Journal of Archaeological Method and Theory

, Volume 18, Issue 1, pp 1–60

Factors Controlling Pre-Columbian and Early Historic Maize Productivity in the American Southwest, Part 1: The Southern Colorado Plateau and Rio Grande Regions

Article

Abstract

Maize is the New World’s preeminent grain crop and it provided the economic basis for human culture in many regions within the Americas. To flourish, maize needs water, sunlight (heat), and nutrients (e.g., nitrogen). In this paper, climate and soil chemistry data are used to evaluate the potential for dryland (rain-on-field) agriculture in the semiarid southeastern Colorado Plateau and Rio Grande regions. Processes that impact maize agriculture such as nitrogen mineralization, infiltration of precipitation, bare soil evaporation, and transpiration are discussed and evaluated. Most of the study area, excepting high-elevation regions, receives sufficient solar radiation to grow maize. The salinities of subsurface soils in the central San Juan Basin are very high and their nitrogen concentrations are very low. In addition, soils of the central San Juan Basin are characterized by pH values that exceed 8.0, which limit the availability of both nitrogen and phosphorous. In general, the San Juan Basin, including Chaco Canyon, is the least promising part of the study area in terms of dryland farming. Calculations of field life, using values of organic nitrogen for the upper 50 cm of soil in the study area, indicate that most of the study area could not support a 10-bushel/acre crop of maize. The concepts, methods, and calculations used to quantify maize productivity in this study are applicable to maize cultivation in other environmental settings across the Americas.

Keywords

Southwest Maize agriculture Soil chemistry 

Supplementary material

10816_2010_9082_MOESM1_ESM.tif (12.7 mb)
High resolution image (TIFF 12982 kb)
10816_2010_9082_MOESM2_ESM.tif (12.8 mb)
High resolution image (TIFF 13129 kb)
10816_2010_9082_MOESM3_ESM.xls (91 kb)
Supplementary Table 1(XLS 91 kb)
10816_2010_9082_MOESM4_ESM.xls (438 kb)
Supplementary Table 2(XLS 438 kb)

References

  1. Abdul-Jabbar, A. S., Sammin, J. W., Lugg, D. G., Kallsen, C. E., & Smeal, D. (1983). Water use by alfalfa, maize, and barley as influenced by available soil water. Agricultural Water Management, 6, 351–363.CrossRefGoogle Scholar
  2. Adams, K. R. (2004). Anthropogenic ecology of the North American Southwest. In P. E. Minnis (Ed.), People and plants in ancient western North America (pp. 167–204). Washington: Smithsonian Books.Google Scholar
  3. Adams, D. K., & Comrie, A. C. (1997). The North American monsoon. Bulletin of the American Meteorology Society, 78, 2197–2213.CrossRefGoogle Scholar
  4. Adams, K. R., Muenchrath, D. A., & Schwindt. (1999). Moisture effects on the morphology of ears, cobs, and kernels on a South-western U.S. maize (Zea Mays L.) cultivar, and implications for the interpretation of archaeological maize. Journal of Archaeological Science, 26, 483–496.CrossRefGoogle Scholar
  5. Adams, K. R., Meegan, C. M., Ortman, S. G., Howell, R. E., Werth, L. C., Muenchrath, D. A., et al. (2006). MAIS (Maize of American Indigenous Societies) Southwest: Ear descriptions and traits that distinguish 27 morphologically distinct groups of 123 historic USDA maize (Zea mays L. spp. Mays) accessions and data relevant to archaeological subsistence models. http://spectre.nmsu.edu (projects and results, collaborative MAIS Experiment).
  6. Aleksandrovskii, A. L. (2007). Pyrogenic origin of carbonates: Evidence from pedoarchaeological investigations. Eurasian Soil Science, 40, 471–477.CrossRefGoogle Scholar
  7. Allen, R. G., Pruitt, W. O., Raes, D., Smith, M., & Pereira, L. S. (2005). Estimating evaporation from bares soil and the crop coefficient for the initial period using common soils information. Journal of Irrigation and Drainage Engineering, 131, 14–23.CrossRefGoogle Scholar
  8. Allison, F. E. (1955). The enigma of nitrogen balance sheets. Advances in Agronomy, 7, 213–250.CrossRefGoogle Scholar
  9. Amos, B., & Walters, D. T. (2006). Maize root biomass and net rhizodeposited carbon: An analysis of the literature. Soil Science of America Journal, 70, 1489–1503.CrossRefGoogle Scholar
  10. Arrhenius, O. (1963). Investigation of soil from old Indian sites. Ethnos, 28, 122–136.CrossRefGoogle Scholar
  11. Ayers, R. S. (1977). Quality of water for irrigation. Journal of Irrigation and Drainage Division, 103, 135–154.Google Scholar
  12. Barber, A. S., & Olson, R. A. (1968). Fertilizer use on corn, changing patterns in agriculture. In L. B. Nelson & M. H. McVickar (Eds.), Changing patterns in fertilizer use (pp. 168–188). Madison: Soil Science Society of America.Google Scholar
  13. Beaglehole, E. (1937). Notes on Hopi economic life. Yale University Publication in Anthropology 15, Yale University Press, New Haven.Google Scholar
  14. Bear, F. E., & Royston, J. R. (1919). Nitrogen losses in urine. Journal of the American Society of Agronomy, 11, 319–326.Google Scholar
  15. Bellorado, B. A. (2007). Breaking down the models: Reconstructing prehistoric subsistence agriculture in the Durango District of Southwestern Colorado. Unpublished M.A. dissertation, Department of Anthropology, Northern Arizona University, Flagstaff.Google Scholar
  16. Belnap, J. (2002). Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biology and Fertility of Soils, 35, 128–135.CrossRefGoogle Scholar
  17. Below, F. E. (2002). Nitrogen metabolism and crop productivity. In M. Pessarlakli (Ed.), Handbook of plant and crop physiology (2nd ed., pp. 385–406). Boca Raton: CRC.Google Scholar
  18. Benoit, G. R., & Kirkham, D. (1963). The effect of soil surface conditions on evaporation of soil water. Soil Science Society of America Proceedings, 27, 495–498.CrossRefGoogle Scholar
  19. Benson, L. V., & White, J. W. C. (1994). Stable isotopes of oxygen and hydrogen in the Truckee River–Pyramid Lake surface-water system. 3. Sources of water vapor overlying Pyramid Lake. Limnology and Oceanography, 39, 1945–1958.CrossRefGoogle Scholar
  20. Benson, L. V., & Berry, M. S. (2009). Climate change and cultural response in the prehistoric American Southwest. Kiva, 75, 89–119.Google Scholar
  21. Benson, L., Petersen, K., & Stein, J. (2007). Anasazi (pre-Columbian Native-American) migrations during the middle-12th and late-13th centuries—Were they drought induced? Climatic Change, 83, 187–213.CrossRefGoogle Scholar
  22. Benz, B. F. (2001). Archaeological evidence of teosinte domestication from Guila Naquitz, Oaxaca. Proceedings of the National Academy of Sciences, 98, 2104–2106.CrossRefGoogle Scholar
  23. Benz, B. F., Cheng, L., Leavitt, S. W., & Eastoe, C. (2006). El Riego and early maize agricultural evolution. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize (pp. 73–82). New York: Elsevier.CrossRefGoogle Scholar
  24. Berg, B., McClaugherty, C., Virzo de Santo, A., & Johnson, D. (2001). Humus buildup in boreal forests—Effects of litter fall and its N concentration. Canadian Journal of Forestry Research, 31, 988–998.CrossRefGoogle Scholar
  25. Berzok, L. M. (2005). American Indian food. Santa Barbara: Greenwood Publishing Group.Google Scholar
  26. Biswas, T. D., Nielsen, D. R., & Biggar, J. W. (1966). Redistribution of soil water after infiltration. Water Resources Research, 2, 513–524.CrossRefGoogle Scholar
  27. Blackmer, A. M., Pottker, D., Cerrato, M. E., & Webb, J. (1989). Correlations between soil nitrate concentrations in late spring and corn fields in Iowa. Journal of Production Agriculture, 2, 103–109.Google Scholar
  28. Blackmer, A. M., Voss, R. D., & Mallarino, A. P. (1997). Nitrogen fertilizer recommendations for Corn in Iowa. Iowa State University Extension Publication Pm-1714. Ames, Iowa.Google Scholar
  29. Blake, M. (2006). Dating the initial spread of Zea Mays. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize (pp. 55–72). New York: Elsevier.CrossRefGoogle Scholar
  30. Boehm, H. P. (1971). Acidic and basic properties of hydroxylated metal oxide surfaces. Discussions of the Faraday Society, 52, 264–275.CrossRefGoogle Scholar
  31. Boone, R. D. (1994). Light-fraction soil organic matter: Origin and contribution to net nitrogen mineralization. Soil Biology and Biochemistry, 26, 1459–1468.CrossRefGoogle Scholar
  32. Borza, I. (2008). Study regarding the weeds influence on water use efficiency in maize crop from the Crisurilor Plain. Anaele Universitatii din Oradea, Fascicula: Protectia Mediului XIII, pp. 20–25.Google Scholar
  33. Bradfield, M. (1971). The changing pattern of Hopi agriculture. Royal Anthropological Institute Occasional Paper No. 30.Google Scholar
  34. Brady, N. C., & Weil, R. R. (2008). The nature and properties of soils, 14th ed.. Columbus: Pearson Prentice Hall.Google Scholar
  35. Brandt, C. B. (1995). Traditional agriculture on the Zuni reservation in the recent historic period. In W. Toll (Ed.), Soil, water, biology, and belief in prehistoric and traditional Southwestern agriculture (pp. 291–301). Albuquerque: New Mexico Archaeological Council Special Publication No. 2.Google Scholar
  36. Bremmer, J. M. (1965). Nitrogen availability indexes. In C. A. Black (Ed.), Methods of soil analysis, part 2. Agronomy Monograph 9 (pp. 1324–1345). Madison: Soil Science Society of America.Google Scholar
  37. Breshears, D. D., Cobb, N. S., Rich, P. M., Price, K. P., Allen, C. D., Balice, R. G., et al. (2005). Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences, 102, 15144–15148.CrossRefGoogle Scholar
  38. Brown, D. P., & Comrie, A. C. (2002). Sub-regional seasonal precipitation linkages to SOI and PDO in the Southwest United States. Atmospheric Science Letters, 3, 94–102.CrossRefGoogle Scholar
  39. Brown, W. L., Anderson, E. G., & Tuchawena, R., Jr. (1952). Observations on three varieties of Hopi maize. American Journal of Botany, 39, 597–609.CrossRefGoogle Scholar
  40. Bundy, L. G., & Meisinger. (1994). Nitrogen availability indices. In R. W. Weaver (Ed.), Methods of soil analysis, part 2. Book Series 5 (pp. 951–984). Madison: Soil Science Society of America.Google Scholar
  41. Byrne, P. F., Terpstra, K. A., Dabbert, T. A., & Alexander, R. (2003). Estimating pollen-mediated flow in corn under Colorado conditions. Annual Meeting Abstracts of the Soil Science Society of America Annual Meeting, Madison, Wisconsin.Google Scholar
  42. Cerrato, M. E., & Blackmer, A. M. (1990). Effects of nitrapyrin on corn yields and recovery of ammonium-N at 18 site-years in Iowa. Journal of Production Agriculture, 3, 513–521.Google Scholar
  43. Chapin, F. S., III, Matson, P. A., & Mooney, H. A. (2002). Principles of terrestrial ecosystem ecology. New York: Springer.Google Scholar
  44. Choriki, R. T., Hide, J. C., Krall, S. L., & Brown, B. L. (1964). Rock and gravel mulch aid in moisture storage. Crops and Soil, 16, 24.Google Scholar
  45. Clarholm, M. (1985). Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biology and Biochemistry, 17, 181–187.CrossRefGoogle Scholar
  46. Clark, S. P. (1928). Lessons from Southwestern Indian agriculture. College of Agriculture, Experimental Station Bulletin 125. University of Arizona, Tucson.Google Scholar
  47. Clay, D. E., Clapp, C. E., Reese, C., Liu, Z., Carlson, C. G., Woodward, H., et al. (2007). Carbon-13 fractionation of relic soil organic carbon during mineralization effects calculated half-lives. Soil Science Society of America Journal, 71, 1003–1009.CrossRefGoogle Scholar
  48. Coltrain, J. B., Janetski, J. C., & Carlyle, S. W. (2006). The stable- and radio-isotope chemistry of Eastern Basketmaker and Pueblo Groups in the Four Corners region of the American Southwest: Implications for Anasazi diets, origins, and abandonments in Southwestern Colorado. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize (pp. 275–287). New York: Academic Press.CrossRefGoogle Scholar
  49. Coltrain, J. B., Janetski, J. C., & Carlyle, S. W. (2007). The stable- and radio-isotope chemistry of Western Basketmaker burials: Implications for early Puebloan diets and origins. American Antiquity, 72, 301–321.CrossRefGoogle Scholar
  50. Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., & Stahle, D. W. (2004). Long-term aridity changes in the Western United States. Science, 306, 1015–1018.CrossRefGoogle Scholar
  51. Corral, J. A. R., Puga, N. D., González, J. J. S., Parra, J. R., Eguiarte, D. R. G., Holland, J. B., et al. (2008). Climatic adaptation and ecological descriptors of 42 Mexican maize races. Crop Science, 48, 1502–1512.CrossRefGoogle Scholar
  52. Cushing, F. H. (1920). Zuni breadstuff. Indian notes and monographs, volume 2. New York: Museum of the American Indian, Heye Foundation.Google Scholar
