Advertisement

The role of anti-Müllerian hormone (AMH) in ovarian disease and infertility

  • Jure BedenkEmail author
  • Eda Vrtačnik-Bokal
  • Irma Virant-Klun
Review
  • 96 Downloads

Abstract

Purpose

In this review, the current knowledge on anti-Müllerian hormone (AMH) is presented, concerning its value in disease and IVF treatment as well as in terms of its prospective clinical use.

Methods

AMH is becoming the most appropriate biomarker for the ovarian reserve measured predominantly for assisted reproductive treatment (ART) patients in comparison to the currently used antral follicle count (AFC). However, this is not the only way AMH measurements can be used in the clinics. Because of this, we reviewed the current literature for the use of AMH in current or prospective clinical practice.

Results

We found that AMH has a high predictive value in assessing the ovarian reserve, which can lead to a better efficiency of in vitro fertilization (IVF) procedures. It has a high potential to be developed as a staple diagnostic marker of ovarian disease, especially for ovarian cancers and even as a possible treatment tool for certain cancers. It could potentially be used to prevent oocyte loss due to chemo- or radiotherapy.

Conclusion

AMH is an important hormone especially in women reproductive organs and is currently seen as the best biomarker for a multitude of uses in reproductive medicine. Currently, the biggest issue lies in the lack of international standardization of AMH. However, it is encouraging to see that there is interest in AMH in the form of research on its action and use in reproductive medicine.

Keywords

Anti-Müllerian hormone Assisted reproductive technology Fertility Hormone receptor In vitro fertilization Oocyte 

Notes

Funding information

This work was supported by the Slovenian Research Agency (ARRS): research programme P3-0124 and grant offered to the young researcher Jure Bedenk.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Josso N, di Clemente N, Gouédard L. Anti-Müllerian hormone and its receptors. Mol Cell Endocrinol. 2001;179:25–32.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Kushnir VA, Seifer DB, Barad DH, Sen A, Gleicher N. Potential therapeutic applications of human anti-Müllerian hormone (AMH) analogues in reproductive medicine. J Assist Reprod Genet. 2017;34:1105–13.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Josso N, Picard JY, Rey R, di Clemente N. Testicular anti-Müllerian hormone: history, genetics, regulation and clinical applications. Pediatr Endocrinol Rev PER. 2006;3:347–58.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Rey R, Sabourin J-C, Venara M, Long W-Q, Jaubert F, Zeller WP, et al. Anti-Müllerian hormone is a specific marker of Sertoli- and granulosa-cell origin in gonadal tumors. Hum Pathol. 2000;31:1202–8.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Visser JA, de Jong FH, Laven JSE, Themmen APN. Anti-Müllerian hormone: a new marker for ovarian function. Reproduction. 2006;131:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Cate RL, Mattaliano RJ, Hession C, Tizard R, Farber NM, Cheung A, et al. Isolation of the bovine and human genes for Müllerian inhibiting substance and expression of the human gene in animal cells. Cell. 1986;45:685–98.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Peluso C, Fonseca FLA, Rodart IF, Cavalcanti V, Gastaldo G, Christofolini DM, et al. AMH: an ovarian reserve biomarker in assisted reproduction. Clin Chim Acta. 2014;437:175–82.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard S. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 2016;22:709–24.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Baarends WM, Uilenbroek JT, Kramer P, Hoogerbrugge JW, van Leeuwen EC, Themmen AP, et al. Anti-Müllerian hormone and anti-Müllerian hormone type II receptor messenger ribonucleic acid expression in rat ovaries during postnatal development, the estrous cycle, and gonadotropin-induced follicle growth. Endocrinology. 1995;136:4951–62.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hammer GD, Krylova I, Zhang Y, Darimont BD, Simpson K, Weigel NL, et al. Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Mol Cell. 1999;3:521–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Ito M, Yu RN, Jameson JL. Steroidogenic factor-1 contains a carboxy-terminal transcriptional activation domain that interacts with steroid receptor coactivator-1. Mol Endocrinol. 1998;12:290–301.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhao Y, Zhang H. Association of genetic polymorphisms of anti-Müllerian hormone (AMH) and its type II receptor with ovarian hyperstimulation syndrome. J Reprod Contracept. 2013;24:30–7.CrossRefGoogle Scholar
  13. 13.
    La Marca A, Volpe A. Anti-Müllerian hormone (AMH) in female reproduction: is measurement of circulating AMH a useful tool? Clin Endocrinol. 2006;64:603–10.CrossRefGoogle Scholar
  14. 14.
    Visser JA, Themmen APN. Anti-Müllerian hormone and folliculogenesis. Mol Cell Endocrinol. 2005;234:81–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Pfennig F, Standke A, Gutzeit HO. The role of Amh signaling in teleost fish – multiple functions not restricted to the gonads. Gen Comp Endocrinol. 2015;223:87–107.PubMedCrossRefGoogle Scholar
  16. 16.
    Segev DL, Hoshiya Y, Hoshiya M, Tran TT, Carey JL, Stephen AE, et al. Mullerian-inhibiting substance regulates NF–κB signaling in the prostate in vitro and in vivo. Proc Natl Acad Sci. 2002;99:239–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang J, Dicken C, Lustbader JW, Tortoriello DV. Evidence for a Müllerian-inhibiting substance autocrine/paracrine system in adult human endometrium. Fertil Steril. 2009;91:1195–203.PubMedCrossRefGoogle Scholar
  18. 18.
    Segev DL, Hoshiya Y, Stephen AE, Hoshiya M, Tran TT, MacLaughlin DT, et al. Müllerian inhibiting substance regulates NFκB signaling and growth of mammary epithelial cells in vivo. J Biol Chem. 2001;276:26799–806.PubMedCrossRefGoogle Scholar
  19. 19.
    Clarke TR, Hoshiya Y, Yi SE, Liu X, Lyons KM, Donahoe PK. Müllerian inhibiting substance signaling uses a bone morphogenetic protein (BMP)-like pathway mediated by ALK2 and induces Smad6 expression. Mol Endocrinol. 2001;15:946–59.PubMedGoogle Scholar
