Advertisement

Exosomes derived from human umbilical cord mesenchymal stem cells repair injured endometrial epithelial cells

  • Linlin Liang
  • Lu Wang
  • Shihao Zhou
  • Jingyu Li
  • Li Meng
  • Helong Zhang
  • Chenchen CuiEmail author
  • Cuilian ZhangEmail author
Reproductive Physiology and Disease
  • 5 Downloads

Abstract

Purpose

To investigate whether exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-derived exosomes) can repair injured endometrial epithelial cells (EECs).

Methods

HucMSC-derived exosomes and mouse primary EECs were isolated and purified. EECs were exposed to oxygen and glucose deprivation for 2 h followed by reoxygenation to mimic injury. After oxygen and glucose deprivation/reoxygenation (OGD/R), hucMSC-derived exosomes were added to the EEC culture medium. After 24 h of co-treatment, cell viability and cell death were tested by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay and lactate dehydrogenase (LDH) assay, respectively. The expression of proinflammatory cytokines was tested by real-time PCR, enzyme-linked immunosorbent assay (ELISA), and Western blot to investigate the potential mechanism.

Results

Compared with the control group, 5, 10, and 15 μg/mL of hucMSC-derived exosomes significantly attenuated cell viability decrease and inhibited LDH release of injured EECs, but 1 μg/mL of hucMSC-derived exosomes had no effect on either cell viability or LDH release. Real-time PCR and ELISA analysis revealed that 10 μg/mL of hucMSC-derived exosomes significantly inhibited the release of interleukin-6 (IL-6) and interleukin-1 beta (IL-1β) and increased tumor necrosis factor alpha (TNFA) in injured EECs. In addition, 10 μg/mL of hucMSC-derived exosomes significantly inhibited toll-like receptor 4 (TLR4) and v-rel reticuloendotheliosis viral oncogene homolog A (RelA) expression in injured EECs.

Conclusions

In OGD/R-induced injured EECs, hucMSC-derived exosomes efficiently improved the cell viability, reduced cell death, and exhibited anti-inflammatory properties against OGD/R.

Keywords

Exosome Human umbilical cord mesenchymal stem cells Endometrial epithelial cells Injury 

Notes

Funding information

This research was financially supported by the Key Science and Technology Program of Henan Province (182102310129) and Clinical Medicine Special Funds for Scientific Research Projects of Chinese Medical Association (18010320761).