  53. D’arrigo, R., Villalba, R., & Wiles, G. (2001). Tree-ring estimates of pacific decadal climate variability. Climate Dynamics, 18, 219–224.CrossRefGoogle Scholar
  54. Dahnke, W. C., & Johnson, G. V. (1990). Testing soils for available nitrogen. In R. L. Westerman (Ed.), Soil testing and plant analysis (3rd ed., pp. 97–114). Madison: Soil Science Society of America.Google Scholar
  55. DeLoughery, R., & Wortmann, C. (2005). Calculating the value of manure for crop production. University of Nebraska-Lincoln Extension, Institute of Agriculture and Natural Resources NebGuide G9330.Google Scholar
  56. Derby, N. E., Steelea, D. D., Terpstraa, J., Knighton, R. E., & Caseya, F. X. M. (2005). Interactions of nitrogen, weather, soil, and irrigation on corn yield. Agronomy Journal, 97, 1342–1351.CrossRefGoogle Scholar
  57. Dietz, T., Abdirizak, N. N., Roba, A. W., & Zaal, F. (2001). Pastor commercialization: On caloric terms of trade and related issues. In M. A. M. Salih, T. Dietz, & A. G. M. Ahmed (Eds.), African pastorialism: Conflict, institutions, and government (pp. 194–234). London: Pluto.Google Scholar
  58. DiMarco, O. N., Aello, M. S., & Chicatun, A. (2007). Effect of irrigation on corn plant dry matter yield, morphological components and ruminal degradability of leaves and stems. Journal of Animal and Veterinary Advances, 6, 8–11.Google Scholar
  59. Doerge, T. A. (1985). A summary of soil test information for Arizona’s surface agricultural soils. University of Arizona Cooperative Extension Service Report No. 8613.Google Scholar
  60. Dominguez, S., & Kolm, K. (2005). Beyond water harvesting: A soil hydrology perspective on traditional Southwestern agricultural technology. American Antiquity, 70, 732–765.CrossRefGoogle Scholar
  61. Dwyer, L. M., Ma, B. L., Stewart, D. W., Hayhoe, H. N., Bachin, D., Culley, J. L. B., et al. (1996). Root mass distribution under conventional and conservation tillage. Canadian Journal of Soil Science, 76, 23–28.Google Scholar
  62. Elmore, R., & Abendroth, L. (2008). Seeding rates in relation to maximum yield and seed cost. Iowa State University Agronomy Extension, Integrated Crop Management Extension Newsletter. http://www.agronext.iastate.edu/corn/production/management/planting/yield.html.
  63. Enfield, D. B., Mestas-Nunez, A. M., & Trimble, P. J. (2001). The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the Continental U.S. Geophysical Research Letters, 28, 2077–2080.CrossRefGoogle Scholar
  64. Esrey, S. A., Andersson, I, Hillers, A., & Sawyer, R. (2000). Closing the loop, ecological sanitation for food security. Swedish International Development Cooperation Agency, Publications on Water Resources No. 18.Google Scholar
  65. Ethanol Statistics (2008). cta.ornl.gov/bedb/biofueils/ethanol/Ethanol_Production_Statistics.xls.Google Scholar
  66. Euler, R. C. (1954). Environmental adaptation at Sia Pueblo. Human Organization, 12, 27–30.Google Scholar
  67. Evans, R. D., & Ehleringer, J. R. (1993). A break in the nitrogen cycle in arid lands? Evidence from δ15N of soils. Oecologia, 94, 314–317.CrossRefGoogle Scholar
  68. Fang, C., Smith, P., Moncrieff, J. B., & Smith, J. U. (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57–59.CrossRefGoogle Scholar
  69. Farnham, D. (2001). Corn planting guide. Iowa State University Extension Publication PM 1885.Google Scholar
  70. Fehrenbacher, J. B., & Rust, R. H. (1956). Corn root penetration in soils derived from various textures of Wisconsin-age glacial till. Soil Science, 82, 369–378.CrossRefGoogle Scholar
  71. Ferguson, T. J., & Hart, E. R. (1985). A Zuni Atlas. Norman: University of Oklahoma Press.Google Scholar
  72. Follett, R. F., Paul, E. A., Leavitt, S. W., Halvorson, A. D., Lyon, D., & Peterson, G. A. (1997). Carbon isotope ratios of Great Plains soils and in wheat–fallow systems. Soil Science Society of American Journal, 61, 1068–1077.CrossRefGoogle Scholar
  73. Ford, R. I. (1985). Zuni land use and damage to Trust land, Plaintiff’s Exhibit 7000. Expert testimony submitted to the United States Claims Court as evidence in the case Zuni Indian Tribe v. United States, Docket 327-81L, August 15, 1985.Google Scholar
  74. Ford, R. I. (1987). Dating early maize in the eastern United States. Paper presented at the Annual Meeting of the American Association for the Advancement of Science, February 14–18, 1987, Chicago.Google Scholar
  75. Forde, C. D. (1931). Hopi agriculture and land ownership. Journal of the Royal Anthropological Institute, 41, 357–405.Google Scholar
  76. Foth, H. D., & Ellis, B. G. (1988). Soil fertility. New York: Wiley.Google Scholar
  77. Fowler, D. B., & Brydon, J. (1989). No-till winter wheat production on the Canadian prairies: Placement of urea and ammonium nitrate fertilizers. Agronomy Journal, 81, 518–524.CrossRefGoogle Scholar
  78. Fox, R. H., Roth, G. W., Iversen, K. V., & Piekielek, W. P. (1989). Soil and tissue test compared for predicting soil nitrogen availability to corn. Agronomy Journal, 81, 971–974.CrossRefGoogle Scholar
  79. Fye, J. K., Stahle, D. W., & Cook, E. R. (2003). Paleoclimatic analogs to twentieth-century moisture regimes across the United States. Bulletin of the American Meteorological Society, 84, 901–909.CrossRefGoogle Scholar
  80. Gallais, A., & Coque, M. (2005). Genetic variation and selection for nitrogen use efficiency in maize: A synthesis. Maydica, 50, 531–537.Google Scholar
  81. Gardner, F. P., Pearce, R. B., & Mitchell, R. L. (1985). Physiology of crop plants. Ames: Iowa State University Press.Google Scholar
  82. Gauthier, R., & Herhahn, C. (2005). Why would anyone want to farm here? In R. P. Powers (Ed.), The peopling of Bandelier (pp. 27–34). Santa Fe: School of American Research Press.Google Scholar
  83. Gray, S. T., Graumlich, L. J., Betancourt, J. L., & Pedersen, G. T. (2004). A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since a.d. 1567. Geophysical Research Letters, 31, L12205.CrossRefGoogle Scholar
  84. Hack, J. T. (1942). The changing physical environment of the Hopi Indians of Arizona. Papers of the Peabody Museum 35. Cambridge: Harvard University Press.Google Scholar
  85. Hallauer, A. R., & Troyer, A. F. (1972). Prolific corn hybrids and minimizing risk of stress. In D. Wilkinson (Ed.), Proceedings of the 27th Annual Corn and Sorghum Research Conference (pp. 140–158). Washington: American Seed Trade Association.Google Scholar
