google Scholar
  357. Winchester, S. (2003). Krakatoa: the day the world exploded: August 27, 1883. New York: Harper-Collins.Google Scholar
  358. Wright, S. P., Vesconi, M. A., Spagnuolo, M. G., Cerutti, C., Jacab, R. W., & Cassidy, W. A. (2007). Explosion craters and penetration funnels in the Campo del Cielo, Argentina crater field. Lunar and Planetary Science, 38, No. 2017.Google Scholar
  359. Zárate, M. A. (2002). Los ambientes del Tardiglacial y Holoceno en Mendoza. In A. F. Gil & G. A. Neme (Eds.), Entre montañas y desiertos: Arqueología del sur de Mendoza (pp. 9–42). Buenos Aires: Sociedad Argentina de Antropología.Google Scholar
  360. Zárate, M. A. (2005). El Cenozoico tardío continental de la provincia de Buenos Aires. In R. E. de Barrio, R. O. Etcheverry, M. F. Caballé y E. Llambías (Eds.), Geología y recursos minerales de la provincia de Buenos Aires. Relatorio del 16° Congreso Geológico Argentino (pp. 139–158). La Plata.Google Scholar
  361. Zárate, M., Espinosa, M., & Ferrero, L. (1998). Paleoenvironmental implications of a Holocene diatomite, Pampa Interserrana, Argentina. Quaternary of South America and Antarctic Peninsula, 13, 135–152.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Facultad de Ciencias Naturales y MuseoUniversidad Nacional del La PlataLa PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Guest Scientist, Environmental Stewardship GroupLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations