Advertisement

Journal of Archaeological Method and Theory

, Volume 17, Issue 4, pp 303–322 | Cite as

Niche Construction Theory and Archaeology

  • Kevin N. Laland
  • Michael J. O’Brien
Article

Abstract

Niche construction theory (NCT) is a relatively new development within evolutionary biology, but one that has important implications for many adjacent fields of research, including the human sciences. Here, we present a broad overview of NCT and discuss its application to archaeology. We begin by laying out the basic arguments of NCT, including a historical overview, focusing on how it affects understanding of human behavior and evolution. We then consider how NCT can be used to inform empirical research and how it might profitably be applied in archaeology, using as a case study the origins of agriculture. We suggest that the unrivaled potency of human niche construction, compared with that of other species, means that archaeologists need not be mere consumers of biological insights but can become important contributors to evolutionary theory.

Keywords

Agriculture Archaeology Human evolution Niche construction Plant domestication 

Notes

Acknowledgments

We thank Lydia Pyne and Julien Riel-Salvatore for inviting us to participate in the Society for American Archaeology session on niche construction and John Odling-Smee for helpful comments on an earlier draft. A very helpful anonymous reviewer caused us to sharpen our focus. KNL thanks the Royal Society and EU (NEST-Pathfinder, Cultaptation) for providing financial support.