  86. Harmsen, G. W., & Van Schreven, D. A. (1955). Mineralization of organic nitrogen in soil. Advances in Agronomy, 7, 299–398.CrossRefGoogle Scholar
  87. Harrison, K. G., Broecker, W. S., & Bonani. (1993). The effect of changing land use on soil radiocarbon. Science, 262, 725–726.CrossRefGoogle Scholar
  88. Hay, R. E., Earley, E. B., & DeTurk, E. E. (1953). Concentration and translocation of nitrogen compounds in the corn plant (Zea Mays) during grain development. Plant Physiology, 28, 606–621.CrossRefGoogle Scholar
  89. Haynes, R. J., Martin, R. J., & Goh, K. M. (1993). Nitrogen fixation, accumulation of soil nitrogen and nitrogen balance for some field-grown legume crops. Field Crops Research, 35, 85–92.CrossRefGoogle Scholar
  90. Hergert, G. W. (1987). Status of residual nitrate-nitrogen soil tests in the United States. In: J. R. Brown (Ed.), Soil testing: Sampling, correlation, calibration, and interpretation (pp. 73–88). Madison, Wisconsin: American Society of Agronomy Special Publication 21, Soil Science Society of America.Google Scholar
  91. Herrmann, A. (2003). Predicting nitrogen mineralization from soil organic matter—A chimera? Unpublished PhD dissertation, Swedish University of Agricultural Sciences, Uppsala.Google Scholar
  92. Hesterman, O. B., Russelle, M. P., Sheaffer, C. C., & Heichel, G. H. (1987). Nitrogen utilization from fertilizer and legume residues in legume–corn rotations. Agronomy Journal, 79, 726–731.CrossRefGoogle Scholar
  93. Hillel, D. (1971). Soil and water: Physical principles and processes. New York: Academic.Google Scholar
  94. Hodge, F. W. (1946). Spanish explorers in the southern United States, 1528–1543. New York: Barnes and Noble.Google Scholar
  95. Hoeft, R. G., & Peck, T. R. (2002). Soil testing and fertility. In R. G. Hoeft & E. Nafziger (Eds.), The Illinois agronomy handbook (pp. 91–131). Urbana-Champaign: University of Illinois Extension.Google Scholar
  96. Homaee, M., Feddes, R. A., & Dirksen, C. (2002). A macroscopic water extraction model for nonuniform transient salinity and water stress. Soil Science Society of American Journal, 66, 1764–1772.CrossRefGoogle Scholar
  97. Homburg, J. A. (2000). Anthropogenic influences on American Indian agricultural soils of the Southwestern United States. Unpublished PhD dissertation, Department of Agronomy, Iowa State University, Ames.Google Scholar
  98. Homburg, J. A., Sandor, J. A., & Norton, J. B. (2005). Anthropogenic influences on Zuni agricultural soils. Geoarchaeology, 20, 661–693.CrossRefGoogle Scholar
  99. Hooker, T. D., & Stark, J. M. (2008). Soil C and N cycling in three semiarid vegetation types: Response to an in situ pulse of plant debris. Soil Biology & Biochemistry, 40, 2678–2685.CrossRefGoogle Scholar
  100. Hsieh, Y. P. (1993). Radiocarbon signature of turnover rates in active soil organic pools. Soil Science Society of America Journal, 57, 1020–1022.CrossRefGoogle Scholar
  101. Huckell, L. W. (2006). Ancient maize in the American Southwest: What does it look like and what can it tell us? In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize (pp. 97–108). New York: Elsevier.Google Scholar
  102. Huntrieser, H., Schlager, H., Feigl, C., & Höller, H. (1998). Transport and production of NOx in electrified thunderstorms: survey of previous studies and new observations at midlatitudes. Journal of Geophysical Research, 103, 28247–28264.CrossRefGoogle Scholar
  103. Jaeger, C. H., Monson, R. K., Fisk, M. C., & Schmidt, S. K. (1999). Seasonal partitioning of nitrogen and soil microorganisms in an alpine ecosystem. Ecology, 80, 1883–1891.CrossRefGoogle Scholar
  104. Jaenicke-Despres, V. R., & Smith, B. D. (2006). Ancient DNA and the integration of archaeological and genetic approaches to the study of maize domestication. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize (pp. 83–95). New York: Elsevier.CrossRefGoogle Scholar
  105. Jalota, S. K., & Prihar, S. S. (1986). Effects of atmospheric evaporativity, soil type, and redistribution time on evaporation from bare soil. Australian Journal of Soil Research, 24, 357–366.CrossRefGoogle Scholar
  106. Jarvis, S. C., Stockdale, E. A., Shepherd, M. A., & Powlson, D. S. (1996). Nitrogen mineralization in temperate agricultural soils: Processes and measurement. Advances in Agronomy, 57, 187–235.CrossRefGoogle Scholar
  107. Jastrow, J. D., & Miller, R. M. (1998). Soil aggregate stabilization and carbon sequestration: Feedbacks through organo-mineral associations. In R. Lal, J. M. Kimball, R. F. Follett, & B. A. Stewart (Eds.), Soil processes and the carbon cycle (pp. 207–223). Boca Raton: CRC.Google Scholar
  108. Jastrow, J. D., Amonette, J. E., & Baily, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80, 5–23.CrossRefGoogle Scholar
  109. Jenkins, M. T. (1941). Influence of climate and weather on growth of corn. In G. Hambidge (Ed.), Climate and man, Yearbook of Agriculture, 1941 (pp. 308–341). Washington: U.S. Department of Agriculture.Google Scholar
  110. Jenkinson, D. S. (1990). The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society of London B, 329, 361–368.CrossRefGoogle Scholar
  111. Jenkinson, D. S., & Rayner, J. H. (1977). The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science, 123, 298–305.CrossRefGoogle Scholar
  112. Johnson, G. A., Hoverstad, T. R., & Greenwald, R. E. (1998). Integrated weed management using narrow corn spacing, herbicides and cultivation. Agronomy Journal, 90, 40–46.CrossRefGoogle Scholar
  113. Kerr, R. A. (2000). A North Atlantic climate pacemaker for the centuries. Science, 288, 1984–1986.CrossRefGoogle Scholar
  114. Lang, C. H., & Riley, C. L. (1966). The Southwestern journals of Adolph F. Bandelier, 1880–1882. Albuquerque: University of New Mexico Press.Google Scholar
  115. Latshaw, J. W., & Miller, E. C. (1924). Elemental composition of the corn plant. Journal of Agricultural Research, 27, 845–861.Google Scholar
  116. Leavitt, S. W., Follett, R. F., & Paul, E. A. (1996). Estimation of slow- and fast-cycling soil organic pools from 6 N HCL hydrolysis. Radiocarbon, 38, 231–239.Google Scholar
  117. Leirós, M. C., Trasar-Cepeda, C., Seoane, S., & Gil-Sotres. (1999). Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biology and Biochemistry, 31, 327–335.CrossRefGoogle Scholar
  118. Leonard, W. H., Brandon, J. F., & Curtis, J. J. (1940). Corn production in Colorado. Fort Collins: Colorado Experiment Station Bulletin 463.Google Scholar
