Journal of Archaeological Method and Theory

, Volume 19, Issue 3, pp 351–376 | Cite as

Dogs as Analogs in Stable Isotope-Based Human Paleodietary Reconstructions: A Review and Considerations for Future Use

  • Eric J. Guiry


In contexts where human remains are scarce, poorly preserved, or otherwise unavailable for stable isotope-based paleodietary reconstruction, dog bone collagen as well as other tissues may provide a suitable proxy material for addressing questions relating to human dietary practices. Inferences drawn from applications of this “canine surrogacy approach” (CSA) must be made with caution to ensure the accuracy and transparency of conclusions. This paper shows that CSA applications are essentially analogical inferences which can be divided into two groups that provide specific types of information and may require different levels of substantiation. A framework of three categories of factors is outlined to aid in establishing positive, negative, and neutral elements of comparison of dog and human diets. CSA applications may benefit from explicitly detailing the type and nature of the analogical reasoning employed and from providing a systematic assessment of the degree to which stable isotope values of dogs and humans under comparison are thought to be like, unlike, or of unknown likeness.


Dogs Paleodiet Human proxy Stable isotopes 



This paper developed from the author’s M.A. research and has benefited from the editorial and other support of several people including thesis supervisor Dr. Vaughan Grimes as well as Dr. Oscar Moro, Dr. Tamara Varney, Jill Malivoire, and Robert Anstey. Financial support has been provided by the Social Science and Humanities Research Council of Canada, the Institute of Social and Economic Research at Memorial University, and the Provincial Archaeology Office of Newfoundland and Labrador.


  1. Allen, M. S., & Craig, J. A. (2009). Dynamics of Polynesian subsistence: Insights from archaeofuana and stable isotope studies, Aitutaki, Southern Cook Islands. Pacific Science, 63(4), 477–505.CrossRefGoogle Scholar
  2. Allitt, S., Stewart, M., & Messner, T. (2008). The utility of dog bone (Canis familiaris) in stable isotope studies for investigating the presence of prehistoric maize (Zea mays ssp. mays): A preliminary study. North American Archaeologist, 29(3–4), 334–367.Google Scholar
  3. Ambrose, S. H. (1986). The isotopic ecology of East African mammals. Oecologia, 69(3), 395–406.CrossRefGoogle Scholar
  4. Ambrose, S. H., & Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of collagen and carbonate. In J. B. Lambert & G. Grupe (Eds.), Prehistoric human bone: Archaeology at the molecular level (pp. 1–37). Berlin: Springer.Google Scholar
  5. Ascher, R. (1961). Analogy in archaeological interpretation. Southwestern Journal of Anthropology, 17(4), 317–325.Google Scholar
  6. Atahan, P., Dodson, J., Li, X., Zhou, X., Hu, S., Bertuch, F., et al. (2011). Subsistence and the isotopic signature of herding in the Bronze Age Hexi corridor, NW Gansu, China. Journal of Archaeological Science, 38(7), 1747–1753.CrossRefGoogle Scholar
  7. Balikci, A. (1970). The Netsilik Eskimo. Long Grove: Waveland Press.Google Scholar
  8. Barton, L., Newsome, S. D., Chen, F., Wang, H., Guilerson, T. P., & Bettinger, R. R. (2009). Agricultural origins and the isotopic identity of domestication in Northern China. Proceedings of the National Academy of Science, 116(14), 5523–5528.CrossRefGoogle Scholar
  9. Ben-David, M., Bowyer, R. T., Duffy, L. K., Roby, D. D., & Schell, D. M. (1998). Social behavior and ecosystem processes: River otter latrines and nutrient dynamics of terrestrial vegetation. Ecology, 79(7), 2567–2571.CrossRefGoogle Scholar
  10. Bently, R. A. (2006). Strontium isotopes from the earth to the archaeological skeleton: A review. Journal of Archaeological Method and Theory, 13(3), 135–187.CrossRefGoogle Scholar
  11. Berón, M. A., Luna, L. H., & Barberena, R. (2009). Isotopic archaeology in the Western Pampas (Argentina): Preliminary results and perspectives. International Journal of Osteoarchaeology, 19(2), 250–265.CrossRefGoogle Scholar
  12. Berry, K. (1992). Prehistoric dog food: Stable carbon isotope analysis from the Keatly Creek site. Paper presented at the 45th Annual Northwest Anthropological Conference, Burnaby, BC.Google Scholar
