Journal of Archaeological Method and Theory

, Volume 13, Issue 3, pp 135–187 | Cite as

Strontium Isotopes from the Earth to the Archaeological Skeleton: A Review

  • R. Alexander BentleyEmail author

Strontium isotope analysis of archaeological skeletons has provided useful and exciting results in archaeology in the last 20 years, particularly by characterizing past human migration and mobility. This review covers the biogeochemical background, including the origin of strontium isotope compositions in rocks, weathering and hydrologic cycles that transport strontium, and biopurification of strontium from to soils, to plants, to animals and finally into the human skeleton, which is subject to diagenesis after burial. Spatial heterogeneity and mixing relations must often be accounted for, rather than simply ``matching'' a measured strontium isotope value to a presumed single-valued geologic source. The successes, limitations and future potential of the strontium isotope technique are illustrated through case studies from geochemistry, biogeochemistry, ecology and archaeology.


87Sr-/86Sr- teeth tooth bone prehistoric migration 



I thank Clark Johnson, Mike Richards and two anonymous reviewers for very helpful comments. I thank Bill White for his invaluable instruction in years past, and James Burton, Martin Kennedy and Janet Montgomery for sharing their considerable knowledge along the way.


  1. Åberg, G. (1995). The use of natural strontium isotopes as tracers in environmental studies. Water, Air, and Soil Pollution 79: 309–322.Google Scholar
  2. Åberg, G., Fosse, G., and Stray, H. (1998). Man, nutrition and mobility: A comparison of teeth and bone from the Medieval era and the present from Pb and Sr isotopes. Science of the Total Environment 224: 109–119.Google Scholar
  3. Åberg, G., Jacks, G., and Hamilton, P. J. (1989). Weathering rates and 87Sr/86Sr ratios: An isotopic approach. Journal of Hydrology 109: 65–78.Google Scholar
  4. Åberg G., Jacks, G., Wickman, T., and Hamilton, P. J. (1990). Strontium isotopes in trees as indicator for calcium availability. Catena 17:1–11.Google Scholar
  5. Arbogast, R.-M. (2000). Zu den Tierknochen aus Vaihingen. In Krause R. (ed.), Die Bandkeramische Siedlungsgrabung bei Vaihingen an der Enz ( Krs Ludwigsburg) Baden-Württemberg, Bericht der Römisch Germanischen Kommission 79, 1998, pp. 101–104.Google Scholar
  6. Aubert, D., Probst, A., Stille, P., and Viville, D. (2002). Evidence of hydrological control of Sr behavior in stream water (Strengbach catchment, Vosges mountains, France). Applied Geochemistry 17: 285–300.Google Scholar
  7. Bacon, J. R., and Bain, D. C. (1995). Characterization of environmental water samples using strontium and lead stable-isotope compositions. Environmental Geochemistry and Health 17: 39–49.Google Scholar
  8. Bain, D. C., Midwood, A. J., and Miller, J. D. (1998). Strontium isotope ratios in streams and the effect of flow rate in relation to weathering in catchments. Catena 32: 143–151.Google Scholar
  9. Balasse, M. (2003). Potential biases in sampling design and interpretation of intra-tooth isotope analysis. International Journal of Osteoarchaeology 13: 3–10.Google Scholar
  10. Balasse, M., Ambrose, S. H., Smith, A. B., and Price, T. D. (2002). The seasonal mobility model for prehistoric herders in the south-western cape of South Africa assessed by isotopic analysis of sheep tooth enamel. Journal of Archaeological Science 29: 917–932.Google Scholar
  11. Bashkin, V. N. (2002). Modern Biogeochemisry, Kluwer Academic, Dordrecht.Google Scholar
  12. Beard, B. L., and Johnson C. M. (2000). Strontium isotope composition of skeletal material can determine the birth place and geographic mobility of humans and animals. Journal of Forensic Sciences 45: 1049–1061.Google Scholar
  13. Benson, L., Cordell, L., Vincent, K., Taylor, H., Stein, J., Farmer, G. L., and Futa, K. (2003). Ancient maize from Chacoan great houses: Where was it grown? Proceedings of the National Academy of Sciences USA 100: 13111–13115.Google Scholar
  14. Bentley, R. A. (2001). Human Migration in Early Neolithic Europe: A Study by Strontium and Lead Isotope Analysis of Archaeological Skeletons. Ph.D dissertation, Department of Anthropology, University of Wisconsin.Google Scholar
  15. Bentley, R. A. (2004). Characterising human mobility by strontium isotope analysis of the skeletons. In Higham, C. F. W., and Thosarat, R. (eds.), Khok Phanom Di: Summary and Conclusions, Oxbow Books, Oxford, pp. 159–166.Google Scholar
  16. Bentley, R. A., and Knipper, C. (2005a). Geographic patterns in biologically-available strontium, carbon and oxygen isotopes signatures in prehistoric SW Germany. Archaeometry 47: 629–644.Google Scholar
  17. Bentley, R. A., and Knipper, C. (2005b). Transhumance at the early Neolithic settlement at Vaihingen (Germany). Antiquity 79 (December: “Online Project Gallery”).Google Scholar
  18. Bentley, R. A., Pietrusewsky, M., Douglas, M. T., and Atkinson, T. C. (2005). Matrilocality during the prehistoric transition to agriculture in Thailand? Antiquity 79: 865–881.Google Scholar