  119. Lerner, B. L. (2000). Wood ash in the garden. http://www.hort.purdue.edu/ext/woodash.html.
  120. Li, J. (2009). Production, breeding and process of maize in China. In J. L. Bennetzen & S. C. Hake (Eds.), Handbook of maize: Its biology (pp. 563–576). New York: Springer.CrossRefGoogle Scholar
  121. Lieth, H. (1975). Modeling the primary productivity of the world. In H. Lieth & R. H. Whittaker (Eds.), Primary productivity of the biosphere, vol. 14 (pp. 237–263). New York: Springer.Google Scholar
  122. Lightfoot, D. R. (1990). The prehistoric pebble-mulched fields of the Galisteo Anasazi: Agricultural innovation and adaptation to environment. Unpublished PhD dissertation, University of Colorado, Boulder.Google Scholar
  123. Lightfoot, D. R., & Eddy, F. W. (1994). The agricultural utility of lithic-mulch gardens: Past and present. GeoJournal, 34(4), 425–437.Google Scholar
  124. Lindemann, W. C., & Glover, C. R. (2003). Nitrogen fixation by legumes. New Mexico Cooperative Extension Service Guide A-129.Google Scholar
  125. Lindquist, J. L., Arkebauer, T. J., Walters, D. T., Cassman, K. G., & Dobermann, A. (2005). Maize radiation use efficiency under optimal growth conditions. Agronomy Journal, 97, 72–78.CrossRefGoogle Scholar
  126. Lindsay, W. L. (1979). Chemical equilibria in soils. New Jersey: Blackburn.Google Scholar
  127. Linsley, B. K., Wellington, G. M., & Schrag, D. P. (2000). Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 a.d.. Science, 290, 1145–1148.CrossRefGoogle Scholar
  128. Lloyd, J., & Taylor. (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315–323.CrossRefGoogle Scholar
  129. Lorenz, K., Lal, R., & Shipitalo, M. J. (2006). Stabilization of organic carbon in chemically separated pools in no-till and meadow soils in Northern Appalachia. Geoderma, 137, 205–211.CrossRefGoogle Scholar
  130. Ludwig, J. A. (1987). Primary productivity in arid lands: Myths and realities. Journal of Arid Environments, 13, 1–7.Google Scholar
  131. MacDonald, G. M., & Case, R. A. (2005). Variations in the Pacific Decadal Oscillation over the past millennium. Geophysical Research Letters, 32(L08703), 4.Google Scholar
  132. MacDowell, M. (1919). Report on the Zuni Reservation, New Mexico. Manuscript on file with the Zuni Archaeology Program, Zuni, New Mexico.Google Scholar
  133. Machinet, G. E., Bertrand, I., Chabbert, B., Watteau, F., Villemin, G., & Recous, S. (2009). Soil biodegradation of maize root residues: Interaction between chemical characteristics and the presence of colonizing micro-organisms. Soil Biology & Biochemistry, 41, 1253–1261.CrossRefGoogle Scholar
  134. Magdoff, F. D., Ross, D., & Amadon, J. (1984). A soil test for nitrogen availability to corn. Soil Science Society of America Journal, 48, 1301–1304.CrossRefGoogle Scholar
  135. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78, 1069–1079.CrossRefGoogle Scholar
  136. Martel, Y. A., & Paul, E. A. (1974). The use of radiocarbon dating of organic matter in the study of soil genesis. Soil Science Society of America Proceedings, 38, 501–506.CrossRefGoogle Scholar
  137. Martin, J. P., & Haider, K. (1986). Influence of mineral colloids on turnover rates of soil organic carbon. In P. M. Huang & M. Schnitzer (Eds.), Interactions of soil minerals with natural organics and microbes (pp. 283–304). Madison: Soil Science Society of America Special Publication 17.Google Scholar
  138. Masse, W. B. (1980). Excavations at Gu Achi: A reappraisal of Hohokam settlement and subsistence in the Arizona Papagueria. Publications in Anthropology No. 12, Western Archaeological Center, Tucson.Google Scholar
  139. Matsuoka, Y., Vigouroux, Y., Goodman, M. M., Sanchez, J., Buckler, E., & Doebly, J. (2002). A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences, 99, 6080–6084.CrossRefGoogle Scholar
  140. Mattson, S., & Pugh, A. J. (1934). The electrokinetics of hydrous oxides and their anionic exchange. Soil Science, 38, 299–313.CrossRefGoogle Scholar
  141. Matula, S. (2003). The influence of tillage treatments on water infiltration into soil profile. Plant and Soil Environment, 49, 298–306.Google Scholar
  142. McCabe, G. J., Palecki, M. A., & Betancourt, J. L. (2004). Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proceedings of the National Academy of Sciences, 101, 4136–4141.CrossRefGoogle Scholar
  143. McDonald, J. (1956). Variability of precipitation in an arid region: A survey of characteristics for Arizona. Technical report on the meteorology and climatology of Arid Regions 1. The Institute of Atmospheric Physics, University of Arizona, Tucson.Google Scholar
  144. Mengü, G. P., & Özgürel, M. (2008). An evaluation of water-yield relations in Maize (Zea mays L.) in Turkey. Pakistan Journal of Biological Sciences, 11, 517–524.CrossRefGoogle Scholar
  145. Miller, E. L., Meeuwig, R. O., & Budy, J. D. (1981). Biomass of singleleaf pinyon and Utah juniper. U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experimental Station Research Paper INT-273.Google Scholar
  146. Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society Series B, 281, 277–294.CrossRefGoogle Scholar
  147. Morgan, P. (2007). Toilets that make compost: Low-cost sanitary toilets that produce valuable compost for crops in an African context. Stockholm Environment Institute EcoSanRes Programme, Stockholm, Sweden. http://www.ecosanres.org/pdffiles/ToiletsThatMakeCompost.pdf.