  13. Black, W. D. (2003). Woodland period seal hunting in the Quoddy region, New Brunswick. In P. Charest & M. Plourde (Eds.), Recherches Amérindienns au Quebec. La Chasse au phoque, une activité multimillénaire. Montréal, Quebéc: Recherches Amérindienns au Quebéc, XXXIII(1), pp. 21–34.Google Scholar
  14. Bocherens, H., & Drucker, D. (2003). Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: Case studies from recent and ancient terrestrial ecosystems. International Journal of Osteoarchaeology, 13(1–2), 46–53.CrossRefGoogle Scholar
  15. Bocherens, H., Mashkour, M., & Marjan, B. (2000). Palaeoenvironmental and archaeological implications of isotopic analysis (13C, 15N) from Neolithic to the present Qazvin. Environmental Archaeology, 5, 1–19.CrossRefGoogle Scholar
  16. Bocherens, H., Mashkour, M., Drucker, D. G., Moussa, I., & Billou, D. (2006). Stable isotope evidence for palaeodiets in Southern Turkmenistan during historical period and Iron Age. Journal of Archaeological Science, 33(2), 253–264.CrossRefGoogle Scholar
  17. Bocherens, H., Polet, C., & Toussiant, M. (2007). Paleodiet of the Mesolithic and Neolithic populations of Meuse Basin (Belgium): Evidence from stable isotopes. Journal of Archaeological Science, 34(1), 10–27.CrossRefGoogle Scholar
  18. Bösl, C., Grupe, G., & Peters, J. (2006). A Late Neolithic vertebrate food web based on stable isotope analyses. International Journal of Osteoarchaeology, 16(4), 296–315.CrossRefGoogle Scholar
  19. Borić, D., Grupe, G., Peters, J., & Mikić, Z. (2004). Is the Mesolithic-Neolithic dichotomy real? New stable isotope evidence from the Danube Gorges. European Journal of Archaeology, 7(3), 221–248.CrossRefGoogle Scholar
  20. Le Bras-Goude, G., & Claustre, F. (2009). Exploitation of domestic mammals in the Eastern Pyrenees during the Neolithic: Human dietary patterns at the site of Montou (Corberes-les-cabanes, France) using bone collagen stable isotopes (δ13C, δ15N). Life and Environment, 59(2), 215–221.Google Scholar
  21. Burleigh, R., & Brothwell, D. (1978). Studies of Amerindian dogs: Carbon isotopes in relation to maize in the diet of domestic dogs from early Peru and Ecuador. Journal of Archaeological Science, 5(4), 355–362.CrossRefGoogle Scholar
  22. Byers, D. A., Yesner, D. R., Broughton, J. M., & Coltrain, J. B. (2011). Stable isotope chemistry, population histories and Late Prehistoric subsistence change in the Aleutian Islands. Journal of Archaeological Science, 38(1), 183–196.CrossRefGoogle Scholar
  23. Cannon, A., Schwarcz, H. P., & Knyf, M. (1999). Marine-based subsistence trends and the stable isotope analysis of dog bones from Namu, British Columbia. Journal of Archaeological Science, 26(4), 399–407.CrossRefGoogle Scholar
  24. Chenery, C., Eckardt, H., & Müldner, G. (2011). Cosmopolitan Catterick? Isotopic evidence for population mobility on Rome’s northern frontier. Journal of Archaeological Science, 38(7), 1525–1536.CrossRefGoogle Scholar
  25. Chilton, E. S., van der Merwe, N. J., Stein, N., & Allegreto, K. O. (2001). Canine proxies for Native American diets. Paper presented at the 66th Annual Meeting of the Society for American Archaeology, New Orleans, LA.Google Scholar
  26. Chisholm, B. S., Nelson, D. E., & Schwarcz, H. P. (1982). Stable-carbon isotope ratios as a measure of marine verses terrestrial proteins in ancient diets. Science, 216, 1131–1132.CrossRefGoogle Scholar
  27. Chisholm, B. S., Nelson, D. E., & Schwarcz, H. P. (1983). Marine and terrestrial protein in prehistoric diets on the British Columbia coast. Current Anthropology, 24(3), 396–398.CrossRefGoogle Scholar
  28. Choy, K., & Richards, M. P. (2009). Stable isotope evidence of human diet at Nukdo shell midden site, South Korea. Journal of Archaeological Science, 36(7), 1312–1318.CrossRefGoogle Scholar
  29. Choy, K., & Richards, M. P. (2010). Isotopic evidence for diet in the Middle Chulmun period: A case study from the Tonsamdong shell midden, Korea. Archaeological and Anthropological Science, 2(1), 1–10.CrossRefGoogle Scholar
  30. Choy, K., Smith, C. I., Fuller, B. T., & Richards, M. P. (2010). Investigation of amino acid δ13C signatures in bone collagen to reconstruct human paleodiets using liquid chromatography–isotope ratio mass spectrometry. Geochimica et Cosmochimica Acta, 74(21), 6093–6111.CrossRefGoogle Scholar
  31. Chu, P. P. (1994). Dietary variation amongst the prehistoric Asiatic Eskimo. B.A. honors thesis, Simon Fraser University, Burnaby, BC.Google Scholar