  19. Bentley, R. A., Price, T. D., and Stephan, E. (2004). Determining the ‘local’ 87Sr/86Sr range for archaeological skeletons: A case study from Neolithic Europe. Journal of Archaeological Science 31: 365–375.Google Scholar
  20. Bentley, R. A., Krause, R., Price, T. D., and Kaufmann, B. (2003). Human mobility at the early Neolithic settlement of Vaihingen, Germany: Evidence from strontium isotope analysis. Archaeometry 45: 471–486.Google Scholar
  21. Bentley, R. A., Price, T. D., Lüning, J., Gronenborn, D., Wahl, J., and Fullagar, P. D. (2002). Human migration in early Neolithic Europe. Current Anthropology 43: 799–804.Google Scholar
  22. Bern, C. R., Townsend, A. R., and Farmer, G. L. (2005). Unexpected dominance of parent-material strontium in a tropical forest on highly weathered soils. Ecology 86: 626–632.Google Scholar
  23. Birchall, J., O'Connell, T. C., Heaton, T. H. E., and Hedges, R. E. M. (2005). Hydrogen isotope ratios in animal body protein reflect trophic level. Journal of Animal Ecology 74: 877–881.Google Scholar
  24. Blum, J. D., Taliaferro, E. H., Weisse, M. T., and Holmes, R. T. (2000). Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between two forest ecosystems in the northeastern USA. Biogeochemistry 49: 87–101.Google Scholar
  25. Blum, J. D., Taliaferro, H., and Holmes, R. T. (2001). Determining the sources of calcium for breeding migratory songbirds using stable strontium isotopes. Oecologia 126: 569–574.Google Scholar
  26. Bocherens, H., Brinkman, D. B., Dauphin, Y., and Mariotti, A. (1994). Microstructural and geochemical investigations on Late Cretaceous archaeosaur teeth from Alberta, Canada. Canadian Journal of Earth Science 31: 783–792.Google Scholar
  27. Böhlke, J. K., and Horan, M. (2000). Strontium isotope geochemistry of groundwaters and streams affected by agriculture, Locust Grove, MD. Applied Geochemistry 15: 599–609.Google Scholar
  28. Borg, L. E., and Banner, J. L. (1996). Neodymium and strontium isotopic constraints on soil sources in Barbados, West Indies. Geochimica et Cosmochimica Acta 60: 4193–4206.Google Scholar
  29. Bowring, S. A., Williams, I. S., and Compston, W. (1989). 3.96 Ga gneisses from the Slave Province, Northwest-Territories, Canada. Geology 17: 971–975.Google Scholar
  30. Budd, P., Montgomery, M., Barreiro, B., and Thomas, R. G. (2000). Differential digenesis of strontium in archaeological human dental tissues. Applied Geochemistry 15: 687–694.Google Scholar
  31. Budd, P., Millard, A., Chenery, C., Lucy, S., and Roberts, C. (2004). Investigating population movement by stable isotope analysis: A report from Britain. Antiquity 78: 127–140.Google Scholar
  32. Buikstra, J. D., Price, T. D., Burton, J. H., and Wright, L. E. (2003). Tombs from the Copan acropolis: A life history approach. In Bell, E., Canuto, M., and Sharer, R. J. (eds.), Understanding Early Classic Copan, University of Pennsylvania Museum Publications, Philadelphia, pp. 185–206.Google Scholar
  33. Burton, J. H., and Price, T. D. (1990). The ratio of barium to strontium as a a paleodietary indicator of consumption of marine resources. Journal of Archaeological Science 17: 547–557.Google Scholar
  34. Burton, J. H., and Wright, L. E. (1995). Nonlinearity in the relationship between bone Sr/Ca and diet: paleodietary implications. American Journal of Physical Anthropology 96: 273–282.Google Scholar
  35. Burton, J. H., Price, T. D., and Middleton, W. D. (1999). Correlation of bone Ba/Ca and Sr/Ca due to biological purification of calcium. Journal of Archaeological Science 26: 609–616.Google Scholar
  36. Burton, J. H., Price, T. D., Cahue, L., and Wright, L. E. (2003). The use of barium and strontium abundances in human skeletal tissues to determine their geographic origins. International Journal of Osteoarchaeology 13: 88–95.Google Scholar
  37. Capo, R. C., Stewart, B. W., and Chadwick, O. A. (1998). Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma 82: 197–225.Google Scholar
  38. Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J., and Hedin, L. O. (1999). Changing sources of nutrients during four million years of ecosystem development. Nature 397: 491–497.Google Scholar
  39. Chamberlain, C. P., Blum, J. D., Holmes, R. T., Feng, X., Sherry, T. W., and Graves, G. R. (1997). The use of isotope tracers for identifying populations of migratory birds. Oecologia 109: 132–141.Google Scholar
  40. Chiaradia, M., Gallay, A., and Todt, W. (2003). Differential lead and strontium contamination styles of prehistoric human teeth at a Swiss necropolis (Sion, Valais). Applied Geochemistry 18: 353–370.Google Scholar
  41. Collins, M. J., and Riley, M. S. (2000). Amino acid racemization in biominerals, the impact of protein degradation and loss. In Goodfriend, G. A., Collins, M. J., Fogel, M., Macko, S., and Wehmiller, J. F. (eds.), Perspectives in Amino Acid and Protein Geochemistry, Oxford University Press, Oxford, pp. 120–142.Google Scholar
  42. Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C. I., and Roberts, J. P. (2002). The survival of organic matter in bone: a review. Archaeometry 44: 383–394.Google Scholar