  20. 20.
    Visser JA, Olaso R, Verhoef-Post M, Kramer P, Themmen APN, Ingraham HA. The serine/threonine transmembrane receptor ALK2 mediates Müllerian inhibiting substance signaling. Mol Endocrinol. 2001;15:936–45.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Jamin SP, Arango NA, Mishina Y, Hanks MC, Behringer RR. Requirement of Bmpr1a for Müllerian duct regression during male sexual development. Nat Genet. 2002;32:408.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Yoshida Y, Yamashita Y, Saito N, Ono Y, Yamamoto H, Nakamura Y, et al. Analyzing the possible involvement of anti-Müllerian hormone and anti-Müllerian hormone receptor II single nucleotide polymorphism in infertility. J Assist Reprod Genet. 2014;31:163–8.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bhide P, Homburg R. Anti-Müllerian hormone and polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2016;37:38–45.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Carrarelli P, Rocha ALL, Belmonte G, Zupi E, Abrão MS, Arcuri F, et al. Increased expression of antimüllerian hormone and its receptor in endometriosis. Fertil Steril. 2014;101:1353–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Rajpert-De Meyts E, Jørgensen N, Græm N, Müller J, Cate RL, Skakkebæk NE. Expression of anti-Müllerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells. J Clin Endocrinol Metab. 1999;84:3836–44.PubMedPubMedCentralGoogle Scholar
  26. 26.
    AbdelHafez FF, Tang Y, Hassan MH, Saleem TH. Assessment of anti-Mullerian hormone (AMH) levels in a pilot cohort of peripubertal females: correlation with sex maturity rating (SMR). Middle East Fertil Soc J. 2018;23:278–80.CrossRefGoogle Scholar
  27. 27.
    Feyereisen E, Lozano DHM, Taieb J, Hesters L, Frydman R, Fanchin R. Anti-Müllerian hormone: clinical insights into a promising biomarker of ovarian follicular status. Reprod BioMed Online. 2006;12:695–703.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Alanazi H, Bushaqer N, Ayyoub H, Dayoub N, Hassan S. Antimullerian hormone (AMH) level and IVF/ICSI cycle outcome in expected poor responders. Middle East Fertil Soc J. 2018;23:246–50.CrossRefGoogle Scholar
  29. 29.
    Anderson RA. What does anti-Müllerian hormone tell you about ovarian function? Clin Endocrinol. 2012;77:652–5.CrossRefGoogle Scholar
  30. 30.
    Sun H, Mao H, Cai J, Zhao Y. Research progress on anti-mullerian hormone clinical applications and immunoassay development. Front Lab Med. 2018;2:14–8.CrossRefGoogle Scholar
  31. 31.
    Ilha GF, Rovani MT, Gasperin BG, Ferreira R, de Macedo M, Neto OA, et al. Regulation of anti-Müllerian hormone and its receptor expression around follicle deviation in cattle. Reprod Domest Anim. 2016;51:188–94.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Durlinger ALL, Gruijters MJG, Kramer P, Karels B, Kumar TR, Matzuk MM, et al. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142:4891–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Andersen CY, Schmidt KT, Kristensen SG, Rosendahl M, Byskov AG, Ernst E. Concentrations of AMH and inhibin-B in relation to follicular diameter in normal human small antral follicles. Hum Reprod. 2010;25:1282–7.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Jeppesen JV, Anderson RA, Kelsey TW, Christiansen SL, Kristensen SG, Jayaprakasan K, et al. Which follicles make the most anti-Müllerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. MHR Basic Sci Reprod Med. 2013;19:519–27.CrossRefGoogle Scholar
  35. 35.
    Weenen C, Laven JSE, von Bergh ARM, Cranfield M, Groome NP, Visser JA, et al. Anti-Müllerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. MHR Basic Sci Reprod Med. 2004;10:77–83.CrossRefGoogle Scholar
  36. 36.
    Melado Vidales L, Fernández-Nistal A, Martínez Fernández V, Verdú Merino V, Bruna Catalán I, Bajo Arenas JM. Anti-Müllerian hormone dynamics during GNRH-antagonist short protocol for IVF/ICSI in women with varying ovarian reserve levels. Minerva Ginecol. 2017;69:128–34.PubMedGoogle Scholar
  37. 37.
    Schenk M, Kröpfl JM, Obermayer-Pietsch B, Feldmeier E, Weiss G. Anti-Mullerian hormone concentrations in individual follicular fluids within one stimulated IVF cycle resemble blood serum values. J Assist Reprod Genet. 2017;34:1115–20.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Durlinger ALL, Gruijters MJG, Kramer P, Karels B, Ingraham HA, Nachtigal MW, et al. Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology. 2002;143:1076–84.PubMedCrossRefGoogle Scholar