Compliance with ethical standards

All procedures were approved by the Animal Care and Experiments of Zhengzhou University, China.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kasius A, Smit JG, Torrance HL, Eijkemans MJ, Mol BW, Opmeer BC, et al. Endometrial thickness and pregnancy rates after IVF: a systematic review and meta-analysis. Hum Reprod Update. 2014;20(4):530–41.  https://doi.org/10.1093/humupd/dmu011.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhao J, Zhang Q, Wang Y, Li Y. Endometrial pattern, thickness and growth in predicting pregnancy outcome following 3319 IVF cycle. Reprod BioMed Online. 2014;29(3):291–8.  https://doi.org/10.1016/j.rbmo.2014.05.011.CrossRefPubMedGoogle Scholar
  3. 3.
    Yuan X, Saravelos SH, Wang Q, Xu Y, Li TC, Zhou C. Endometrial thickness as a predictor of pregnancy outcomes in 10787 fresh IVF-ICSI cycles. Reprod BioMed Online. 2016;33(2):197–205.  https://doi.org/10.1016/j.rbmo.2016.05.002.CrossRefPubMedGoogle Scholar
  4. 4.
    Rein DT, Schmidt T, Hess AP, Volkmer A, Schondorf T, Breidenbach M. Hysteroscopic management of residual trophoblastic tissue is superior to ultrasound-guided curettage. J Minim Invasive Gynecol. 2011;18(6):774–8.  https://doi.org/10.1016/j.jmig.2011.08.003.CrossRefPubMedGoogle Scholar
  5. 5.
    Nastri CO, Lensen SF, Gibreel A, Raine-Fenning N, Ferriani RA, Bhattacharya S, et al. Endometrial injury in women undergoing assisted reproductive techniques. Cochrane Database Syst Rev. 2015;3:CD009517.  https://doi.org/10.1002/14651858.CD009517.pub3.CrossRefGoogle Scholar
  6. 6.
    Achilli C, Duran-Retamal M, Saab W, Serhal P, Seshadri S. The role of immunotherapy in in vitro fertilization and recurrent pregnancy loss: a systematic review and meta-analysis. Fertil Steril. 2018;110(6):1089–100.  https://doi.org/10.1016/j.fertnstert.2018.07.004.CrossRefPubMedGoogle Scholar
  7. 7.
    Hong KH, Forman EJ, Werner MD, Upham KM, Gumeny CL, Winslow AD, et al. Endometrial infusion of human chorionic gonadotropin at the time of blastocyst embryo transfer does not impact clinical outcomes: a randomized, double-blind, placebo-controlled trial. Fertil Steril. 2014;102(6):1591–5.e2.  https://doi.org/10.1016/j.fertnstert.2014.08.006.CrossRefPubMedGoogle Scholar
  8. 8.
    Wirleitner B, Schuff M, Vanderzwalmen P, Stecher A, Okhowat J, Hradecký L, et al. Intrauterine administration of human chorionic gonadotropin does not improve pregnancy and life birth rates independently of blastocyst quality: a randomised prospective study. Reprod Biol Endocrinol. 2015;13(1):70.  https://doi.org/10.1186/s12958-015-0069-1.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Barad DH, Yu Y, Kushnir VA, Shohat-Tal A, Lazzaroni E, Lee HJ, et al. A randomized clinical trial of endometrial perfusion with granulocyte colony-stimulating factor in in vitro fertilization cycles: impact on endometrial thickness and clinical pregnancy rates. Fertil Steril. 2014;101(3):710–5.  https://doi.org/10.1016/j.fertnstert.2013.12.016.CrossRefPubMedGoogle Scholar
  10. 10.
    Lensen S, Osavlyuk D, Armstrong S, Stadelmann C, Hennes A, Napier E, et al. A randomized trial of endometrial scratching before in vitro fertilization. N Engl J Med. 2019;380(4):325–34.  https://doi.org/10.1056/NEJMoa1808737.CrossRefPubMedGoogle Scholar
  11. 11.
    Cervelló I, Santamaria X, Pellicer A, Remohí J, Simón C, Ferro J, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman’s syndrome and endometrial atrophy: a pilot cohort study. Hum Reprod. 2016;31(5):1087–96.  https://doi.org/10.1093/humrep/dew042.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhao D, Kong L, Li P, Li X, Xu X, Li Y, et al. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome. Hum Reprod. 2016;31(12):2723–9.  https://doi.org/10.1093/humrep/dew235.CrossRefPubMedGoogle Scholar
  13. 13.
    Cao Y, Sun H, Zhu H, Zhu X, Tang X, Yan G, et al. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial. Stem Cell Res Ther. 2018;9(1):192.  https://doi.org/10.1186/s13287-018-0904-3.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Park JH, Hwang I, Hwang SH, Han H, Ha H. Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action. Diabetes Res Clin Pract. 2012;98(3):465–73.  https://doi.org/10.1016/j.diabres.2012.09.034.CrossRefPubMedGoogle Scholar