  32. Clutton-Brock, J., & Hammond, N. (1994). Hot dogs: Comestible canids in the Preclassic Mayan culture at Cello, Belize. Journal of Archaeological Science, 21(6), 819–826.CrossRefGoogle Scholar
  33. Clutton-Brock, J., & Noe-Nygaard, N. (1990). New osteological evidence on Mesolithic dogs: Companions to hunters and fishers at Star Carr, Seamer Carr and Kongemose. Journal of Archaeological Science, 17(6), 643–653.CrossRefGoogle Scholar
  34. Coltrain, J. B. (2009). Sealing, whaling and caribou revisited: Additional insights from the skeletal isotope chemistry of Eastern Arctic forages. Journal of Archaeological Science, 36(3), 764–775.CrossRefGoogle Scholar
  35. Corr, L. T., Richards, M. P., Grier, C., Mackie, A., & Beattie, O. (2009). Probing dietary change of the Kwädąy Dän Ts’ìnchį individual, an ancient glacier body from British Columbia: I. Deconvoluting whole skin and bone collagen δ13C values via carbon isotope analysis of individual amino acids. Journal of Archaeological Science, 36(1), 12–18.CrossRefGoogle Scholar
  36. Craig, J. A. (2007). From turf to surf: Stable isotope analysis of changing dietary patterns on Aitutaki, Southern Cook Islands. Paper presented at the 7th Annual International Gotland University Conference, Gotland, Sweden.Google Scholar
  37. Craig, J. A. (2009). Stable isotope analysis of prehistoric human and commensal diet on Aitutaki, Southern Cook Islands. PhD dissertation, University of Auckland, NZ.Google Scholar
  38. Craig, O. E., Biazzo, M., O’Connell, T., Gaensey, P., Martinez-Labarga, C., Lelli, R., et al. (2009). Stable isotope evidence for diet at the imperial Roman coastal site of Velia (1st and 2nd centuries AD) in Southern Italy. American Journal of Physical Anthropology, 139(4), 572–583.CrossRefGoogle Scholar
  39. Crisp, W. G. (1956). Tahltan bear dog. Beaver, 287, 38–41.Google Scholar
  40. Crockford, S. J. (2000). A commentary on dog evolution: regional variation, breed, development and hybridization with wolves. In S. J. Crockford (Ed.), Dogs through time: An archaeological perspective. Proceedings of the 1st ICAZ Symposium on the History of the Domestic Dog, Eighth Congress of the International Counsel of Zooarchaeology, Victoria, BC. Canada. BAR International Series 889 (pp. 305–312). Oxford: Archaeopress.Google Scholar
  41. DeBoer, B. R., & Tykot, R. H. (2007). Reconstruction ancestral Puebloan diets in the Middle San Juan River, New Mexico through stable isotope analysis. Paper presented at the 72nd Annual Meeting of the Society for American Archaeology, Austin, TX.Google Scholar
  42. Deguilloux, M. F., Moquel, J., Pemonqe, M. H., & Colombeau, G. (2009). Ancient DNA supports lineage replacement in European dog gene pool: Insight into Neolithic Southeast France. Journal of Archaeological Science, 36(2), 513–519.CrossRefGoogle Scholar
  43. Dürrwächter, C., Craig, O. E., Collins, M. J., Burger, J., & Alt, K. W. (2006). Beyond the grave: Variability in Neolithic diets in Southern Germany? Journal of Archaeological Science, 33(1), 39–48.CrossRefGoogle Scholar
  44. Eriksson, G. (2004). Part time farmers or hardcore sealers? Västerbjers studied by means of stable isotope analysis. Journal of Anthropological Archaeology, 23(2), 135–162.CrossRefGoogle Scholar
  45. Eriksson, G., & Zagorska, I. (2003). Do dogs eat like humans? Marine stable isotope signals in dog teeth from inland Zvejnieki. In L. Larson, H. Kindgren, K. Knutsson, D. Leoffler, & A. Åkerlund (Eds.), Mesolithic on the move (pp. 160–168). Oxford: Oxbow.Google Scholar
  46. Eriksson, G., Linderholm, A., Fornander, E., Kanstrup, M., Schoultz, P., Olofsson, H., et al. (2008). Same island, different diet: Cultural evolution of food practice on Öland, Sweden, from the Mesolithic to the Roman period. Journal of Anthropological Archaeology, 27(4), 520–543.CrossRefGoogle Scholar
  47. Fischer, A., Olsen, J., Richards, M. P., Heinmeier, J., Sveinbjörnsdótter, Á. E., & Bennike, P. (2007). Coast-inland mobility and diet in the Danish Mesolithic and Neolithic: Evidence from stable isotope values of humans and dogs. Journal of Archeological Science, 34(12), 2125–2150.CrossRefGoogle Scholar
  48. Fischer, A., Richards, M. P., Olsen, J., Robinson, D. E., Bennike, P., Kubiak-Martens, L., et al. (2007). The composition of Mesolithic food: Evidence from the submerged settlement on the Argus Bank, Denmark. Acta Archaeologia, 78(2), 163–178.CrossRefGoogle Scholar