  39. 39.
    Qin C, Yuan Z, Yao J, Zhu W, Wu W, Xie J. AMH and AMHR2 genetic variants in Chinese women with primary ovarian insufficiency and normal age at natural menopause. Reprod BioMed Online. 2014;29:311–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Lebbe M, Woodruff TK. Involvement of androgens in ovarian health and disease. Mol Hum Reprod. 2013;19:828–37.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ueno S, Manganaro TF, Donahoe PK. Human recombinant Mullerian inhibiting substance inhibition of rat oocyte meiosis is reversed by epidermal growth factor in vitro. Endocrinology. 1988;123:1652–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Kim JH, Seibel MM, MacLaughlin DT, Donahoe PK, Ransil BJ, Hametz PA, et al. The inhibitory effects of Müllerian-inhibiting substance on epidermal growth factor induced proliferation and progesterone production of human granulosa-luteal cells. J Clin Endocrinol Metab. 1992;75:911–7.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Steiner AZ, Herring AH, Kesner JS, Meadows JW, Stanczyk FZ, Hoberman S, et al. Antimüllerian hormone as a predictor of natural fecundability in women aged 30-42 years. Obstet Gynecol. 2011;117:798–804.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Broer SL, Broekmans FJM, Laven JSE, Fauser BCJM. Anti-Müllerian hormone: ovarian reserve testing and its potential clinical implications. Hum Reprod Update. 2014;20:688–701.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Gomez R, Schorsch M, Hahn T, Henke A, Hoffmann I, Seufert R, et al. The influence of AMH on IVF success. Arch Gynecol Obstet. 2016;293:667–73.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Jahromi BN, Dabbaghmanesh MH, Bakhshaie P, Parsanezhad ME, Anvar Z, Alborzi M, et al. Assessment of oxytocin level, glucose metabolism components and cutoff values for oxytocin and anti-mullerian hormone in infertile PCOS women. Taiwan J Obstet Gynecol. 2018;57:555–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. Lancet. 2007;370:685–97.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Sirmans SM, Pate KA. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol. 2013;6:1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kosova G, Urbanek M. Genetics of the polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373:29–38.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Cimino I, Casoni F, Liu X, Messina A, Parkash J, Jamin SP, et al. Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat Commun. 2016;7:10055.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Webber L, Stubbs S, Stark J, Trew G, Margara R, Hardy K, et al. Formation and early development of follicles in the polycystic ovary. Lancet. 2003;362:1017–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Alebić MŠ, Stojanović N, Dewailly D. Discordance between serum anti-Müllerian hormone concentrations and antral follicle counts: not only technical issues. Hum Reprod. 2018;33:1141–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Maciel GAR, Baracat EC, Benda JA, Markham SM, Hensinger K, Chang RJ, et al. Stockpiling of transitional and classic primary follicles in ovaries of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2004;89:5321–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Melado Vidales L, Fernández-Nistal A, Martínez Fernández V, Verdú Merino V, Bruna Catalán I, Bajo Arenas JM. Anti-Müllerian hormone levels to predict oocyte maturity and embryo quality during controlled ovarian hyperstimulation. Minerva Ginecol. 2017;69:225–32.PubMedGoogle Scholar
  55. 55.
    Rashad NM, Moafy H, Saleh HS, Amin AI, Gomaa AF. Anti-Müllerian hormone: predictor of premature ovarian insufficiency in Egyptian women with autoimmune thyroiditis. Middle East Fertil Soc J. 2018;23:286–91.CrossRefGoogle Scholar
  56. 56.
    Nyström A, Mörse H, Nordlöf H, Wiebe K, Artman M, Øra I, et al. Anti-müllerian hormone compared with other ovarian markers after childhood cancer treatment. Acta Oncol. 2019;58:218–24.PubMedCrossRefGoogle Scholar
  57. 57.
    Nair S, Slaughter JC, Terry JG, Appiah D, Ebong I, Wang E, et al. Anti-mullerian hormone (AMH) is associated with natural menopause in a population-based sample: the CARDIA Women’s Study. Maturitas. 2015;81:493–8.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lew R. Natural history of ovarian function including assessment of ovarian reserve and premature ovarian failure. Best Pract Res Clin Obstet Gynaecol. 2019;55:2–13.PubMedCrossRefGoogle Scholar