  148. Morote, C. G. B., Vidor, C., & Mendes, N. G. (1990). Alterações na temperatura do solo pela cobertura morta e irrigação. Revista Brasileirade Ciência do Solo, 18, 81–84.Google Scholar
  149. Mortvedt, J. J., Westfall, D. G., & Croissant, R. L. (2007). Fertilizing corn. Colorado State University Extension Publication No. 0.538, Fort Collins, Colorado.Google Scholar
  150. Muchow, R. C., Sinclair, T. R., & Bennett, J. M. (1990). Temperature and solar radiation effects on potential maize yield across locations. Agronomy Journal, 82, 338–343.CrossRefGoogle Scholar
  151. Muenchrath, D. A., & Salvador, R. J. (1995). Maize productivity and agroecology: Effects of environment and agricultural practices on the biology of maize. In H. W. Toll (Ed.), Soil, water, biology, and belief in prehistoric and traditional southwestern agriculture (pp. 303–333). Albuquerque: New Mexico Archaeological Council Special Publication No. 2.Google Scholar
  152. Muenchrath, D. A., Kuratomi, M., Sandor, J. A., & Homburg, J. A. (2002). Observational study of maize production in semiarid New Mexico. Journal of Ethnobiology, 22, 1–33.Google Scholar
  153. Müller, A. G. (2001). Modelagem da matéria seca e do rendimento de grãos de hilho em relacão à disponibilidade hidrica. Porto Alegre: Tese Doutorado em Fitotecnia.Google Scholar
  154. Myrold, D. D. (1998). Microbial nitrogen transformations. In D. M. Sylvia, J. J. Fuhrmann, P. G. Hartel, & D. A. Zuberer (Eds.), Principles and applications of soil microbiology (pp. 259–294). Upper Saddle River: Prentice Hall.Google Scholar
  155. Nabhan, G. P. (1984). Soil fertility renewal and water harvesting in Sonoran Desert agriculture: The Papago example. Arid Lands Newsletter, 20, 21–28.Google Scholar
  156. Nafziger, E. D. (2002). Corn. In R. Hoeft & E. D. Nafziger (Eds.), Illinois agronomy handbook. University of Illinois Department of Crop Sciences (pp. 22–34). Urbana: University of Illinois.Google Scholar
  157. Nakamoto, T. (1989). Development of rooting zone in corn plant. Japanese Journal of Crop Science, 58, 648–652.Google Scholar
  158. Nesbitt, S. W., Zhang, R., & Orville, R. E. (2000). Seasonal and global NOx production by lightning estimated from the optical transient detector (OTD). Tellus, 52B, 1206–1215.Google Scholar
  159. Ni, F., Cavazos, T., Hughes, M. K., Comrie, A. C., & Funkhouser, G. (2002). Cool-season precipitation in the southwestern USA since ad 1000: Comparison of linear and nonlinear techniques for reconstruction. International Journal of Climatology, 22, 1645–1662.CrossRefGoogle Scholar
  160. Norman, J. M., & Arkebauer, T. J. (1991). Predicting canopy photosynthesis and light use efficiency from leaf characteristics. In K. J. Boote & R. S. Loomis (Eds.), Modeling crop photosynthesis—From biochemistry to canopy (pp. 75–94). Madison: Crop Science Society of America Special Publication 19.Google Scholar
  161. Norton, J. M., & Firestone, M. K. (1991). Metabolic status of bacteria and fungi in the rhizosphere of ponderosa pine seedlings. Applied and Environmental Microbiology, 57, 1161–1167.Google Scholar
  162. Norton, E. R., & Silvertooth, J. C. (1998). Field determination of permanent wilting point. In J. C. Silvertooth (Ed.), Cotton, a College of Agriculture Report Series P-112 (pp. 230–237). Tucson: University of Arizona College of Agriculture and Life Sciences, Cooperative Extension Publication No. AZ1006.Google Scholar
  163. Norton, J. B., Sandor, J. A., & White, C. S. (2003). Hillslope soils and organic matter dynamics within a Native American agroecosystems on the Colorado Plateau. Soil Science Society of America Journal, 67, 225–234.CrossRefGoogle Scholar
  164. Norton, J. B., Sandor, J. A., & White, C. S. (2007a). Runoff and sediments from Hillslope soils within a Native American agroecosystem. Soil Science Society of America Journal, 71, 476–483.CrossRefGoogle Scholar
  165. Norton, J. B., Sandor, J. A., White, C. S., & Laahty, V. (2007b). Organic matter transformations through arroyos and alluvial fan soils within a Native American agroecosystem. Soil Science Society of America Journal, 71, 829–835.CrossRefGoogle Scholar
  166. Noy-Meir, I. (1973). Desert ecosystems: Environment and producers. Annual Review of Ecological Systems, 4, 25–52.CrossRefGoogle Scholar
  167. Odend’hal, S. (1993). Intermediary agricultural energetics: A case study of solar energy linkage with Chinese working cattle. Agriculture, Ecosystems, and Environment, 43, 217–233.CrossRefGoogle Scholar
  168. Parnes, R. (1990). Fertile soil, a grower’s guide to organic and inorganic fertilizers. Davis: AgAccess.Google Scholar
  169. Parton, W. J., Stewart, J. W. B., & Cole, C. V. (1988). Dynamics of C, N, P, and S in grassland soils: A model. Biogeochemistry, 5, 109–131.CrossRefGoogle Scholar
  170. Parton, W. J., Scurolci, M. D., Ojima, D. S., Gilmanor, T. G., Scholos, R. J., Schimel, D. S., et al. (1993). Observations and modeling of biomass and soil organic matter dynamics for the grassland biome world wide. Global Biogeochemical Cycles, 7, 785–809.CrossRefGoogle Scholar
  171. Paul, E. A., Horwath, W. R., Harris, D., Follett, R., Leavitt, S., Kimball, B. A., et al. (1995). Establishing the pool sizes and fluxes of CO2 emissions from soil organic matter turnover. In R. J. Lal, J. Kimble, E. Levine, & B. A. Stewart (Eds.), Soils and global change (pp. 297–308). Boca Raton: Lewis.Google Scholar
  172. Paul, E. A., Follett, R. F., Leavitt, S. W., Halvorson, A., Peterson, G. A., & Lyons, D. J. (1997). Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Science Society of America Journal, 61, 1058–1067.CrossRefGoogle Scholar
  173. Paul, E. A., Collins, H. P., & Leavitt, S. W. (2001). Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma, 104, 239–256.CrossRefGoogle Scholar
  174. Paul, E. A., Morris, S. J., Conant, R. T., & Plante, A. F. (2006). Does the acid hydrolysis–incubation method measure meaningful soil organic carbon pools? Soil Science Society of America Journal, 70, 1023–1035.CrossRefGoogle Scholar
  175. Petersen, K. L. (1986), Climate reconstruction for the Dolores Project area. In D. A. Breternitz, C. K. Robinson, & G. T. Gross (Compilers), Dolores Archaeological Program: Final Synthetic Report (pp. 311–331). Denver: United States Department of the Interior, Bureau of Reclamation Engineering and Research Center.Google Scholar
  176. Pierzynski, G. M. (2000). Methods of phosphorous analysis for soils, sediments, residuals, and waters. Manhattan, Kansas: Southern Cooperative Series Bulletin No. 396.Google Scholar
  177. Piperno, D. R., & Flannery, K. V. (2001). The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications. Proceedings of the National Academy of Sciences, 98, 2101–2103.CrossRefGoogle Scholar
  178. Pordesimo, L. O., Edens, W. C., & Sokhansanj, S. (2004). Distribution of aboveground biomass in corn stover. Biomass and Bioenergy, 26, 337–343.CrossRefGoogle Scholar
  179. Porter, E., Tonnessen, K., Sherwell, J., & Grant, R. (2000). Nitrogen in the nation’s rain. NADP Brochure 2000-01C (revised). http://nadp.sws.uiuc.edu/lib/brochures/nitrogen.pdf.