  49. Fornander, E., Eriksson, G., & Lidén, K. (2008). Wild at heart: Approaching pitted ware identity, economy and cosmology through stable isotopes in skeletal material from the Neolithtic site Korsnas in Eastern Central Sweden. Journal of Anthropological Archaeology, 27(3), 281–297.CrossRefGoogle Scholar
  50. Fuller, B. T., Márquez-Grant, N., & Richards, M. P. (2010). Investigation of diachronic dietary patterns on the islands of Ibiza and Formentera, Spain: Evidence from carbon and nitrogen stable isotope ratio analysis. American Journal of Physical Anthropology, 143(4), 512–522.CrossRefGoogle Scholar
  51. Gerry, J. P. (1993). Diet and status among the Classic Maya: An isotopic perspective. PhD dissertation, Harvard University, Boston, MA.Google Scholar
  52. Gerry, J. P. (1997). Bone isotope ratios bearing on elite privilege among the Classic Maya. Geoarchaeology: An International Journal, 12(1), 41–69.CrossRefGoogle Scholar
  53. Gerry, J. P., & Kruger, H. W. (1997). Regional diversity in classic Mayan diets. In S. L. Whittington & D. M. Reed (Eds.), Bones of the Maya: Studies of ancient skeletons (pp. 196–207). Washington: Smithsonian Institution Press.Google Scholar
  54. Geyh, M. A. (2001). Bomb radiocarbon dating on animal tissues and hair. Radio-carbon, 43(2), 723–730.Google Scholar
  55. Grier, C. (2006). Affluence on the prehistoric northwest coast of North America. In C. Grier, J. Kim, & J. Uchiyama (Eds.), Beyond affluent foragers: Rethinking hunter gather complexity. Proceedings of the 9th Conference of the International Council of Archaeozoology, Durham, 2002 (pp. 126–135). Oxford: Oxbow Books.Google Scholar
  56. Guiry, E. J. (2009). δ 13 C & δ 15 N of domestic dog bone collage: Considering a circumstantial proxy for human paleodiet with special comments on the Great Plains-Boreal transition zone. BSc honors thesis, Lakehead University, Thunderbay, ON.Google Scholar
  57. Guiry, E. J., & Grimes, V. (2010). Dogs as dietary analogs: Assessing the cross-contextual validity of the canine surrogacy approach. Poster presented at the 4th International Symposium on Biomolecular Archaeology, Copenhagen, Denmark.Google Scholar
  58. Hakenbeck, S., McManus, E., Geisler, H., Grupe, G., & O’Connell, T. (2010). Diet and mobility in early Medieval Bavaria: A study of carbon and nitrogen stable isotopes. American Journal of Physical Anthropology, 143(2), 235–249.CrossRefGoogle Scholar
  59. Hedges, R. E. M., Clement, J. G., Thomas, D. L., & O’Connell, T. C. (2007). Collagen turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. American Journal of Physical Anthropology, 133(2), 808–816.CrossRefGoogle Scholar
  60. Hedges, R. E. M., & Reynard, L. M. (2007). Nitrogen isotopes and the trophic level of humans in archaeology. Journal of Archaeological Science, 34(8), 1240–1251.CrossRefGoogle Scholar
  61. Hedges, R. E. M., Savville, A., & O’Connell, T. (2008). Characterizing the diet of individuals at the Neolithic chambered tomb of Hazelton North, Gloucestershire, England, using stable isotope analysis. Archaeometry, 5(1), 114–128.CrossRefGoogle Scholar
  62. Herrscher, E., & Le Bras-Goude, G. (2010). Southern French Neolithic populations: Isotopic evidence for regional specifics in environment and diet. American Journal of Physical Anthropology, 141(2), 259–272.Google Scholar
  63. Hofmeister, E., Cumming, M., & Dhein, C. (1998). Coprophagia creates concern for dog owners. Dog World, 83, 74–79.Google Scholar
  64. Hogue, H. S. (2002). Carbon isotope and microware analysis of dog burials: Evidence for maize agriculture at a small Mississippian/Protohistoric site. In M. Maltby (Ed.), Integrating Zooarchaeology: Proceedings of the 9th ICAZ Conference, Durham, 2002 (pp. 123–130). Oxford: Oxbow Books.Google Scholar
  65. Hogue, H. S. (2003). Corn dogs and hush puppies: Diet and domestication at two prehistoric farmsteads in Okitibbeha County, Mississippi. Southeastern Archaeology, 22, 185–195.Google Scholar
  66. Hollund, H. I., Hingham, T., Belinskij, A., & Korenevskij, S. (2010). Investigation of paleodiet in the North Caucasus (South Russia) Bronze Age using stable isotope analysis and AMS dating of human and animal bone remains. Journal of Archaeological Science, 37(12), 2971–2983.CrossRefGoogle Scholar
  67. Honch, N. V., Higman, T. F. G., Chapman, J., Gaydarska, B., & Hedges, R. E. M. (2006). A paleodietary investigation of carbon (13C/13C) and nitrogen (15N/15/N) in human and faunal bones from the Copper Age cemeteries of Varna I and Durankulak, Bulgaria. Journal of Archaeological Science, 33(12), 1493–1504.CrossRefGoogle Scholar