  43. Comar, C. L., Russel, R. S., and Wasserman, R. H. (1957). Strontium-calcium movement from soil to man. Science 129: 485–492.Google Scholar
  44. Cox, G., and Sealy, J. (1997). Investigating identity and life histories: Isotopic analysis and historical documentation of slave skeletons found on the Cape Town foreshore, South Africa. International Journal of Historical Archaeology 1: 207–224.Google Scholar
  45. Dasch, E. J. (1969). Strontium isotopes in weathering profiles, deep-sea sediments and sedimentary rocks. Geochimica et Cosmochimica Acta 33: 1521–1522.Google Scholar
  46. DeNiro, M. J., and Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495–506.Google Scholar
  47. DePaolo, D. J. (2004). Calcium isotopic variations produced by biological, kinetic, radiogenic and nucleosynthetic processes. Reviews in Mineralogy and Geochemistry 55: 255–288.CrossRefGoogle Scholar
  48. Dickin, A. P. (1995). Radiogenic Isotope Geology, Cambridge University Press, New York.Google Scholar
  49. Dijkstra, F. A., Van Breemen, N., Jongmans, A.G., Davies, G. R., and Likens, G. E. (2003). Calcium weathering in forested soils and the effect of different tree species. Biogeochemistry 62: 253–275.Google Scholar
  50. Dolphin, A. E., Kang, D., Goodman, A. H., and Amarasiriwardena, D. D. (2003). Microspatial analyses of intra- and intertooth variations in the distribution of trace elements. American Journal of Physical Anthropology Supplement 36: 90.Google Scholar
  51. Driessens, F. C. M., and Verbeeck, R. M. H. (1990). Biominerals, CRC Press, Boca Raton, FL.Google Scholar
  52. Elias, R. W., Hirao, Y., and Patterson, C. C. (1982). The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochimica et Cosmochimica Acta 46: 2561–2580.Google Scholar
  53. Ericson, J. E. (1985). Strontium isotope characterization in the study of prehistoric human ecology. Journal of Human Evolution 14: 503–514.Google Scholar
  54. Ericson, J. E. (1989). Some problems and potentials for strontium isotope analysis for human and animal ecology. In Rundel, P. W., Ehleringer, J. R., and Nagy, K. A. (eds.), Stable Isotopes in Ecological Research, Springer Verlag, New York, pp. 252–259.Google Scholar
  55. Ezzo, J. A. (1994a). Zinc as a paleodietary indicator—an issue of theoretical validity in bone-chemistry analysis. American Antiquity 59: 606–621.Google Scholar
  56. Ezzo, J. A. (1994b). Putting the chemistry back into archaeological bone chemistry analysis—modeling potential paleodietary indicators. Journal of Anthropological Archaeology 13: 1–34.Google Scholar
  57. Ezzo, J. A., Johnson, C. M., and Price, T. D. (1997). Analytical perspective on prehistoric migration: A case study from east-central Arizona. Journal of Archaeological Science 24: 447–466.Google Scholar
  58. Ezzo, J. A., and Price, T. D. (2002). Migration, regional reorganization, and spatial group composition at Grasshopper Pueblo, Arizona. Journal of Archaeological Science 29: 499–520.Google Scholar
  59. Faure, G. (1986). Principles of Isotope Geology, John Wiley, New York.Google Scholar
  60. Fincham, A. G., Moradian-Oldak, J., and Simmer, J. P. (1999). The structural biology of the developing dental enamel matrix. Journal of Structural Biology 126: 270–299.Google Scholar
  61. Fricke, H. C., and O’Neil, J. R. (1996). Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology 126: 91–99.Google Scholar
  62. Gallet, S., Jahn, B. M., Lanoe, B. V., Dia, A., and Rossello, E. (1998). Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters 156: 157–172.Google Scholar
  63. Ghazi, A. M. (1994). Lead in archaeological samples - an isotopic study by ICP-MS. Applied Geochemistry 9: 627–636.Google Scholar
  64. Gilbert, C., Sealy, J., and Sillen, A. (1994). An investigation of barium, calcium and strontium as palaeodietary indicators in the southwestern Cape, South Africa. Journal of Archaeological Science 21: 173–184.Google Scholar
  65. Gilbert, M. T. P., Wilson, A. S., Bunce, M., Hansen, A. J., Willersley, E., Shapiro, B., Higham, T. F. G., Richards, M. P., O'Connell, T. C., Tobin, D. J., Janaway, R. C., and Cooper, A. (2004). Ancient mitochondrial DNA from hair. Current Biology 14: 463–464.Google Scholar
  66. Goldstein, S. J., and Jacobsen, S. B. (1987). The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater. Chemical Geology 66: 245–272.Google Scholar
  67. Gosz, J. R., Brookins, D. G., and Moore, D. I. (1983). Using strontium isotope ratios to estimate inputs into ecosystems. Bioscience 33: 23–30.Google Scholar
  68. Graustein, W. C. (1989). 87Sr/86Sr ratios measure the sources and flow of strontium in terrestrial ecosystems. In Rundel, P. W., Ehleringer, J. R., and Nagy, K. A. (eds.), Stable Isotopes in Ecological Research, Springer-Verlag, New York, pp. 491–512.Google Scholar
  69. Graustein, W. C., and Armstrong, R. (1983). The use of 87Sr/86Sr ratios to measure atmospheric transport into forested watersheds. Science 219: 289–292.Google Scholar
  70. Greenfield, H. J. (1988). Bone consumption by pigs in a contemporary Serbian village: Implications for the interpretation of prehistoric faunal assemblages. Journal of Field Archaeology 15: 473–479.Google Scholar