  180. Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land-use change: Processes and potential. Global Change Biology, 6, 317–327.CrossRefGoogle Scholar
  181. Prevost, D. J., Ahrens, R. J., & Kriz, D. M. (1984). Traditional Hopi agricultural methods. Journal of Soil and Water Conservation, 39, 170–171.Google Scholar
  182. Price, C., Penner, J., & Prather, M. (1997). NOx from lightning. 1. Global distribution based on lightning physics. Journal of Geophysical Research, 102, 5929–5941.CrossRefGoogle Scholar
  183. Qin, R., Stamp, P., & Richner, W. (2006). Impact of tillage on maize rooting in a Cambisol and Luvisol in Switzerland. Soil & Tillage Research, 85, 50–61.CrossRefGoogle Scholar
  184. Raison, R. J., Khanna, P. K., & Woods, P. V. (1985). Mechanisms of element transfer to the atmosphere during vegetation fires. Canadian Journal of Forest Research, 15, 132–140.CrossRefGoogle Scholar
  185. Rakshit, A., & Bhadoria, P. (2008). Measurement of arbuscular mycorrhizal hyphal length and prediction of P influx by mechanistic model. World Journal of Agricultural Sciences, 4, 23–27.Google Scholar
  186. Ranney, R. W. (1969). An organic carbon–organic matter conversion equation for Pennsylvania surface soils. Soil Science Society of America Journal, 33, 809–811.CrossRefGoogle Scholar
  187. Rao, D. L. N., & Batra, L. (1983). Ammonia volatilization from applied nitrogen in alkali soils. Plant Soil, 70, 219–228.CrossRefGoogle Scholar
  188. Rasmussen, P. E., Douglas, C. L., Jr., Collins, H. P., & Albrecht, S. L. (1998). Long-term cropping system effects on mineralizable nitrogen in soil. Soils Biology and Biochemistry, 30, 1829–1837.CrossRefGoogle Scholar
  189. Rauch, W., Brockmann, D., Peters, I., Larsen, T. A., & Gujer, W. (2003). Combining urine separation with waste design: An analysis using a stochastic model for urine production. Water Research, 37, 681–689.CrossRefGoogle Scholar
  190. Reddy, K. S., Mills, H. A., & Jones, J. B., Jr. (1991). Corn responses to post-tasseling nitrogen deprivation and to various ammonium/nitrate ratios. Agronomy Journal, 83, 201–203.CrossRefGoogle Scholar
  191. Risse, M. (2002). Best management practices for wood ash as agricultural soil amendment. http://hubcap.clemson.edu/∼blpprt/bestwoodash.html.
  192. Rose, D. A. (1968). Water movement in porous materials III: Evaporation of water from soil. British Journal of Applied Physics, 1, 1779–1791.Google Scholar
  193. Runge, E. C. A. (1968). Effects of rainfall and temperature interactions during the growing season on corn yield. Agronomy Journal, 60, 503–507.CrossRefGoogle Scholar
  194. Sala, O. E., Parton, W. J., Joyce, L. A., & Lauenroth, W. K. (1988). Primary production of the central grassland region of the United States. Ecology, 69, 40–45.CrossRefGoogle Scholar
  195. Salton, J. C., & Mielniczuk, J. (1995). Relações entre sistemas de preparo, temperatura e umidade de um podzólico vermelho-escuro de Eldorado do Sul (RS). Revista Brasileira de Ciência do Solo, 19, 313–2319.Google Scholar
  196. Sandor, J. A. (1995). Searching soil for clues about Southwest prehistoric agriculture. In H. W. Toll (Ed.), Soil, water, biology, and belief in prehistoric and traditional Southwestern Agriculture (pp. 119–137). Albuquerque: New Mexico Archaeological Council Special Publication No. 2.Google Scholar
  197. Sandor, J. A., & Gersper, P. L. (1988). Evaluation of soil fertility in some prehistoric agricultural terraces in New Mexico. Agronomy Journal, 80, 846–850.CrossRefGoogle Scholar
  198. Sandor, J. A., Norton, J. B., Homburg, J. A., Muenchrath, D. A., White, C. S., Williams, S. E., et al. (2007). Biogeochemical studies of a Native American runoff agroecosystem. Geoarchaeology, 22, 359–386.CrossRefGoogle Scholar
  199. Sawyer, J. E., & Mallarino, A. P. (2007). Nutrient removal when harvesting corn stover. Iowa State University Extension Integrated Crop Management Newsletter IC-498, pp. 251–253. Ames: Iowa State Agronomy Extension.Google Scholar
  200. Sawyer, J. E., Mallarino, A. P., Killorn, R., & Barnhart, S. K. (2008). A general guide for crop nutrient and limestone recommendations in Iowa. Iowa State University Extension PM 1688. http://www.extension.iastate.edu/Publications/PM1688.pdf.
  201. Schroeder, J. J., Neeteson, J. J., Oenema, O., & Stuik, P. C. (2000). Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crops Research, 66, 151–164.CrossRefGoogle Scholar
  202. Schubert, S. D., Suarez, M. J., Pegion, P. J., Koster, R. D., & Bacmeister, J. T. (2004). On the cause of the 1930s dust bowl. Science, 303, 1855–1859.CrossRefGoogle Scholar
  203. Shaw, R. H. (1988). Climate requirement. In G. F. Sprague & J. W. Dudley (Eds.), Corn and corn improvement, 3rd ed. (pp. 609–638). Madison: American Society of Agronomy.Google Scholar
  204. Shinners, K. J., & Binversie, B. N. (2007). Fractional yield and moisture of corn stover biomass produced in the northern US Corn Belt. Biomass & Energy, 31, 576–584.CrossRefGoogle Scholar
  205. Silveira, M. L., Comerford, N. B., Reddy, K. R., Cooper, W. T., & El-Rifai, H. (2008). Characterization of soil organic carbon pools by acid hydrolysis. Geoderma, 144, 405–414.CrossRefGoogle Scholar
  206. Sinclair, T. R., & Muchow, R. C. (1999). Radiation use efficiency. Advances in Agronomy, 65, 215–265.CrossRefGoogle Scholar
  207. Smith, R. (2004). Nitrogen dynamics in woody plant ecosystems: Almond orchards, winegrape vineyards, and pinyon–juniper woodlands. Unpublished PhD dissertation, University of California, Davis.Google Scholar
  208. Soleri, D., & Smith, S. E. (1995). Morphological and phonological comparisons of two Hopi maize varieties conserved in situ and ex situ. Economic Botany, 49, 56–77.CrossRefGoogle Scholar
  209. Sommer, S. G., Olesen, J. E., & Christensen, B. T. (1991). Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry. Journal of Agricultural Science, 117, 91–100.CrossRefGoogle Scholar
  210. Soudi, B., Sbai, A., & Chiang, C. N. (1990). Nitrogen mineralization in semiarid soils of Morocco: Rate constant variation with depth. Soil Science Society of America Journal, 54, 756–761.CrossRefGoogle Scholar
  211. Stephen, A. M. (1936). Hopi journal of Alexander Stephen. In E. C. Parsons (Ed.), Columbia University contribution to anthropology series 23. New York: Columbia University Press.Google Scholar