  68. Horsburgh, A. K. (2009). Wild or domesticated? An ancient DNA approach to canid species identification in South Africa's Western Cape Province. Journal of Archaeological Science, 35(6), 1474–1480.CrossRefGoogle Scholar
  69. Hublin, J. J., Pääbo, S., Derevianko, A. P., Doronichev, V. B., Golovanova, L. V., Friess, M., et al. (2008). Suggested guidelines for invasive sampling of hominid remains. Journal of Human Evolution, 55(4), 756–757.CrossRefGoogle Scholar
  70. Hwang, Y. T., Millar, J. S., & Longstaffe, F. J. (2007). Do δ15N and δ13C values of feces reflect the isotopic composition of diets in small mammals? Canadian Journal of Zoology, 85(3), 388–396.CrossRefGoogle Scholar
  71. Jay, M., & Richards, M. P. (2006). Diet in the Iron Age cemetery population at Wetwang Slack, East Yorkshire, UK: Carbon and nitrogen stable isotope evidence. Journal of Archaeological Science, 33(5), 653–662.CrossRefGoogle Scholar
  72. Jay, M., & Richards, M. P. (2007). British Iron Age diet: Stable isotope and other evidence. Proceedings of the Prehistoric Society, 73, 169–190.Google Scholar
  73. Jones, S., & Quinn, R. L. (2009). Prehistoric Fijian diet and subsistence: Integration of faunal, ethnographic, and stable isotopic evidence from the Lau Island group. Journal of Archaeological Science, 36(12), 2741–2754.CrossRefGoogle Scholar
  74. Jørkov, M. L. S., Jørgensen, L., & Lynnerup, N. (2010). Uniform diet in a diverse society: Revealing new dietary evidence of the Danish Roman Iron Age based on stable isotope analysis. American Journal of Physical Anthropology, 143(4), 523–533.CrossRefGoogle Scholar
  75. Katzenberg, M. A. (1988). Stable isotope analysis of animal bone and the reconstruction of human palaeodiet. In B. V. Kennedy & G. M. LeMoine (Eds.), Diet and subsistence: Current archaeological perspectives. Proceedings of the 19th Annual Conference of the Archaeological Association of the University of Calgary (pp. 307–314). Calgary: University of Calgary Archaeological Association.Google Scholar
  76. Katzenberg, M. A. (1989). Stable isotope analysis of archaeological faunal remains from Southern Ontario. Journal of Archaeological Science, 16(3), 319–329.CrossRefGoogle Scholar
  77. Katzenberg, M. A. (2001). Destructive analysis of human remains in the age of NAGPRA and related legislation. In L. Sawchuk & S. Pheiffer (Eds.), Out of the past: The history of human osteology at the University of Toronto. Scarborough: CITD Press.Google Scholar
  78. Katzenberg, M. A. (2006). Prehistoric maize in Southern Ontario: Contributions from stable isotope analyses. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize: Multidisciplinary approaches to prehistory, linguistics, biogeography, domestication, and evolution of maize (pp. 263–272). New York: Academic.Google Scholar
  79. Katzenberg, M. A. (2008). Stable isotope analysis: A tool for studying past diet, demography, and life history. In M. A. Katzenberg & S. R. Saunders (Eds.), Biological anthropology of the human skeleton (pp. 387–410). New York: Wiley-Liss.CrossRefGoogle Scholar
  80. Katzenberg, M. A., & Kelly, J. H. (1991). Stable isotope analysis of prehistoric bone from the Sierra Blanca Region of New Mexico. In P. H. Bekett (Ed.), Mongollon V: Proceedings of the 1988 Mongollon Conference (pp. 207–219). Las Cruces: COAS Publishing and Research.Google Scholar
  81. Katzenberg, M. A., Bazaliiskii, V. I., Goriunova, O. I., Savel’ev, N. A., & Webber, A. W. (2010). Diet reconstruction of prehistoric hunter-gatherers in the Lake Baikal Region. In A. W. Webber, M. A. Katzenberg, & T. G. Schurr (Eds.), Prehistoric hunter-gatherers of the Baikal region, Siberia: Bioarchaeological studies of past lifeways (pp. 175–191). Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology Press.Google Scholar
  82. Keenlyside, A., Schwarcz, H., Stirling, L., & Lazeg, N. B. (2009). Stable isotopic evidence for diet in a Roman and Late Roman population from Leptiminus, Tunisia. Journal of Archaeological Science, 36(1), 51–63.CrossRefGoogle Scholar
  83. Kerber, J. E. (1997). Native American treatment of dogs in northeastern North America: archaeological and ethnohistorical perspectives. Archaeology of Northeastern North America, 25, 81–96.Google Scholar
  84. Kosiba, S. B., Tykot, R. H., & Carlsson, D. (2007). Stable isotopes as indicators of change in the food procurement preference of Viking Age and Early Christian populations on Gotland (Sweden). Journal of Archaeological Science, 26(3), 394–411.Google Scholar