  71. Gregg, S. A. (1988). Foragers and Farmers: Population Interaction and Agricultural Expansion in Prehistoric Europe, University of Chicago Press, Chicago.Google Scholar
  72. Grupe, G., Price, T. D., and Söllner, F. (1999). A reply to the comment by Peter Horn and Dieter Müller-Sohnius. Applied Geochemistry 14: 271–275.Google Scholar
  73. Grupe, G., Price, T. D., Schröter, P., Söllner, F., Johnson, C. M., and Beard, B. L. (1997). Mobility of Bell Beaker people revealed by strontium isotope ratios of tooth and bone: A study of southern Bavarian skeletal remains. Applied Geochemistry 12: 517–525.Google Scholar
  74. Haak, W., Forster, P., Bramanti, B., Matsumura, S., Brandt, G., Tänzer, M., Villems, R., Renfrew, C., Gronenborn, D., Alt, K. W., and Burger, J. (2005). Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science 310: 1016–1018.Google Scholar
  75. Hall-Martin, A. J., Van Der Merwe, N. J., Lee-Thorp, J. A., Armstrong, R. A., Mehl, C. H., Struben, S., and Tykot, R. (1993). Determination of species and geographic origin of rhino horn by isotopic analysis and its possible application to trade control. In Ryder, O. A. (ed.), Rhinoceros Biology and Conservation, Zoological Society of San Diego, San Diego, pp. 123–135.Google Scholar
  76. Hare, P. E., Fogel, M. L., Stafford, T. W., Mitchell, A. D., and Hoering, T. C. (1991). The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. Journal of Archaeological Science 18: 277–292.Google Scholar
  77. Hatté, C., Antoine, P., Fontugne, M., Rousseau, D.-D., Tisnérat-Laborde, N., and Zöller, L. (1999). New chronology and organic matter δ 13C paleoclimatic significance of Nuβloch loess sequence (Rhine Valley, Germany). Quaternary International 62: 85–91.Google Scholar
  78. Heaton, T. H. E. (1999). Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: Implications for paleodiet studies. Journal of Archaeological Science 26: 637–649.Google Scholar
  79. Hedges, R. E. M. (2002). Bone diagenesis: An overview of processes. Archaeometry 44: 319–328.Google Scholar
  80. Hedges, R. E. M., Stevens, R. E., and Koch, P. L. (2006). Isotopes in bone and teeth. In Leng, M. J. (ed.), Isotopes in Palaeoenvironmental Research, Springer, pp. 117–146.Google Scholar
  81. Hill, P. A. (1998). Bone remodeling. British Journal of Orthopaedics 25: 101–107.Google Scholar
  82. Hillson, S. (1986). Teeth, Cambridge University Press.Google Scholar
  83. Hillson, S. (1997). Dental Anthropology, Cambridge University Press, Cambridge.Google Scholar
  84. Hodell, D. A., Quinn, R. L., Brenner, M., and Kamenov, G. (2004). Spatial variation of strontium isotopes (87Sr/86Sr) in the Maya region: A tool for tracking ancient human migration. Journal of Archaeological Science 31: 585–601.Google Scholar
  85. Hofmann, A. W. (1988). Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90: 297–314.Google Scholar
  86. Hoogewerff, J., Papesch, W., Kralik, M., Berner, M., Vroon, P., Miesbauer, H., Gaber, O., Kunzel, K. H., and Kleinjans, J. (2001). The last domicile of the iceman from Hauslabjoch: A geochemical approach using Sr, C and O isotopes and trace element signatures. Journal of Archaeological Science 28: 983–989.Google Scholar
  87. Hoppe, K. A. (2004). Late Pleistocene mammoth herd structure, migration patterns, and Clovis hunting strategies inferred from isotopic analyses of multiple death assemblages. Paleobiology 30: 129–145.Google Scholar
  88. Hoppe, K. A., Koch, P. L., Carlson, R. W., and Webb, D. S. (1999). Tracking mammoths and mastodons: Reconstruction of migratory behavior using strontium isotope ratios. Geology 27: 439–442.Google Scholar
  89. Hoppe, K. A., Koch, P. L., and Furutani, T. T. (2003). Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. International Journal of Osteoarchaeology 13: 20–28.Google Scholar
  90. Horn, P., Hölzl, S., and Storzer, D. (1994). Habitat determination on a fossil stag's mandible from the site of Homo heidelbergensis at Mauer by use of 87Sr/86Sr. Naturwissenschaften 81: 360–362.Google Scholar
  91. Horn, P., and Müller-Söhnius, D. (1999). Comment on ‘Mobility of Bell Beaker people revealed by Sr isotope ratios of tooth and bone: A study of southern Bell Beaker skeletal remains.’ Applied Geochemistry 14: 163–169.Google Scholar
  92. Howland, M. R., Corr, L. T., Young, S. M. M., Jones, V., Jim, S., Van Der Merwe, N. J., Mitchell, A. D., and Evershed, R. P. (2003). Expression of the dietary isotope signal in the compound-specific 13C values of pig bone lipids and amino acids. International Journal of Osteoarchaeology 13: 54–65.Google Scholar
  93. Hurley, P. M., Hughes, H., Faure, G., Fairbairn, H. W., and Pinson, W. H. (1962). Radiogenic strontium-87 model of continent formation. Journal of Geophysical Research 67: 5315–5334.Google Scholar
  94. Hurst, R. W., and Davis, T. E. (1981). Strontium isotopes as tracers of airborne fly ash from coal-fired power plants. Environmental Geology 3: 363–397.Google Scholar
  95. Jørgensen, N. O., Morthorst, J., and Holm, P. M. (1999). Strontium isotope studies of ‘brown water’ (organic-rich groundwater) from Denmark. Hydrogeology Journal 7: 533–539.Google Scholar
  96. Jowsey, J. (1961). Age changes in human bone. Clinical Orthopaedics 17: 210–218.Google Scholar