  59. 59.
    Knauff EAH, Eijkemans MJC, Lambalk CB, ten Kate-Booij MJ, Hoek A, Beerendonk CCM, et al. Anti-Müllerian hormone, inhibin B, and antral follicle count in young women with ovarian failure. J Clin Endocrinol Metab. 2009;94:786–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Kelsey TW, Wright P, Nelson SM, Anderson RA, Wallace WHB. A validated model of serum anti-Müllerian hormone from conception to menopause. PLoS One. 2011;6:e22024.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kim C, Slaughter JC, Wang ET, Appiah D, Schreiner P, Leader B, et al. Anti-Müllerian hormone, follicle stimulating hormone, antral follicle count, and risk of menopause within 5 years. Maturitas. 2017;102:18–25.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Bolat SE, Ozdemirci S, Kasapoglu T, Duran B, Goktas L, Karahanoglu E. The effect of serum and follicular fluid anti-Mullerian hormone level on the number of oocytes retrieved and rate of fertilization and clinical pregnancy. North Clin Istanb. 2016;3:90–6.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Dumont A, Robin G, Jonard S, Dewailly D. Role of anti-Müllerian hormone in pathophysiology, diagnosis and treatment of polycystic ovary syndrome: a review. Reprod Biol Endocrinol 2015;13.Google Scholar
  64. 64.
    Islam Y, Aboulghar MM, AlEbrashy AE-D, Abdel-Aziz O. The value of different ovarian reserve tests in the prediction of ovarian response in patients with unexplained infertility. Middle East Fertil Soc J. 2016;21:69–74.CrossRefGoogle Scholar
  65. 65.
    Lie Fong S, Visser JA, Welt CK, de Rijke YB, Eijkemans MJC, Broekmans FJ, et al. Serum anti-müllerian hormone levels in healthy females: a nomogram ranging from infancy to adulthood. J Clin Endocrinol Metab. 2012;97:4650–5.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Shahrokhi SZ, Kazerouni F, Ghaffari F. Anti-Müllerian hormone: genetic and environmental effects. Clin Chim Acta. 2018;476:123–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Alson SSE, Bungum LJ, Giwercman A, Henic E. Anti-müllerian hormone levels are associated with live birth rates in ART, but the predictive ability of anti-müllerian hormone is modest. Eur J Obstet Gynecol Reprod Biol. 2018;225:199–204.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Arce J-C, Nyboe Andersen A, Fernández-Sánchez M, Visnova H, Bosch E, García-Velasco JA, et al. Ovarian response to recombinant human follicle-stimulating hormone: a randomized, antimüllerian hormone–stratified, dose–response trial in women undergoing in vitro fertilization/intracytoplasmic sperm injection. Fertil Steril. 2014;102:1633–1640.e5.PubMedCrossRefGoogle Scholar
  69. 69.
    Daney de Marcillac F, Pinton A, Guillaume A, Sagot P, Pirrello O, Rongieres C. What are the likely IVF/ICSI outcomes if there is a discrepancy between serum AMH and FSH levels? A multicenter retrospective study. J Gynecol Obstet Hum Reprod. 2017;46:629–35.PubMedCrossRefGoogle Scholar
  70. 70.
    Revelli A, Biasoni V, Gennarelli G, Canosa S, Dalmasso P, Benedetto C. IVF results in patients with very low serum AMH are significantly affected by chronological age. J Assist Reprod Genet. 2016;33:603–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Arce J-C, La Marca A, Mirner Klein B, Nyboe Andersen A, Fleming R. Antimüllerian hormone in gonadotropin releasing-hormone antagonist cycles: prediction of ovarian response and cumulative treatment outcome in good-prognosis patients. Fertil Steril. 2013;99:1644–1653.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Nyboe Andersen A, Nelson SM, Fauser BCJM, García-Velasco JA, Klein BM, Arce J-C, et al. Individualized versus conventional ovarian stimulation for in vitro fertilization: a multicenter, randomized, controlled, assessor-blinded, phase 3 noninferiority trial. Fertil Steril. 2017;107:387–396.e4.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Nelson SM, Klein BM, Arce J-C. Comparison of antimüllerian hormone levels and antral follicle count as predictor of ovarian response to controlled ovarian stimulation in good-prognosis patients at individual fertility clinics in two multicenter trials. Fertil Steril. 2015;103:923–930.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Köninger A, Kauth A, Schmidt B, Schmidt M, Yerlikaya G, Kasimir-Bauer S, et al. Anti-Mullerian-hormone levels during pregnancy and postpartum. Reprod Biol Endocrinol RBE. 2013;11:60.CrossRefGoogle Scholar