  15. 15.
    Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11(4):367–8.  https://doi.org/10.1038/nm0405-367.CrossRefPubMedGoogle Scholar
  16. 16.
    Goolaerts A, Pellan-Randrianarison N, Larghero J, Vanneaux V, Uzunhan Y, Gille T, et al. Conditioned media from mesenchymal stromal cells restore sodium transport and preserve epithelial permeability in an in vitro model of acute alveolar injury. Am J Phys Lung Cell Mol Phys. 2014;306(11):L975–85.  https://doi.org/10.1152/ajplung.00242.2013.CrossRefGoogle Scholar
  17. 17.
    Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem cells Dayt Ohio. 2017;35(4):851–8.  https://doi.org/10.1002/stem.2575.CrossRefGoogle Scholar
  18. 18.
    Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018;156:16–27.  https://doi.org/10.1016/j.biomaterials.2017.11.028.CrossRefPubMedGoogle Scholar
  19. 19.
    Thomi G, Surbek D, Haesler V, Joerger-Messerli M, Schoeberlein A. Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Res Ther. 2019;10(1):105.  https://doi.org/10.1186/s13287-019-1207-z.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lobb RJ, Becker M, Wen Wen S, Wong CSF, Wiegmans AP, Leimgruber A, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4(1):27031.  https://doi.org/10.3402/jev.v4.27031.CrossRefPubMedGoogle Scholar
  21. 21.
    McCormack SA, Glasser SR. Differential response of individual uterine cell types from immature rats treated with estradiol. Endocrinology. 1980;106(5):1634–49.  https://doi.org/10.1210/endo-106-5-1634.CrossRefPubMedGoogle Scholar
  22. 22.
    Shi X, Liu HY, Li SP, Xu HB. Keratinocyte growth factor protects endometrial cells from oxygen glucose deprivation/re-oxygenation via activating Nrf2 signaling. Biochem Biophys Res Commun. 2018;501(1):178–85.  https://doi.org/10.1016/j.bbrc.2018.04.208.CrossRefPubMedGoogle Scholar
  23. 23.
    Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4.  https://doi.org/10.1016/j.scr.2009.12.003.CrossRefGoogle Scholar
  24. 24.
    Ma Y, Dong L, Zhou D, Li L, Zhang W, Zhen Y, et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells improve nerve regeneration after sciatic nerve transection in rats. J Cell Mol Med. 2019;23(4):2822–35.  https://doi.org/10.1111/jcmm.14190.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells. 2015;33(7):2158–68.  https://doi.org/10.1002/stem.1771.CrossRefPubMedGoogle Scholar
  26. 26.
    Sun L, Li D, Song K, Wei J, Yao S, Li Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci Rep. 2017;7(1):2552.  https://doi.org/10.1038/s41598-017-02786-x.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193–208.  https://doi.org/10.1007/s00018-017-2595-9.CrossRefPubMedGoogle Scholar
  28. 28.
    Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappa B signaling. Stem Cells. 2016;34(3):601–13.  https://doi.org/10.1002/stem.2298.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015;6(1):127.  https://doi.org/10.1186/s13287-015-0116-z.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor ENE, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301–12.  https://doi.org/10.1016/j.scr.2013.01.002.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013;4(2):34.  https://doi.org/10.1186/scrt194.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, et al. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett. 2015;589(11):1257–65.  https://doi.org/10.1016/j.febslet.2015.03.031.CrossRefPubMedGoogle Scholar
  33. 33.
    Li X, Liu L, Yang J, Yu Y, Chai J, Wang L, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine. 2016;8:72–82.  https://doi.org/10.1016/j.ebiom.2016.04.030.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Reproductive Medicine CenterHenan Provincial People’s HospitalZhengzhouChina
  2. 2.Henan Joint International Research Laboratory of Reproductive BioengineeringZhengzhouChina
  3. 3.Henan Key Laboratory of Stem Cell Differentiation and ModulationZhengzhou, Henan ProvinceChina
  4. 4.Reproductive Medicine CenterPeople’s Hospital of Zhengzhou UniversityZhengzhouChina
  5. 5.Xinxiang Medical UniversityXinxiangChina
  6. 6.LA IVF ClinicLos AngelesUSA

Personalised recommendations