  97. Jury, R. V., Webb, M. S., and Webb, R. J. (1960). The spectrochemical determination of total strontium in bone, milk and vegetation. Annalytica Chemica Acta 22: 145–152.Google Scholar
  98. Kang, D., Amarasiriwardena, D., and Goodman, A. H. (2004). Application of laser ablation–inductively coupled plasma-mass spectrometry (LA–ICP–MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layers and pulp. Analytical and Bioanalytical Chemistry 378: 1608–1615.Google Scholar
  99. Katzenberg, M. A., and Krause, H. R. (1999). Application of stable isotope variation in human tissues to problems in identification. Canadian Society of Forensic Science Journal 22: 7–19.Google Scholar
  100. Kawasaki, A., Oda, H., and Hirata, T. (2002). Determination of strontium isotope ratio of brown rice for estimating its provenance. Soil Science and Plant Nutrition 48: 635–640.Google Scholar
  101. Kelly, S., Heaton, K., and Hoogewerff, J. (2005). Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends in Food Science and Technology 16: 555–567.Google Scholar
  102. Kennedy, M. J., and Derry, L. A. (1995). Lack of importance of bedrock weathering in supplying base cations to unpolluted forests: Evidence from Sr isotopes. Geological Society of America Abstracts 27: A235.Google Scholar
  103. Kennedy, M. J., Chadwick, O. A., Vitousek, P. M., Derry, L. A., and Hendricks, D. M. (1998). Changing sources of base cations during ecosystem development, Hawaiian Islands. Geology 26:1015–1018.Google Scholar
  104. Kennedy, M. J., Hedin, L. O., and Derry, L. A. (2002). Decoupling of unpolluted temperate forests from rock nutrient sources revealed by natural 87Sr/86Sr and 84Sr tracer addition. Proceedings of the National Academy of Sciences USA 99: 9639–9644.Google Scholar
  105. Knudson, K. J., Price, T. D., Buikstra, J. E., and Blom, D. E. (2004). The use of strontium isotope analysis to investigate Tiwanaku migration and mortuary ritual in Bolivia and Peru. Archaeometry 46: 5–18.Google Scholar
  106. Knudson, K. J., Nystrom, K. C., Tung, T. A., Price, T. D., and Fullagar, P. D. (2005). The origin of the Juch'uypampa cave mummies: Strontium isotope analysis of archaeological human remains from Bolivia. Journal of Archaeological Science 32: 903–913.Google Scholar
  107. Koch, P. L., Heisinger, J., Moss, C., Carlson, R. W., Fogel, M. L., and Behrensmeyer, A. K. (1995). Isotopic tracking of change in diet and habitat use in African elephants. Science 267: 1340–1343.Google Scholar
  108. Koch, P. L., Halliday, A. N., Walter, L. N., Stearley, R. F., Huston, T. J., and Smith, G. R. (1992). Sr isotopic composition of hydroxyapatite from recent and fossil salmon: The record of lifetime migration and diagenesis. Earth and Planetary Science Letters 108: 277--287.Google Scholar
  109. Koch, P. L., Fogel, M. L., and Tuross, N. (1994). Tracing the diets of fossil animals using stable isotopes. In Lajtha, K., and Michener, R. H. (eds.), Stable Isotopes in Ecology and Environmental Science, Blackwell Scientific, Oxford, pp. 63–92.Google Scholar
  110. Koch, P. L., Tuross, N., and Fogel, M. L. (1997). The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24: 417–429.Google Scholar
  111. Kohn, M. J. (1996). Predicting animal δ 18O: Accounting for diet and physiological adaptation. Geochimica et Cosmochimca Acta 60: 4811–4829.Google Scholar
  112. Kohn, M. J., Schoninger, M. J., and Barker, W. W. (1999). Altered states: Effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta 63: 2737–2747.Google Scholar
  113. Kolodny, Y., Luz, B., Sander, M., and Clemens, W. A. (1996). Dinosaur bones: Fossils or pseudomorphs? The pitfalls of physiology reconstruction from apatitic fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 126: 161–171.Google Scholar
  114. Lee-Thorp, J. A. (2002). Two decades of progress towards understanding fossilization processes and isotopic signals in calcified tissue minerals. Archaeometry 44: 435–446.Google Scholar
  115. Lee-Thorp, J. A., and Sponheimer, M. (2003). Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies. Journal of Anthropological Archaeology 22: 208–216.Google Scholar
  116. Lengemann F. W. (1963). Over-all aspects of calcium and strontium adsorption. In Wasserman, R. H. (ed.), The Ttransfer of Calcium and Strontium Across Biological Membranes, Academic Press, New York, pp. 85–96.Google Scholar
  117. McArthur, J. M., Howarth, R. W., and Bailey, T. R. (2001). Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. The Journal of Geology 109: 155–170.Google Scholar
  118. McClellan, R. O. (1964). Calcium-strontium discrimination in miniature pigs as related to age. Nature 202: 104–106.Google Scholar
  119. Miller, E. K., Blum, J. A., and Friedland, A. J. (1993). Determination of soil exchangable-cation loss and weathering rates using Sr isotopes. Nature 362: 438–441.Google Scholar
  120. Mitchell, R. L. (1957). The trace element content of plants. Research (London) 10: 357.Google Scholar
  121. Montgomery, J., Budd, P., and Evans, J. (2000). Reconstructing the lifetime movements of ancient people: A Neolithic case study from southern England. European Journal of Archaeology 3: 370–386.CrossRefGoogle Scholar