  75. 75.
    La Marca A, Giulini S, Orvieto R, De Leo V, Volpe A. Anti-Müllerian hormone concentrations in maternal serum during pregnancy. Hum Reprod Oxf Engl. 2005;20:1569–72.CrossRefGoogle Scholar
  76. 76.
    Fiçicioǧlu C, Kutlu T, Baglam E, Bakacak Z. Early follicular antimüllerian hormone as an indicator of ovarian reserve. Fertil Steril. 2006;85:592–6.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    McIlveen M, Skull JD, Ledger WL. Evaluation of the utility of multiple endocrine and ultrasound measures of ovarian reserve in the prediction of cycle cancellation in a high-risk IVF population. Hum Reprod. 2007;22:778–85.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Sahmay S, Oncul M, Tuten A, Tok A, Acıkgoz AS, Cepni I. Anti-Müllerian hormone levels as a predictor of the pregnancy rate in women of advanced reproductive age. J Assist Reprod Genet. 2014;31:1469–74.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Wang JG, Douglas NC, Nakhuda GS, Choi JM, Park SJ, Thornton MH, et al. The association between anti-Müllerian hormone and IVF pregnancy outcomes is influenced by age. Reprod BioMed Online. 2010;21:757–61.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Goswami M, Nikolaou D. Is AMH level, independent of age, a predictor of live birth in IVF? J Hum Reprod Sci. 2017;10:24–30.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Kavoussi SK, Odenwald KC, Boehnlein LM, Summers-Colquitt RB, Pool TB, Swain JE, et al. Antimüllerian hormone as a predictor of good-quality supernumerary blastocyst cryopreservation among women with levels <1 ng/mL versus 1–4 ng/mL. Fertil Steril. 2015;104:633–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Teramoto S, Osada H, Sato Y, Shozu M. Nondominant small follicles are a promising source of mature oocytes in modified natural cycle in vitro fertilization and embryo transfer. Fertil Steril. 2016;106:113–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Lim J, Park SG, Yoon S, Yang S-H, Chian RC. Combination of natural cycle IVF with IVM as infertility treatment. In: Tan SL, Chian RC, Buckett WM, editors. In-vitro maturation of human oocytes: basic science to clinical application. London: Informa Healthcare Press; 2007. p. 353–60.Google Scholar
  84. 84.
    Tang-Pedersen M, Westergaard LG, Erb K, Mikkelsen AL. Combination of IVF and IVM in naturally cycling women. Reprod BioMed Online. 2012;24:47–53.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Lim J-H, Yang S-H, Xu Y, Yoon S-H, Chian R-C. Selection of patients for natural cycle in vitro fertilization combined with in vitro maturation of immature oocytes. Fertil Steril. 2009;91:1050–5.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Zhang Y, Shao L, Xu Y, Cui Y, Liu J, Chian R-C. Effect of Anti-Mullerian hormone in culture medium on quality of mouse oocytes matured in vitro. PLoS One. 2014;9:e99393.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Carlsson IB, Scott JE, Visser JA, Ritvos O, Themmen APN, Hovatta O. Anti-Müllerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Hum Reprod. 2006;21:2223–7.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Schmidt KLT, Kryger-Baggesen N, Byskov AG, Andersen CY. Anti-Müllerian hormone initiates growth of human primordial follicles in vitro. Mol Cell Endocrinol. 2005;234:87–93.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Hayes E, Kushnir V, Ma X, Biswas A, Prizant H, Gleicher N, et al. Intra-cellular mechanism of Anti-Müllerian hormone (AMH) in regulation of follicular development. Mol Cell Endocrinol. 2016;433:56–65.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kano M, Sosulski AE, Zhang L, Saatcioglu HD, Wang D, Nagykery N, et al. AMH/MIS as a contraceptive that protects the ovarian reserve during chemotherapy. Proc Natl Acad Sci U S A. 2017;114:E1688–97.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Margolskee A, Selgrade JF. A lifelong model for the female reproductive cycle with an antimüllerian hormone treatment to delay menopause. J Theor Biol. 2013;326:21–35.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Renaud EJ, MacLaughlin DT, Oliva E, Rueda BR, Donahoe PK. Endometrial cancer is a receptor-mediated target for Mullerian Inhibiting Substance. Proc Natl Acad Sci. 2005;102:111–6.