  212. Stevenson, M. C. (1915). Ethnobotany of the Zuni Indians: Annual report (1908–1909). Bureau of American Ethnology 30 (pp. 35–102). Washington: Smithsonian Institution.Google Scholar
  213. Stewart, G. R. (1940). Conservation in Pueblo agriculture. Scientific Monthly, 56(201–220), 329–340.Google Scholar
  214. Stuart, J. W. (1990). Maize use by rural Mesoamerican households. Human Organization, 49, 135–139.Google Scholar
  215. Stott, E., Kassin, G., Jarrell, W. M., Martin, J. P., & Haider, K. (1983). Stabilization and incorporation into biomass of specific plant carbons during biodegradation in soil. Plant and Soil, 70, 15–26.CrossRefGoogle Scholar
  216. Swift, M. J., Heal, O. W., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems. Studies in ecology, vol. 5. Oxford: Blackwell Scientific.Google Scholar
  217. Ta, C. T., & Weiland, R. T. (1992). Nitrogen partitioning in maize during ear development. Crop Science, 32, 443–451.CrossRefGoogle Scholar
  218. Taiz, L., & Zeiger, E. (2002). Plant physiology. Sunderland: Sinauer.Google Scholar
  219. Thomison, P. (2009). Managing “pollen drift” to minimize contamination on non-GMO corn. Ohio State University Extension Fact Sheet AGF-153-04. Columbus: Ohio State.Google Scholar
  220. Thompson, L. M. (1969). Weather and technology in the production of corn in the U.S. Corn Belt. Agronomy Journal, 61, 453–456.CrossRefGoogle Scholar
  221. Tie, X., Zhang, R., Brasseur, G., & Lie, W. (2002). Global NOx production by lightning. Journal of Atmospheric Chemistry, 43, 61–74.CrossRefGoogle Scholar
  222. Timmons, D. R., & Cruse, R. M. (1990). Effect of fertilization method and tillage on nitrogen-15 recovery by corn. Agronomy Journal, 82, 777–784.CrossRefGoogle Scholar
  223. Tisdale, S., Nelson, W. L., & Beaton, J. D. (1985). Soil fertility and fertilizers, 4th ed.. New York: Macmillan.Google Scholar
  224. Todd, R. W., Klocke, N. L., Hergert, G. W., & Parkhurst, A. M. (1991). Evaporation from soil influenced by crop shading, crop residue, and wetting regime. Transactions of the American Society of Agricultural and Biological Engineers, 34, 461–466.Google Scholar
  225. Underhill, R. M. (1946). Work a day life of the Pueblos. Indian life and customs 4. Phoenix: U.S. Office of Indian Affairs, Phoenix Indian School.Google Scholar
  226. U.S. Department of Agriculture (2009). Soils data. http://soils.usda.gov/.
  227. U.S. Patent Application 20040126460 (2004). Nutritional mineral supplements from plant ash. http://www.freepatentsonline.com/y2004/0126460.html.
  228. Van Epps, G. A., Barker, J. R., & McKell, C. M. (1982). Energy biomass from large rangeland shrubs of the Intermountain United States. Journal of Range Management, 35, 22–25.CrossRefGoogle Scholar
  229. Vierra, B. J., & Ford, R. I. (2006). Early maize agriculture in the northern Rio Grande Valley, New Mexico. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize (pp. 497–510). New York: Elsevier.CrossRefGoogle Scholar
  230. Vinneras, B. (2002). Possibilities for sustainable nutrient recycling by faecal separation combined with urine diversion. Agraria 353, Acta Universitatis Agriculturae Sueciae, Uppsala: Swedish University of Agricultural Sciences.Google Scholar
  231. Waksman, S. A., & Gerretsen, F. C. (1931). Influence of temperature and moisture upon the nature and extent of decomposition of plant residues by microorganisms. Ecology, 12, 33–60.CrossRefGoogle Scholar
  232. Wang, Y., DeSilva, A. W., Goldenbaum, G. C., & Dickerson, R. R. (1998). Nitric oxide production by simulated lightning: Dependence on current, energy and pressure. Journal of Geophysical Research, 103, 19149–19160.CrossRefGoogle Scholar
  233. Wang, W. J., Smith, C. J., Chalk, P. M., & Chen, D. (2001). Evaluating chemical and physical indices of nitrogen mineralization capacity with an unequivocal reference. Soil Science Society of America Journal, 65, 368–376.CrossRefGoogle Scholar
  234. Weaver, J. E. (1926). Root development of field crops. London: McGraw-Hill.Google Scholar
  235. West, N. E. (1990). Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Advances in Ecological Research, 20, 179–223.CrossRefGoogle Scholar
  236. West, N. E. (1991). Nutrient cycling in soils of semiarid and arid regions. In J. Skujins (Ed.), Semi-arid lands and deserts: Soil resource and reclamation (pp. 295–332). New York: Mercel Dekker.Google Scholar
  237. Western Regional Climate Center (2009). http://www.wrcc.dri.edu/.
  238. Westgate, M. E., Otegui, M. E., & Andrade, F. H. (2004). Physiology of the corn plant. In C. W. Smith, J. Betran, & E. C. A. Burnge (Eds.), Corn: Origin history, technology, and production (pp. 235–272). New York: Wiley Series in Crop Science, Wiley.Google Scholar
  239. White, C. S., & Thomas, C. J. (1999). Nitrogen contributions from precipitation to a corn field at Zuni, New Mexico. Paper presented at the Annual Meeting of the American Society of Agronomy.Google Scholar
  240. Williams, M. A., Rice, C. W., & Owensby, C. E. (2000). Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant Soil, 227, 127–137.CrossRefGoogle Scholar
  241. Wilson, L. G., & Artiola, J. F. (2004). Soil and vadose zone sampling. In J. F. Artiola, I. L. Pepper, & M. Brusseau (Eds.), Environmental monitoring and characterization (pp. 103–120). Burlington: Elsevier Academic.Google Scholar
  242. Woodbury, R. B. (1961). Prehistoric agriculture at Point of Pines. Arizona: Memoirs of the Society for American Archaeology. 17.Google Scholar
  243. Wymer, D. A. (1992). Trends and disparities: The Woodland paleoethnobotanical record of the Mid-Ohio Valley. In M. F. Seeman (Ed.), Cultural variability in context: Woodland settlements of the Mid-Ohio Valley (pp. 65–76). Kent: Kent State University Press MCJA Special Paper No. 7.Google Scholar
  244. Zibilske, L. M., & Materon, L. A. (2005). Biochemical properties of decomposing cotton and corn stem and root residues. Soil Science Society of America Journal, 69, 378–386.CrossRefGoogle Scholar
  245. Zou, X. M., Ruan, H. H., Fu, Y., Yang, X. D., & Sha, L. Q. (2005). Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure. Soil Biology & Biochemistry, 37, 1923–1928.CrossRefGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  1. 1.National Research ProgramU.S. Geological SurveyBoulderUSA

Personalised recommendations