  122. Montgomery, J., Evans, J. A., and Roberts, C. A. (2003a). The mineralization, preservation and sampling of teeth: Strategies to optimise comparative study and minimise age-related change for lead and strontium analysis. American Journal of Physical Anthropology Supplement 36: 153.Google Scholar
  123. Montgomery, J., Evans, J. A., and Neighbour, T. (2003b). Sr isotope evidence for population movement within the Hebridean Norse community of NW Scotland. Journal of the Geological Society 160: 649–653.Google Scholar
  124. Montgomery, J., Evans, J. A., Powlesland, D., and Roberts, C. A. (2005). Continuity or colonization in Anglo-Saxon England? Isotope evidence for mobility, subsistence practice and status at West Heslerton. American Journal of Physical Anthropology 126: 123–138.Google Scholar
  125. Montgomery, J., and Evans, J. A. (2006). Immigrants on the Isle of Lewis - combining traditional funerary and modern isotope evidence to investigate social differentiation, migration and dietary change in the Outer Hebrides of Scotland. In Gowland, R., and Knüsel, C. (eds.), The Social Archaeology of Funerary Remains, Oxbow, Oxford, pp. 122–142.Google Scholar
  126. Montgomery, J., Evans, J. A., and Cooper, R. E. (n.d.). Resolving archaeological populations with 87Sr/86Sr mixing diagrams. Applied Geochemistry, submitted.Google Scholar
  127. Mulhern, D. M., and Van Gerven, D. P. (1997). Patterns of femoral bone remodeling dynamics in a medieval Nubian population. American Journal of Physical Anthropology 104: 133–146.Google Scholar
  128. Müller, W., Fricke, H., Halliday, A. N., McCulloch, M. T., and Wartho, J.-A. (2003). Origin and migration of the Alpine Iceman. Science 302: 862–866.Google Scholar
  129. Négrel, P., and Deschamps, P. (1996). Natural and anthropogenic budgets of a small watershed in the Massif Central (France): Chemical and strontium isotopic characterization of water and sediments. Aquatic Geochemistry 2: 1–27.Google Scholar
  130. Négrel, P., Casanova, J., and Aranyossy, J. F. (2001). Strontium isotope systematics used to decipher the origin of groundwaters sampled from granitoids: The Vienne Case (France). Chemical Geology 177: 287–308.Google Scholar
  131. Nelson, B. K., DeNiro, M. J., Schoeninger, M. J., DePaolo, D. J., and Hare, P. E. (1986). Effects of diagenesis on strontium, carbon, nitrogen, and oxygen concentration and isotopic composition of bone. Geochimica et Cosmogeochimica Acta 50: 1941–1949.Google Scholar
  132. Nielsen-Marsh, C. M., and Hedges, R. E. M. (2000a). Patterns of diagenesis in bone I: The effects of site environments. Journal of Archaeological Science 27: 1139–1150.Google Scholar
  133. Nielsen-Marsh, C. M., and Hedges, R. E. M. (2000b). Patterns of diagenesis in bone II: Effects of acetic acid treatment and removal of diagenetic CO3. Journal of Archaeological Science 27: 1139–1150.Google Scholar
  134. Palmer, M. R., and Edmond, J. M. (1989). The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters 92: 11–26.Google Scholar
  135. Pate, D., and Brown, K. (1985). The stability of bone strontium in the geochemical environment. Journal of Human Evolution 14: 483–491.Google Scholar
  136. Phillips, D. L., and Koch, P. L. (2002). Incorporating concentration dependence in stable isotope mixing models. Oecologia 130: 114–125.Google Scholar
  137. Poszwa, A., Dambrine, E., Pollier, B., and Atteia, O. (2000). A comparison between Ca and Sr cycling in forest ecosystems. Plant and Soil 225: 299–310.Google Scholar
  138. Poszwa, A., Dambrine, E., Ferry, B., Pollier, B., and Loubet, M. (2002). Do deep tree roots provide nutrients to the tropical rainforest? Biogeochemistry 60: 97–118.Google Scholar
  139. Poszwa, A., Ferry, B., Dambrine, E., Pollier, B., Wickman, T., Loubet, M., and Bishop, K. (2004). Variations of bioavailable Sr concentration and 87Sr/86Sr ratio in boreal forest ecosystems: Role of biocycling, mineral weathering and depth of root uptake. Biogeochemistry 67: 1–20.Google Scholar
  140. Price, T. D. (1989). Multi-element studies of diagenesis in prehistoric bone. In Price, T. D. (ed.), The Chemistry of Prehistoric Human Bone, Cambridge University Press, Cambridge, pp. 126–154.Google Scholar
  141. Price, T. D., Schoeninger, M. J., and Armelagos, G. J. (1985). Bone chemistry and past behavior: An overview. Journal of Human Evolution 14: 419–447.Google Scholar
  142. Price, T. D., Grupe, G., and Schröter, P. (1998). Migration in the Bell Beaker period of central Europe. Antiquity 72: 405–411.Google Scholar
  143. Price, T. D., Blitz, J., Burton, J. H., and Ezzo, J. (1992). Diagenesis in prehistoric bone: Problems and solutions. Journal of Archaeological Science 19: 513–529.Google Scholar
  144. Price, T. D., Johnson, C. M., Ezzo, J. A., Burton, J. H., and Ericson, J. A. (1994). Residential mobility in the prehistoric Southwest United States. A preliminary study using strontium isotope analysis. Journal of Archaeological Science 24: 315–330.Google Scholar
  145. Price, T. D., Manzanilla, L., and Middleton, W. H. (2000). Residential mobility at Teotihuacan: A preliminary study using strontium isotopes. Journal of Archaeological Science 27: 903–914.Google Scholar