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Segev DL, Ha TU, Tran TT, Kenneally M, Harkin P, Jung M, et al. Müllerian inhibiting substance inhibits breast cancer cell growth through an NFκB-mediated pathway. J Biol Chem. 2000;275:28371–9.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Levin G, Zigron R, Haj-Yahya R, Matan LS, Rottenstreich A. Granulosa cell tumor of ovary: a systematic review of recent evidence. Eur J Obstet Gynecol Reprod Biol. 2018;225:57–61.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Färkkilä A, Koskela S, Bryk S, Alfthan H, Bützow R, Leminen A, et al. The clinical utility of serum anti-Müllerian hormone in the follow-up of ovarian adult-type granulosa cell tumors—a comparative study with inhibin B. Int J Cancer. 2015;137:1661–71.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Chong YH, Campbell AJ, Farrand S, McLennan IS. Anti-Müllerian hormone level in older women: detection of granulosa cell tumor recurrence. Int J Gynecol Cancer Off J Int Gynecol Cancer Soc. 2012;22:1497–9.Google Scholar
  97. 97.
    Ge W, Clendenen TV, Afanasyeva Y, Koenig KL, Agnoli C, Brinton LA, et al. Circulating anti-Müllerian hormone and breast cancer risk: a study in ten prospective cohorts. Int J Cancer. 2018;142:2215–26.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Dubeau L. The cell of origin of ovarian epithelial tumours. Lancet Oncol. 2008;9:1191–7.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Basal E, Ayeni T, Zhang Q, Langstraat C, Donahoe PK, Pepin D, et al. Patterns of Müllerian inhibiting substance type II and candidate type I receptors in epithelial ovarian cancer. Curr Mol Med. 2016;16:222–31.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Stephen AE, Pearsall LA, Christian BP, Donahoe PK, Vacanti JP, MacLaughlin DT. Highly purified Müllerian inhibiting substance inhibits human ovarian cancer in vivo. Clin Cancer Res. 2002;8:2640–6.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Su HI, Flatt SW, Natarajan L, DeMichele A, Steiner AZ. Impact of breast cancer on anti-mullerian hormone levels in young women. Breast Cancer Res Treat. 2013;137:571–7.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Lawrenz B, Fehm T, von Wolff M, Soekler M, Huebner S, Henes J, et al. Reduced pretreatment ovarian reserve in premenopausal female patients with Hodgkin lymphoma or non-Hodgkin-lymphoma—evaluation by using antimüllerian hormone and retrieved oocytes. Fertil Steril. 2012;98:141–4.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Dewailly D, Andersen CY, Balen A, Broekmans F, Dilaver N, Fanchin R, et al. The physiology and clinical utility of anti-Müllerian hormone in women. Hum Reprod Update. 2014;20:370–85.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Passildas J, Collard O, Savoye A-M, Dohou J, Ginzac A, Thivat E, et al. Impact of chemotherapy-induced menopause in women of childbearing age with non-metastatic breast cancer – preliminary results from the MENOCOR study. Clin Breast Cancer. 2019;19:e74–84.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Goldman KN, Chenette D, Arju R, Duncan FE, Keefe DL, Grifo JA, et al. mTORC1/2 inhibition preserves ovarian function and fertility during genotoxic chemotherapy. Proc Natl Acad Sci. 2017;114:3186–91.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Donnez J, Dolmans M-M, Pellicer A, Diaz-Garcia C, Sanchez Serrano M, Schmidt KT, et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril. 2013;99:1503–13.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Anderson RA, Wallace WHB. Antimüllerian hormone, the assessment of the ovarian reserve, and the reproductive outcome of the young patient with cancer. Fertil Steril. 2013;99:1469–75.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Jacobs MH, Reuter LM, Baker VL, Craig LB, Sakkas D, Surrey E, et al. A multicentre evaluation of the Elecsys® anti-Müllerian hormone immunoassay for prediction of antral follicle count. Reprod BioMed Online. 2019;38:845–52.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Ferguson JM, Pépin D, Duru C, Matejtschuk P, Donahoe PK, Burns CJ. Towards international standardization of immunoassays for Müllerian inhibiting substance/anti-Müllerian hormone. Reprod BioMed Online. 2018;37:631–40.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Reproductive Unit, Department of Obstetrics and GynaecologyUniversity Medical Centre LjubljanaLjubljanaSlovenia

Personalised recommendations