References

  1. Abrams, P. A., & Matsuda, H. (1996). Positive indirect effects between prey species that share predators. Ecology, 77, 610–616.Google Scholar
  2. Balter, M. (2005). Are humans still evolving? Science, 309, 234–237.Google Scholar
  3. Bardone, E., & Magnani, L. (2007). Sharing representations through cognitive niche construction. Data Science Journal, 6, S87–S91.Google Scholar
  4. Barker, G. (2008). Biological levers and extended adaptationism. Biology and Philosophy, 23, 1–25.Google Scholar
  5. Barlow, K. R. (2002). Predicting maize agriculture among the Fremont: An economic comparison of farming and foraging in the American Southwest. American Antiquity, 67, 65–88.Google Scholar
  6. Bellwood, P. S. (2005). First farmers: The origins of agricultural societies. Oxford: Blackwell.Google Scholar
  7. Bleed, P. (2006). Living in the human niche. Evolutionary Anthropology, 15, 8–10.Google Scholar
  8. Boni, M. F., & Feldman, M. W. (2005). Evolution of antibiotic resistance by human and bacterial niche construction. Evolution, 59, 477–491.Google Scholar
  9. Borenstein, E., Kendal, J., & Feldman, M. W. (2006). Cultural niche construction in a metapopulation. Theoretical Population Biology, 70, 92–104.Google Scholar
  10. Boserup, E. (1965). The conditions of agricultural growth. Chicago: Aldine.Google Scholar
  11. Boserup, E. (1981). Population and technological change. Chicago: University of Chicago Press.Google Scholar
  12. Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. Chicago: University of Chicago Press.Google Scholar
  13. Braidwood, R. J. (1960). The agricultural revolution. Scientific American, 203, 130–148.Google Scholar
  14. Broughton, J. M. (2002). Prey spatial structure and behavior affect archaeological tests of optimal foraging models: Examples from the Emeryville shellmound vertebrate fauna. World Archaeology, 34, 60–83.Google Scholar
  15. Burger, J., Kirchner, M., Bramanti, B., Haak, W., & Thomas, M. G. (2007). Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proceedings of the National Academy of Science, 104, 3736–3741.Google Scholar
  16. Burroughs, W. (2005). Climate change in prehistory. Cambridge: Cambridge University Press.Google Scholar
  17. Cannon, M. D. (2000). Large mammal relative abundance in Pithouse and Pueblo period archaeofaunas from southwestern New Mexico: Resource depression among the Mimbres-Mogollon? Journal of Anthropological Archaeology, 19, 317–347.Google Scholar
  18. Cavalli-Sforza, L. L., & Feldman, M. W. (1981). Cultural transmission and evolution: A quantitative approach. Princeton: Princeton University Press.Google Scholar
  19. Childe, V. G. (1936). Man makes himself. London: Watts.Google Scholar
  20. Cochran, G., & Harpending, H. (2009). The 10,000 year explosion: How civilization accelerated human evolution. New York: Basic Books.Google Scholar
  21. Cohen, M. N. (1977). The food crisis in prehistory. New Haven: Yale University Press.Google Scholar
  22. Dawkins, R. (1976). The selfish gene. New York: Oxford University Press.Google Scholar
  23. Dawkins, R. (1990). The extended phenotype: The long reach of the gene (new ed.). Oxford: Oxford University Press.Google Scholar
  24. Day, R. L., Laland, K. N., Odling-Smee, F. J., & Feldman, M. W. (2003). Rethinking adaptation: The niche construction perspective. Perspectives in Biology and Medicine, 46, 80–95.Google Scholar
  25. Dobres, M.-A. (2000). Technology and social agency. Oxford: Blackwell.Google Scholar
  26. Dobres, M.-A., & Robb, J. (2000). Agency in archaeology: Paradigm or platitude? In M.-A. Dobres & J. Robb (Eds.), Agency in archaeology (pp. 3–17). New York: Routledge.Google Scholar
  27. Donohue, K. (2005). Niche construction through phonological plasticity: Life history dynamics and ecological consequences. The New Phytologist, 166, 83–92.Google Scholar
  28. Dunnell, R. C. (1980). Evolutionary theory and archaeology. Advances in Archaeological Method and Theory, 3, 35–99.Google Scholar
  29. Durham, W. H. (1991). Coevolution: Genes, culture, and human diversity. Stanford: Stanford University Press.Google Scholar
  30. Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: A study in coevolution. Evolution, 18, 586–608.Google Scholar