  146. Price, T. D., Bentley, R. A., Gronenborn, D., Lüning, J., and Wahl, J. (2001). Human migration in the Linearbandkeramik of Central Europe. Antiquity 75: 593–603.Google Scholar
  147. Price, T. D., Burton, J. H., and Bentley, R. A. (2002). The characterisation of biologically-available strontium isotope ratios for investigation of prehistoric migration. Archaeometry 44: 117–135.Google Scholar
  148. Price, T. D., Tiesler, V., and Burton, J. H. (2006). Early African diaspora in colonial Campeche, Mexico: Strontium isotopic evidence. American Journal of Physical Anthropology, in press.Google Scholar
  149. Price, T. D., and Gestsdóttir, H. (2006). The first settlers of Iceland: An isotopic approach to colonisation. Antiquity 80: 130–144.Google Scholar
  150. Probst, A., Viville, D., Fritz, B., Ambroise, B., and Dambrine, E. (1992). Hydrochemical budgets of a small forested granitic cathment exposed to acid deposition: The Strengbach catchment case study (Vosges Massif, France). Water, Air, and Soil Pollution 62: 337–347.Google Scholar
  151. Probst, A., El Gh'mari, A., Aubert, D., Fritz, B., and McNutt, R. (2000). Strontium as a tracer of weathering processes in a silicate catchment polluted by acid atmospheric inputs, (Strengbach, France). Chemical Geology 170: 203–219.Google Scholar
  152. Radosevich, S. (1989). Geochemical techniques applied to bone from South Asia and Alaska: Neither God's truth nor hocus-pocus. In Kenoyer, J. M. (ed.), Old Problems and New Perspectives in the Archaeology of South Asia, Department of Anthropology, University of Wisconsin, Madison, pp. 93–102.Google Scholar
  153. Reid, D. J., and Dean, M. C. (2006). Variation in modern human enamel formation times. Journal of Human Evolution 50: 329–346.Google Scholar
  154. Richards, M. P., Fuller, B. F., and Hedges, R. E. M. (2001). Sulphur isotopic variation in ancient bone collagen from Europe: Implications for human palaeodiet, residence mobility, and modern pollutant studies. Earth and Planetary Science Letters 191: 185–190.Google Scholar
  155. Robinson, S., Nicholson, R. A., Pollard, A. M., and O’Connor, T. P. (2003). An evaluation of nitrogen porosimetry as a technique for predicting taphonomic durability in animal bone. Journal of Archaeological Science 30: 391–403.Google Scholar
  156. Sanusi, A., Wortham, H., Millet, M., and Mirabel, P. (1995). Chemical composition of rainwater in eastern France. Atmospheric Environment 30: 59–71.Google Scholar
  157. Schweissing, M. M., and Grupe, G. (2003). Stable strontium isotopes in human teeth and bone: A key to migration events of the late Italic period in Bavaria. Journal of Archaeological Science 30: 1373–1383.Google Scholar
  158. Schoeninger, M. J. (1979). Diet and status at Chalcatzingo: Some empirical and technical aspects of strontium analysis. American Journal of Physical Anthropology 51: 295–310.Google Scholar
  159. Schoeninger, M. J. (1985). Trophic level effects on 15N/14N and 13C/12C ratios in bone collagen and strontium levels in bone mineral. Journal of Human Evolution 14: 515–525.Google Scholar
  160. Schoeninger, M. J., DeNiro, M. J., and Tauber, H. (1983). Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science 220: 1381–1383.Google Scholar
  161. Schoeninger, M. J., and Moore, K. M. (1992). Bone stable isotope studies in archaeology. Journal of World Prehistory 6: 247–296.Google Scholar
  162. Sealy, J. C., and Sillen, A. (1988). Sr and Sr/Ca in marine and terrestrial foodwebs in the southwestern Cape, South-Africa. Journal of Archaeological Science 15: 425–438.Google Scholar
  163. Sealy, J. C., Van Der Merwe, N. J., Sillen, A., Kruger, F. J., and Krueger, W. H. (1991). 87Sr/86Sr as a dietary indicator in modern and archaeological bone. Journal of Archaeological Science 18: 399–416.Google Scholar
  164. Sealy, J. C., Armstrong, R., and Schrire, C. (1995). Beyond lifetime averages: Tracing life histories through isotopic analysis of different calcified tissues from archaeological human skeletons. Antiquity 69: 290–300.Google Scholar
  165. Shackleton, J., and Elderfield, H. (1990). Strontium isotope dating of the source of Neolithic European Spondylus shell artifacts. Antiquity 64: 312–315.Google Scholar
  166. Sharp, Z. D., Atudorei, V., and Furrer, H. (2000). The effects of diagenesis on oxygen isotope ratios of biogenic phosphates. Science 300: 222–237.Google Scholar
  167. Sillen, A. (1986). Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils in the Omo Shungura Formation. Paleobio 12: 311–323.Google Scholar
  168. Sillen, A. (1989). Diagenesis of the inorganic phase of cortical bone. In Price, T. D. (ed.), The Chemistry of Prehistoric Human Bone, Cambridge University Press, Cambridge, pp. 211–229.Google Scholar
  169. Sillen, A. (1992). Strontium-calcium ratios (Sr/Ca) of Australopithecus robustus and associated fauna from Swartkrans. Journal of Human Evolution 23: 495–516.Google Scholar
  170. Sillen, A., and Kavanagh, M. (1982). Strontium and paleodietary research: A review. Yearbook of Physical Anthropology 25: 67–90.Google Scholar