  85. Kusaka, S., Ikarashi, T., Hyodo, F., Yumoto, T., & Katayama, K. (2008). Variability in stable isotope ratios in two Late-Final Jomon communities in the Tokai coastal region and its relationship with sex and ritual tooth ablation. Anthropological Science, 116(2), 171–181.CrossRefGoogle Scholar
  86. Lightfoot, E., O’Connell, T., Stevens, R. E., Hamilton, J., Hey, G., & Hedges, R. E. M. (2009). An investigation into diet at the site of Yarnton, Oxfordshire, using stable carbon and nitrogen isotopes. Oxford Journal of Archaeology, 28(3), 301–322.CrossRefGoogle Scholar
  87. Lösch, S., Grupe, G., & Peters, J. (2006). Stable isotopes and dietary adaptations in humans and animals at pre-pottery Neolithic Nevali Cori, Southeast Anatolia. American Journal of Physical Anthropology, 131(2), 181–193.CrossRefGoogle Scholar
  88. Losey, R. J., Bazaliiskii, V. I., Garvie-Lok, S., Germonpré, M., Leonard, J. A., Allen, A. L., et al. (2011). Canids as persons: Early Neolithic dog and wolf burials, Cis-Baikal, Siberia. Journal of Anthropological Archaeology, 30(2), 174–189.CrossRefGoogle Scholar
  89. Mandelbaum, D. (1979). The Plains Cree: An ethnographic, historical, and comparative study. Regina: Canadian Plains Research Center.Google Scholar
  90. Minagawa, M., & Wada, E. (1984). Stepwise enrichment of 15N along food chains: Further evidence and the relationship between δ15N and animal age. Geochimca et Cosmochimca Acta, 48(4), 1135–1140.CrossRefGoogle Scholar
  91. Mosothwane, M. N. (2010). Foragers among farmers in the Early Iron Age of Botswana? Dietary evidence from stable isotopes. PhD dissertation, University of Witwatersrand, Johannesburg, South Africa.Google Scholar
  92. Müldner, G., & Richards, M. P. (2005). Fast of feast: Reconstruction diet in later Medieval England by stable isotope analysis. Journal of Archaeological Science, 32(1), 39–48.CrossRefGoogle Scholar
  93. Müldner, G., & Richards, M. P. (2007). Stable isotope evidence for 1500 years of human diet at the City of York, UK. American Journal of Physical Anthropology, 133(1), 682–697.CrossRefGoogle Scholar
  94. Murray, M., & Schoeninger, M. J. (1988). Diet, status and complex social structure in Iron Age Europe: Some contributions of bone chemistry. In B. Gibson & M. Geselowitz (Eds.), Tribe and polity in Late Prehistoric Europe (pp. 155–176). New York: Plenum.Google Scholar
  95. Noe-Nygaard, N. (1988). δ13C-values of dog bone reveal the nature of changes in man’s food resources at the Mesolithic–Neolithic transition, Denmark. Chemical Geology, 73(1), 87–96.Google Scholar
  96. Noe-Nygaard, N. (1995). Ecological, sedimentary, and geochemical evolution of Late-Glacial to Postglacial Åmose Lacustrian Basin, Denmark. Oslo, Fossils and Strata 37. Oslo: Scandinavian University Press.Google Scholar
  97. Nehlich, O., & Richards, M. P. (2009). Establishing collagen quality standards for sulphur isotope analysis of archaeological bone collagen. Archaeological and Anthropological Science, 1(1), 59–75.CrossRefGoogle Scholar
  98. O’Leary, M. H. (1988). Carbon isotopes in photosynthesis. Bioscience, 38(5), 328–336.CrossRefGoogle Scholar
  99. Orme, B. (1974). Twentieth century prehistorians and the idea of ethnographic parallel. Man, 9(2), 199–212.CrossRefGoogle Scholar
  100. Pechenkina, E. A., Ambrose, S. H., Xiaolin, M., & Benfer, R. A., Jr. (2005). Reconstructing northern Chinese Neolithic subsistence practices by isotopic analysis. Journal of Archaeological Science, 32(8), 1176–1189.CrossRefGoogle Scholar
  101. Petrousta, E. I., & Manolis, S. A. (2010). Reconstructing Late Bronze Age diet in mainland Greece using stable isotope analysis. Journal of Archaeological Science, 37(3), 614–630.CrossRefGoogle Scholar
  102. Prowse, T., Schwarcz, H. P., Suanders, S., Macchiarelli, R., & Bondoli, L. (2004). Isotopic paleodiet studies of skeletons from the Imperial Roman-age cemetery of Iso-Sacra, Rome, Italy. Journal of Archaeological Science, 31(3), 259–272.CrossRefGoogle Scholar
  103. Privat, K. L., O’Connell, T. C., & Hedges, R. E. M. (2007). The distinction between freshwater- and terrestrial-based diets: Methodological concerns and archaeological applications of sulphur stable isotope analysis. Journal of Archaeological Science, 34(8), 1197–1204.CrossRefGoogle Scholar