  31. Feldman, M. W., & Cavalli-Sforza, L. L. (1989). On the theory of evolution under genetic and cultural transmission with application to the lactose absorption problem. In M. W. Feldman (Ed.), Mathematical evolutionary theory (pp. 145–173). Princeton, NJ: Princeton University Press.Google Scholar
  32. Flack, J. C., Girvan, M., de Waal, F. B. M., & Krakauer, D. C. (2006). Policing stabilizes construction of social niches in primates. Nature, 439, 426–429.Google Scholar
  33. Flannery, K. V. (1986). Adaptation, evolution, and archaeological phases: Some implications of Reynolds' simulation. In K. V. Flannery (Ed.), Guilá Naquitz: Archaic foraging and early agriculture in Oaxaca (pp. 501–507). Orlando: Academic.Google Scholar
  34. Fragaszy, D., & Perry, S. (Eds.). (2003). The biology of traditions: Models and evidence. Chicago: University of Chicago Press.Google Scholar
  35. Fragaszy, D., & Visalberghi, E. (2001). Recognizing a swan: Socially-biased learning. Psychologia, 44, 82–98.Google Scholar
  36. Futuyma, D. J., & Slatkin, M. (Eds.). (1983). Coevolution. Sunderland, MA: Sinauer.Google Scholar
  37. Gavrilets, S. (1997). Coevolutionary chase in exploiter-victim systems with polygenic characters. Journal of Theoretical Biology, 186, 527–534.Google Scholar
  38. Godfrey-Smith, P. (1998). Complexity and the function of mind in nature. Cambridge: Cambridge University Press.Google Scholar
  39. Hardesty, D. L. (1972). The human ecological niche. American Anthropologist, 74, 458–466.Google Scholar
  40. Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press.Google Scholar
  41. Hawks, J., Wang, E. T., Cochran, G. M., Harpending, H. C., & Mayzis, R. K. (2007). Recent acceleration of human adaptive evolution. Proceedings of the National Academy of Sciences, 104, 20753–20758.Google Scholar
  42. Hawley, W. A., Reiter, P., Copeland, R. S., Pumpuni, C. B., & Craig, G. B. (1987). Aedes albopictus in North America: Probable introduction in used tires from Northern Asia. Science, 236, 1114–1116.Google Scholar
  43. Haygood, R., Fedrigo, O., Hanson, B., Yokoyama, K. D., & Wray, G. A. (2007). Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nature Genetics, 39, 1140–1144.Google Scholar
  44. Heesterbeek, J. A. P., & Roberts, M. G. (1995). Threshold quantities for helminth infections. Journal of Mathematical Biology, 33, 415–434.Google Scholar
  45. Heiser, C. (1990). Seed to civilization. Cambridge, MA: Harvard University Press.Google Scholar
  46. Heyes, C., & Galef, B. G. (1996). Social learning in animals: The roots of culture. New York: Academic.Google Scholar
  47. Holden, C. J., & Mace, R. (1997). Phylogenetic analysis of the evolution of lactose digestion in adults. Human Biology, 69, 605–628.Google Scholar
  48. Ihara, Y., & Feldman, M. W. (2004). Cultural niche construction and the evolution of small family size. Theoretical Population Biology, 65, 105–111.Google Scholar
  49. Iriki, A., & Sakura, O. (2008). The neuroscience of primate intellectual evolution: Natural selection and passive and intentional niche construction. Philosophical Transactions of the Royal Society B, 363, 2229–2241.Google Scholar
  50. Jones, C. G., Lawton, G. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.Google Scholar
  51. Jones, C. G., Lawton, G. H., & Shachak, M. (1997). Ecosystem engineering by organisms: Why semantics matters. Trends in Ecology & Evolution, 12, 275.Google Scholar
  52. Kelley, J. L., & Swanson, W. J. (2008). Dietary change and adaptive evolution of enamelin in humans and among primates. Genetics, 178, 1595–1603.Google Scholar
  53. Kendal, J., Ihara, Y., & Feldman, M. W. (2005). Cultural niche construction with application to fertility control: A model for education and social transmission of contraceptive use. Palo Alto, CA: Morrison Institute for Population and Resource Studies, Stanford University, Paper 102.Google Scholar
  54. Kylafis, G., & Loreau, M. (2008). Ecological and evolutionary consequences of niche construction for its agent. Ecological Letters, 11, 1072–1081.Google Scholar
  55. Laland, K. N., & Brown, G. R. (2006). Niche construction, human behavior, and the adaptive-lag hypothesis. Evolutionary Anthropology, 15, 95–104.Google Scholar
  56. Laland, K. N., Kendal, J. R., & Brown, G. R. (2008). The niche construction perspective: Implications for evolution and human behaviour. Journal of Evolutionary Psychology, 5, 51–66.Google Scholar
  57. Laland, K. N., Odling-Smee, F. J., & Feldman, M. W. (1996). On the evolutionary consequences of niche construction. Journal of Evolutionary Biology, 9, 293–316.Google Scholar