  171. Sillen, A., and Sealy, J. C. (1995). Diagenesis of strontium in fossil bone: A reconsideration of Nelson et al. (1986). Journal of Archaeological Science 22: 313–320.Google Scholar
  172. Sillen, A., Hall, G., and Armstrong, R. (1995). Strontium calcium ratios (Sr/Ca) and strontium isotopic ratios (87Sr/86Sr) of Australopithecus robustus and Homo sp. from Swartkrans. Journal of Human Evolution 28: 277–285.Google Scholar
  173. Sillen, A., Hall, G., Richardson, S., and Armstrong, R. (1998). 87Sr/86Sr ratios in modern and fossil food-webs of the Sterkfontein Valley: Implications for early hominid habitat preference. Geochimica et Cosmochimica Acta 62: 2463–2478.Google Scholar
  174. Smith, T. M., Martin, L. B., and Leakey, M. G. (2003). Enamel thickness, microstructure and development in Afropithecus turkanensis. Journal of Human Evolution 44: 283–306.Google Scholar
  175. Stewart, B. W., Capo, R. C., and Chadwick, O. A. (2001). Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils. Geochimica et Cosmochimica Acta 65: 1087–1099.Google Scholar
  176. Teitelbaum, S. L. (2000). Bone resorption by osteoclasts. Science 289: 1504.Google Scholar
  177. Tieszen, L. L. (1991). Natural variations in the carbon isotope values of plants: Implications for archaeology, ecology, and paleoecology. Journal of Archaeological Science 18: 227–248.Google Scholar
  178. Tieszen, L. L., Boutton, T. W., Tesdahl, K. G., and Slade, N. A. (1983). Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for the δ 13C analysis of diet. Oecologia 57: 32–37.Google Scholar
  179. Tricca, A., Stille, P., Steinmann, M., Kiefel, B., Samuel, J., and Eikenberg, J. (1999). Rare earth elements and Sr and Nd isotopic compositions of dissolved and suspended loads from small river systems in the Vosges mountains (France), the river Rhine and groundwater. Chemical Geology 160: 139–158.Google Scholar
  180. Trickett, M. A., Budd, P., Montgomery, J., and Evans, J. (2003). An assessment of solubility profiling as a decontamination procedure for the 87Sr/86Sr analysis of archaeological human skeletal tissue. Applied Geochemistry 18: 653–658.Google Scholar
  181. Tuross, N., Behrensmeyer, A. K., and Eanes, E. D. (1989). Strontium increases and crystallinity changes in taphonomic and archaeological bone. Journal of Archaeological Science 16: 661–672.Google Scholar
  182. Van Der Merwe, N. J. (1982). Carbon isotopes, photosynthesis, and archaeology. American Scientist 70: 596–606.Google Scholar
  183. Van Der Merwe, N. J., Lee-Thorp, J. A., Thackeray, J. F., Hall-Martin, A., Krueger, F. J., Coetzee, H., Bell, R. H. V., and Lindeque, M. (1990). Source-area determination of elephant ivory by isotopic analysis. Nature, 346: 744–746.Google Scholar
  184. Van Der Merwe, N. J., Williamson, R. F., Pfeiffer, S., Thomas, S. C., and Allegretto, K. O. (2003). The Moatfield ossuary: Isotopic dietary analysis of an Iroquoian community, using dental tissue. Journal of Anthropological Archaeology 22: 245–261.Google Scholar
  185. Vanhaeren, M., d'Errico, F., Billy, I., and Grousset, F. (2004). Tracing the source of Upper Palaeolithic shell beads by strontium isotope dating. Journal of Archaeological Science 31: 1481–1488.Google Scholar
  186. Vitousek, P. M., Kennedy, M. J., Derry, L. A., and Chadwick, O. A. (1999). Weathering versus atmospheric sources of strontium in ecosystems on young volcanic soils. Oecologia 121: 255–259.Google Scholar
  187. Vogel, J. C., and Van Der Merwe, N. J. (1977). Isotopic evidence for early maize cultivation in New York State. American Antiquity 42: 238–242.Google Scholar
  188. Vogel, J. C., Eglington, B., and Auret, J. M. (1990). Isotope fingerprints in elephant bone and ivory. Nature 346: 747–749.Google Scholar
  189. Walczyk, T., and von Blanckenburg, F. (2002). Natural iron isotope variations in human blood. Science 295: 2065–2066.Google Scholar
  190. Wang, Y., and Cerling, T. E. (1994). A model for fossil tooth and bone diagenesis: Implications for paleodiet reconstructions from stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 107: 281–288.Google Scholar
  191. Whipkey, C. E., Capo, R. C., Chadwick, O. A., and Stewart, B. W. (2000). The importance of sea spray to the cation budget of a coastal Hawaiian soil: A strontium isotope approach. Chemical Geology 168: 37–48.Google Scholar
  192. White, C. (1993). Isotopic determination of seasonality of diet and death in ancient Nubian hair. Journal of Archaeological Science 20: 657–666.Google Scholar
  193. White, W. M. (n.d.). Geochemistry. To be published at Johns Hopkins University Press, currently online at: Scholar
  194. White, W. M., Schilling, J.-G., and Hart, S. R. (1976). Evidence for the Azores mantle plume from strontium isotope geochemistry of the Central North Atlantic. Nature 263: 659–663.Google Scholar
  195. White, W. M., and Hofmann, A. W. (1982). Sr and Nd isotope geochemistry of oceanic island basalts and mantle evolution. Nature 296: 821–825.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of AnthropologyDurham UniversityDurhamUSA
  2. 2.Department of AnthropologyDurham UniversityDurhamUSA

Personalised recommendations