  104. Redfern, R. C., Hamlin, C., & Athfield, N. B. (2010). Temporal changes in diet: A stable isotope analysis of Late Iron Age and Roman Dorset Britain. Journal of Archaeological Science, 37(6), 1149–1160.CrossRefGoogle Scholar
  105. Richards, M. P., Mays, S., & Fuller, B. T. (2002). Stable carbon and nitrogen isotope values of bone and teeth reflect weaning age at the Medieval Wharram Percy site, Yorkshire, UK. American Journal of Physical Anthropology, 119(3), 205–210.CrossRefGoogle Scholar
  106. Richards, M. P., Pearson, J. A., Molleson, T. I., Russell, N., & Martain, L. (2003). Stable isotope evidence of diet at Neolithic Çatalhöyük, Turkey. Journal of Archaeological Science, 30(1), 67–76.CrossRefGoogle Scholar
  107. Richards, M. P., West, E., Rolett, B., & Dobney, K. (2009). Isotope analysis of human and animals diets from the Hanamiai archaeological site (French Polynesia). Archaeology in Oceania, 44, 29–37.Google Scholar
  108. Rick, T. C., Culleton, B. J., Smith, C. B., Johnson, J. R., & Kennet, D. J. (2011). Stable isotope analysis of dog, fox, and human diets at a Late Holocene Chumash village (CA-SRI-2) on Santa Rosa Island, California. Journal of Archaeological Science, 38(6), 1385–1393.CrossRefGoogle Scholar
  109. Savolainen, P. (2006). mtDNA studies of the origin of dogs. In E. A. Ostrander, U. Giger, & K. Lindbland-Toh (Eds.), The dog and its genome (pp. 119–140). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  110. Schoeninger, M. J., DeNiro, M. J., & Tauber, H. (1983). Stable nitrogen isotope ratios reflect marine and terrestrial components of prehistoric human diet. Science, 220, 1381–1383.CrossRefGoogle Scholar
  111. Schulting, R. J. (1994). The hair of the dog: The identification of a Coast Salish dog-hair blanket from Yale, British Columbia. Canadian Journal of Archaeology, 18, 57–76.Google Scholar
  112. Schulting, R. J., & Richards, M. P. (2000). The use of stable isotopes in studies of subsistence and seasonality in the British Mesolithic. In R. Young (Ed.), Mesolithic lifeways: Current research from Britain and Ireland. Leicester Archaeology Monograph No. 7 (pp. 55–65). Leicester: University of Leicester.Google Scholar
  113. Schulting, R. J., & Richards, M. P. (2002). Dogs, ducks, deer and diet: New stable isotope evidence on Early Mesolithic dogs from the Vale of Pickering, Northeast England. Journal of Archaeological Science, 29(4), 327–333.CrossRefGoogle Scholar
  114. Schulting, R. J., & Richards, M. P. (2009). Dogs, divers, deer and diet: Stable isotope results from Star Carr and a response to Dark. Journal of Archaeological Science, 36(2), 498–503.CrossRefGoogle Scholar
  115. Schurr, M. R. (1998). Using stable nitrogen-isotopes to study weaning behavior in past populations. World Archaeology, 30(2), 327–342.CrossRefGoogle Scholar
  116. Schwarcz, H., & Schoneninger, M. J. (1991). Stable isotope analysis in human nutritional ecology. Yearbook of Physical Anthropology, 34(13), 283–321.CrossRefGoogle Scholar
  117. Sealy, J. C. (2001). Body tissue chemistry and paleodiet. In D. R. Brothwell & A. M. Pollard (Eds.), Handbook of archaeological sciences (pp. 269–279). Chichester: Wiley.Google Scholar
  118. Serpell, J. (1995). From paragon to pariah: Some human reflections on human attitudes towards dogs. In J. Serpell (Ed.), The domestic dog: Its evolution, behaviours and interactions with people (pp. 246–256). Cambridge: Cambridge University Press.Google Scholar
  119. Smith, L. (1972). The mechanical dog team: A study of the Ski-Doo in the Canadian Arctic. Arctic Anthropologist, 9(1), 1–9.Google Scholar
  120. Sponheimer, M., Robinson, T. F., Ayliffe, L., Roeder, B. L., Hammer, J., Passey, B. H., et al. (2003). Nitrogen isotopes in mammalian herbivores: Hair δ15N values from a controlled feeding study. International Journal of Osteoarchaeology, 13(1–2), 80–87.CrossRefGoogle Scholar
  121. Sponheimer, M., Robinson, T. F., Roeder, B. L., Passey, B. H., Ayliffe, L. K., Cerling, T. F., et al. (2003). An experimental study of nitrogen flux in llamas: Is 14N preferentially excreted? Journal of Archaeological Science, 30(12), 1649–1655.CrossRefGoogle Scholar
  122. Stevens, R. E., Lightfoot, E., Hamilton, J., Cunliffe, B., & Hedges, R. E. M. (2010). Stable isotope investigations of the Danebury Hillfort pit burials. Oxford Journal of Archaeology, 29(4), 407–428.CrossRefGoogle Scholar
  123. Tankersley, K. B., & Koster, J. M. (2009). Sources of stable isotope variation in archaeological dog remains. North American Archaeologist, 30(4), 361–375.CrossRefGoogle Scholar