  58. Laland, K. N., Odling-Smee, F. J., & Feldman, M. W. (1999). Evolutionary consequences of niche construction and their implications for ecology. Proceedings of the National Academy of Sciences, 96, 10242–10247.Google Scholar
  59. Laland, K. N., Odling-Smee, F. J., & Feldman, M. W. (2000). Niche construction, biological evolution, and cultural change. Behavioral and Brain Sciences, 23, 131–175.Google Scholar
  60. Laland, K. N., Odling-Smee, F. J., & Feldman, M. W. (2001). Cultural niche construction and human evolution. Journal of Evolutionary Biology, 14, 22–33.Google Scholar
  61. Laland, K. N., Odling-Smee, F. J., & Feldman, M. W. (2005). On the breadth and significance of niche construction. A reply to Griffiths, Okasha and Sterelny. Biology and Philosophy, 20, 37–55.Google Scholar
  62. Laland, K. N., Odling-Smee, F. J., & Myles, S. (2010). How culture shaped the human genome: Bringing genetics and the human sciences together. Nature Reviews. Genetics, 11, 137–148.Google Scholar
  63. Laland, K. N., & Sterelny, K. (2006). Seven reasons (not) to neglect niche construction. Evolution, 60, 1751–1762.Google Scholar
  64. Lehmann, L. (2008). The adaptive dynamics of niche constructing traits in spatially subdivided populations: Evolving posthumous extended phenotypes. Evolution, 62, 549–566.Google Scholar
  65. Lewontin, R. C. (1982). Organism and environment. In H. C. Plotkin (Ed.), Learning, development and culture (pp. 151–170). New York: Wiley.Google Scholar
  66. Lewontin, R. C. (1983). Gene, organism, and environment. In D. S. Bendall (Ed.), Evolution from molecules to men (pp. 273–285). Cambridge: Cambridge University Press.Google Scholar
  67. Lewontin, R. C. (2000). The triple helix: Gene, organism, and environment. Cambridge, MA: Harvard University Press.Google Scholar
  68. Mameli, M. (2001). Mindreading, mindshaping and evolution. Biology and Philosophy, 16, 597–628.Google Scholar
  69. Marrow, P., Dieckmann, U., & Law, R. (1996). Evolutionary dynamics of predator prey systems: An ecological perspective. Journal of Mathematical Biology, 34, 556–578.Google Scholar
  70. Mesoudi, A. (2008). Foresight in cultural evolution. Biology and Philosophy, 23, 243–255.Google Scholar
  71. Naiman, R. J., Johnston, C. A., & Kelley, J. C. (1988). Alterations of North American streams by beaver. Bioscience, 38, 753–762.Google Scholar
  72. O'Brien, M. J. (1987). Sedentism, population growth, and resource selection in the Woodland Midwest: A review of coevolutionary developments. Current Anthropology, 28, 177–197.Google Scholar
  73. O'Brien, M. J., & Holland, T. D. (1990). Variation, selection, and the archaeological record. In M. B. Schiffer (Ed.), Archaeological method and theory (Vol. 2, pp. 31–79). Tucson: University of Arizona Press.Google Scholar
  74. O'Brien, M. J., & Holland, T. D. (1992). The role of adaptation in archaeological explanation. American Antiquity, 57, 36–59.Google Scholar
  75. O'Brien, M. J., & Wilson, H. C. (1988). A paradigmatic shift in the search for the origin of agriculture. American Anthropologist, 90, 958–965.Google Scholar
  76. Odling-Smee, F. J. (1988). Niche constructing phenotypes. In H. C. Plotkin (Ed.), The role of behavior in evolution (pp. 31–79). Cambridge, MA: MIT Press.Google Scholar
  77. Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (1996). Niche construction. American Naturalist, 147, 641–648.Google Scholar
  78. Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Monographs in population biology 37. Princeton, NJ: Princeton University Press.Google Scholar
  79. Oyama, S., Griffiths, P. E., & Gray, R. D. (2001). Cycles of contingency: Developmental systems and evolution. Cambridge, MA: MIT Press.Google Scholar
  80. Perry, G. H., et al. (2007). Diet and the evolution of human amylase gene copy number variation. Nature Genetics, 39, 1256–1260.Google Scholar
  81. Pryor, F. L. (1986). The adoption of agriculture: Some theoretical and empirical evidence. American Anthropologist, 88, 879–897.Google Scholar
  82. Reed, C. A. (1977). Conclusions. In C. A. Reed (Ed.), Origins of agriculture (pp. 1013–1014). The Hague: Mouton.Google Scholar
  83. Richards, M. P., Schulting, R. J., & Hedges, R. E. M. (2003). Archaeology: Sharp shift in diet at onset of Neolithic. Nature, 425, 366.Google Scholar
  84. Richerson, P. J., & Boyd, R. (2005). Not by genes alone. Chicago: Chicago University Press.Google Scholar
  85. Richerson, P., Boyd, R., & Bettinger, R. (2001). Was agriculture impossible during the Pleistocene but mandatory during the Holocene? American Antiquity, 66, 387–411.Google Scholar
  86. Rindos, D. (1980). Symbiosis, instability, and the origins and spread of agriculture: A new model. Current Anthropology, 21, 751–772.Google Scholar
  87. Rindos, D. (1984). The origins of agriculture: An evolutionary perspective. New York: Academic.Google Scholar
  88. Rouse, I. B. (1939). Prehistory in Haiti: A study in method. New Haven, CT: Yale University Publications in Anthropology, no. 21.Google Scholar
  89. Shennan, S. J. (2006). From cultural history to cultural evolution: An archaeological perspective on social information transmission. In J. C. K. Wells, S. Strickland, & K. N. Laland (Eds.), Social information transmission and human biology (pp. 173–190). London: CRC Press.Google Scholar
  90. Silver, M., & Di Paolo, E. (2006). Spatial effects favour the evolution of niche construction. Theoretical Population Biology, 70, 387–400.Google Scholar
  91. Smith, B. D. (1998). The emergence of agriculture. New York: Freeman.Google Scholar
  92. Smith, B. D. (2007a). The ultimate ecosystem engineers. Science, 315, 1797–1798.Google Scholar
  93. Smith, B. D. (2007b). Niche construction and the behavioral context of plant and animal domestication. Evolutionary Anthropology, 16, 188–199.Google Scholar
  94. Soranzo, N., et al. (2005). Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Current Biology, 15, 1257–1265.Google Scholar
  95. Sterelny, K. (2003). Thought in a hostile world: The evolution of human cognition. London: Blackwell.Google Scholar
  96. Sterelny, K. (2007). Social intelligence, human intelligence and niche construction. Philosophical Transactions of the Royal Society B, 362, 719–730.Google Scholar
  97. Thompson, J. N. (1994). The coevolutionary process. Chicago: University of Chicago Press.Google Scholar
  98. VanPool, T. L., & VanPool, C. S. (2003). Agency and evolution: The role of intended and unintended consequences of action. In T. L. Vanpool & C. S. VanPool (Eds.), Essential tensions in archaeological method and theory (pp. 89–114). Salt Lake City: University of Utah Press.Google Scholar
  99. Voight, B. F., Kudaravalli, S., Wen, X., & Pritchard, J. K. (2006). A map of recent position selection in the human genome. PLoS Biology, 4(3), e72.Google Scholar
  100. Wang, E. T., Kodama, G., Baldi, P., & Moyzis, R. K. (2006). Global landscape of recent inferred Darwinian selection for Homo sapiens. Proceedings of the National Academy of Sciences, 103, 135–140.Google Scholar
  101. Watson, P. J. (1986). Archaeological interpretation, 1985. In D. J. Meltzer, D. D. Fowler, & J. A. Sabloff (Eds.), American archaeology past and future: A celebration of the society for american archaeology, 1935–1985 (pp. 439–457). Washington, DC: Smithsonian Institution Press.Google Scholar
  102. Wcislo, W. T. (1989). Behavioral environments and evolutionary change. Annual Review of Ecology and Systematics, 20, 137–169.Google Scholar
  103. Wilby, A. (2002). Ecosystem engineering: A trivialized concept? Trends in Ecology & Evolution, 17, 307.Google Scholar
  104. Willey, G. R. (1945). Horizon styles and pottery traditions in Peruvian archaeology. American Antiquity, 10, 49–56.Google Scholar
  105. Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton, NJ: Princeton University Press.Google Scholar
  106. Wilson, E. O. (1992). The diversity of life. Cambridge, MA: Harvard University Press.Google Scholar
  107. Wright, H. E., Jr. (1977). Environmental change and the origin of agriculture in the Old and New Worlds. In C. A. Reed (Ed.), Origins of agriculture (pp. 281–318). The Hague: Mouton.Google Scholar
  108. Zeder, M. A., Bradley, D. G., Emshwiller, E., & Smith, B. D. (Eds.). (2006). Documenting domestication: New genetic and archaeological paradigms. Berkeley: University of California Press.Google Scholar
  109. Zentall, T., & Galef, B. G., Jr. (1988). Social learning: Psychological and biological perspectives. Hillsdale, NJ: Erlbaum.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of BiologyUniversity of St AndrewsSt AndrewsUK
  2. 2.Department of AnthropologyUniversity of MissouriColumbiaUSA

Personalised recommendations