  124. Thompson, A. H., Richards, M. P., Shortland, A., & Zakrzewski, S. R. (2005). Isotopic palaeodiet studies of ancient Egyptian fauna and humans. Journal of Archaeological Science, 32(3), 451–463.CrossRefGoogle Scholar
  125. Thompson, A. H., Chaix, L., & Richards, M. P. (2008). Stable isotopes and diet at ancient Kerma, Upper Nubia (Sudan). Journal of Archaeological Science, 35(2), 376–387.CrossRefGoogle Scholar
  126. Tieszen, L., & Fagre, T. (1993). Effect of diet quality and composition on the isotopic composition of respired CO2, collagen, bioapatite and soft tissues. In J. B. Lambert & G. Grupe (Eds.), Prehistoric human bone: Archaeology at the molecular level (pp. 121–155). Berlin: Springer.Google Scholar
  127. Valentine, F., Bocherens, H., Gratuze, B., & Sand, C. (2006). Dietary patterns during the Late Prehistoric/Historic period in Cikobia Island (Fiji): Insights from stable isotopes and dental pathologies. Journal of Archaeological Science, 33(10), 1396–1410.CrossRefGoogle Scholar
  128. Van der Merwe, N., Tykot, R. H., Hammond, N., & Oakberg, K. (2000). Diet and animal husbandry of the Preclassic Maya at Cuello, Belize: Isotopic and zooarchaeological evidence. In S. H. Ambrose & M. A. Katzenberg (Eds.), Biogeochemical approaches to paleodietary analysis. New York: Klewer.Google Scholar
  129. Van Klinken, G. J. (1999). Bone collagen quality indicators for paleodietary and radiocarbon measurements. Journal of Archaeological Science, 26(6), 687–695.CrossRefGoogle Scholar
  130. Van Strydonck, M., Boudin, M., Ervynck, A., Orvay, J., & Borms, H. (2009). Spatial and temporal variation of dietary habits during the prehistory of the Balearic Islands as reflected by 14C, δ15N and δ13C analyses on human and animal bones. Mayurqa, 30, 523–541.Google Scholar
  131. Walker, P. L. (2008). Bioarchaeological ethics: A historical perspective on the value of human remains. In M. A. Katzenberg & S. R. Saunders (Eds.), Biological anthropology of the human skeleton (pp. 3–40). New York: Wiley-Liss.Google Scholar
  132. Webber, A. W., Link, D. W., & Katzenberg, M. A. (2009). Hunter-gatherer culture change and continuity in the Middle Holocene of the Cis-Baikal, Siberia. Journal of Anthropological Archaeology, 21(2), 230–299.CrossRefGoogle Scholar
  133. White, C. D. (2004). Stable isotopes and the human–animal interface in Maya biosocial and environmental systems. Archaeofauna, 13, 183–198.Google Scholar
  134. White, C. D., Healy, P., & Schwarcz, H. P. (1993). Intensive agriculture, social status and Maya diet at Pacbitun, Belize. Journal of Anthropological Research, 49(4), 347–375.Google Scholar
  135. White, C. D., Pohl, M. E. D., Schwarcz, H. P., & Longstaffe, F. J. (2001). Isotopic evidence for Maya patterns of deer and dog use at Preclassic Colha. Journal of Archaeological Science, 28(1), 89–107.CrossRefGoogle Scholar
  136. White, C. D., Pohl, M. E. D., Schwarcz, H. P., & Longstaffe, F. J. (2004). Feast, field and forest: Deer and dog diets at Lagartero, Tikal, and Copán. In K. F. Emery (Ed.), Maya zooarchaeology: New directions in method and theory (pp. 141–158). Los Angeles: Costen Institute of Archaeology.Google Scholar
  137. White, C. D., Longstaffe, F. J., & Schwarcz, H. P. (2006). Social directions in the isotopic anthropology of maize in the Maya region. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize: Multidisciplinary approaches to prehistory, linguistics, biogeography, domestication, and evolution of maize (pp. 143–159). New York: Academic.Google Scholar
  138. Wilcox, B. W., & Walkowicz, C. (1989). The atlas of dog breeds of the world. Neptune City: TFH Publications.Google Scholar
  139. Wild, E. M., Arlamovsky, K. A., Gosler, R., Kutschera, W., Piller, A., Puchegger, S., et al. (2000). 14C dating with bomb peak: An application for forensic medicine. Nuclear Instruments and Methods in Physics Research B, 172(1–4), 944–950.CrossRefGoogle Scholar
  140. Wing, E. S. (1978). Use of dogs for food: An adaptation to the coastal environment. In B. L. Stark & B. Voorhies (Eds.), Prehistoric coastal adaptations (pp. 29–41). New York: Academic.Google Scholar
  141. Wylie, A. (2002). Thinking from things: Essays in the philosophy of archaeology. Los Angeles: University of California Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Archaeology, Queen’s CollegeMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations