Association between miR-146a C > G, miR-149 T > C, miR-196a2 T > C, and miR-499 A > G polymorphisms and susceptibility to idiopathic recurrent pregnancy loss

  • Meysam Alipour
  • Maryam Abtin
  • Asghar Hosseinzadeh
  • Masoud MalekiEmail author



A growing body of evidence suggests that microRNAs play fundamental regulatory roles in embryo implantation and maintenance of pregnancy. The aim of this study was to investigate the possible association between miR-146a C > G, miR-149 T > C, miR-196a2 T > C, and miR-499 A > G polymorphisms and genetic susceptibility to recurrent pregnancy loss (RPL).

Material and methods

One hundred and twenty women with a history of two or more unexplained consecutive miscarriages and 90 ethnically matched healthy women with a history of at least two successful pregnancy outcomes and without a history of miscarriage were enrolled in a case-control study. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.


Our findings showed that the prevalence of miR-149 T > C polymorphism in RPL patients was significantly higher than those in healthy controls (p < 0.05). We also found that the presence of miR-149 C and miR-499 G alleles was significantly associated with susceptibility to RPL (p < 0.05). The miR-146a CC/miR-499 GG, miR-149 TC/miR-499 AG, and miR-196a2 TT/miR-499 GG combined genotypes were associated with the high risk of RPL (p < 0.05).


This study suggests that miR-149 T > C polymorphism and the presence of miR-149 C, and miR-499 G alleles are a genetic determinant for the risk of idiopathic RPL.


miR-146a C > G miR-149 T > C miR-196a2 T > C miR-499 A > G Polymorphism Recurrent pregnancy loss 



Authors would like to express their sincerest appreciation to all subjects for participating in this study.

Compliance with ethical standards

This project was approved by faculty of sciences, Islamic Azad University of Tabriz branch, Tabriz, Iran on 2016-05-12. the questionnaires were taken by research committee of faculty of sciences and then they were reviewed in accordance with research ethical standards to provide ethical code and finally they were archived there confidential, so we don't access to them now.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, et al. The International Glossary on Infertility and Fertility Care, 2017. Fertil Steril. 2017;108:393–406.CrossRefGoogle Scholar
  2. 2.
    Bender Atik R, Bjarne Christiansen O, Elson J, Marie Kolte A, Lewis S, Middeldorp S, et al. ESHRE guideline: recurrent pregnancy loss, 2018. Human Reprod Open. 2018;2:1–12.Google Scholar
  3. 3.
    Popescu F, Jaslow CR, Kutteh WH. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriagetissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33:579–87.CrossRefGoogle Scholar
  4. 4.
    El Hachem H, Crepaux V, May-Panloup P, Descamps P, Legendre G, Bouet PE. Recurrent pregnancy loss: current perspectives. Int J Women's Health. 2017;9:331–45.CrossRefGoogle Scholar
  5. 5.
    Sugiura-Ogasawara M, Ozaki Y, Suzumori N. Management of recurrent miscarriage. J Obstet Gynaecol Res. 2014;40:1174–9.CrossRefGoogle Scholar
  6. 6.
    Baek KH, Lee EJ, Kim YS. Recurrent pregnancy loss: the key potential mechanisms. Trends Mol Med. 2007;13:310–7.CrossRefGoogle Scholar
  7. 7.
    Page JM, Silver RM. Genetic causes of recurrent pregnancy loss. Clin Obstet Gynecol. 2016;59:498–508.CrossRefGoogle Scholar
  8. 8.
    Goodman CS, Coulam CB, Jeyendran RS, Acosta VA, Roussev R. Which thrombophilic gene mutations are risk factors for recurrent pregnancy loss? Am J Reprod Immunol. 2006;56:230–6.CrossRefGoogle Scholar
  9. 9.
    Daher S, Shulzhenko N, Morgun A, Mattar R, Rampim GF, Camano L, et al. Associations between cytokine gene polymorphisms and recurrent pregnancy loss. J Reprod Immunol. 2003;58:69–77.CrossRefGoogle Scholar
  10. 10.
    Eisenberg I, Kotaja N, Goldman-Wohl D, Imbar T. microRNA in human reproduction. Adv Exp Med Biol. 2015;888:353–87.CrossRefGoogle Scholar
  11. 11.
    Santamaria X, Taylor H. MicroRNA and gynecological reproductive diseases. Fertil Steril. 2014;101:1545–51.CrossRefGoogle Scholar
  12. 12.
    Gilabert-Estelles J, Braza-Boils A, Ramon LA, Zorio E, Medina P, Espana F, et al. Role of microRNAs in gynecological pathology. Curr Med Chem. 2012;19:2406–13.CrossRefGoogle Scholar
  13. 13.
    Imbar T, Galliano D, Pellicer A, Laufer N. Introduction: MicroRNAs in human reproduction: small molecules with crucial regulatory roles. Fertil Steril. 2014;101:1514–5.CrossRefGoogle Scholar
  14. 14.
    Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNA. 2019;25:1–16.CrossRefGoogle Scholar
  15. 15.
    Iwakawa HO, Tomari Y. The functions of MicroRNAs: mRNA decay and translational repression. Trends Cell Biol. 2015;25:651–65.CrossRefGoogle Scholar
  16. 16.
    Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16:421–33.CrossRefGoogle Scholar
  17. 17.
    Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015;22:22–33.CrossRefGoogle Scholar
  18. 18.
    Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.CrossRefGoogle Scholar
  19. 19.
    Tüfekci KU, Meuwissen RL, Genç S. The role of microRNAs in biological processes. Methods Mol Biol. 2014;1107:15–31.CrossRefGoogle Scholar
  20. 20.
    Tesfaye D, Salilew-Wondim D, Gebremedhn S, Sohel MM, Pandey HO, Hoelker M, et al. Potential role of microRNAs in mammalian female fertility. Reprod Fertil Dev. 2016;29:8–23.CrossRefGoogle Scholar
  21. 21.
    Liu W, Niu Z, Li Q, Pang RT, Chiu PC, Yeung WS. MicroRNA and embryo implantation. Am J Reprod Immunol. 2016;75:263–2671.CrossRefGoogle Scholar
  22. 22.
    Liang J, Wang S, Wang Z. Role of microRNAs in embryo implantation. Reprod Biol Endocrinol. 2017;15:90.CrossRefGoogle Scholar
  23. 23.
    Adams BD, Kasinski AL, Slack FJ. Aberrant regulation and function of microRNAs in cancer. Curr Biol. 2014;24:762–76.CrossRefGoogle Scholar
  24. 24.
    Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends Genet. 2008;24:489–97.CrossRefGoogle Scholar
  25. 25.
    Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol. 2017;7:170019.CrossRefGoogle Scholar
  26. 26.
    Liu X, Han Z, Yang C. Associations of microRNA single nucleotide polymorphisms and disease risk and pathophysiology. Clin Genet. 2017;92:235–42.CrossRefGoogle Scholar
  27. 27.
    Króliczewski J, Sobolewska A, Lejnowski D, Collawn JF, Bartoszewski R. MicroRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene. 2018;640:66–72.CrossRefGoogle Scholar
  28. 28.
    Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA, et al. SNPs in human miRNA genes affect biogenesis and function. RNA. 2009;15:1640–51.CrossRefGoogle Scholar
  29. 29.
    Jeon YJ, Choi YS, Rah H, Kim SY, Choi DH, Cha SH, et al. Association study of microRNA polymorphisms with risk of idiopathic recurrent spontaneous abortion in Korean women. Gene. 2012;494:168–73.CrossRefGoogle Scholar
  30. 30.
    Parveen F, Agrawal S. Recurrent miscarriage and micro-RNA among north Indian women. Reprod Sci. 2015;22:410–5.CrossRefGoogle Scholar
  31. 31.
    Fazli M, Ghorbian S. Association study of non-coding RNA miR-499 and miR196a2 gene polymorphisms with the risk of idiopathic recurrent pregnancy loss. Gene Cell Tissue. 2018;5:e67253.Google Scholar
  32. 32.
    Rah H, Chung KW, Ko KH, Kim ES, Kim JO, Sakong JH, et al. miR-27a and miR-449b polymorphisms associated with a risk of idiopathic recurrent pregnancy loss. PLoS One. 2017;12:e0177160.CrossRefGoogle Scholar
  33. 33.
    Stavrou S, Mavrogianni D, Siahami A, Loutradis D, Drakakis P. Association study of the miR-196a2T>C and miR-499A>G polymorphisms with the incidence of idiopathic recurrent spontaneous abortions. Biomed J Sci Tech Res. 2018;3:1–4.Google Scholar
  34. 34.
    Amin-Beidokhti M, Mirfakhraie R, Zare-Karizi S, Karamoddin F. The role of parental microRNA alleles in recurrent pregnancy loss: an association study. Reprod BioMed Online. 2017;34:325–30.CrossRefGoogle Scholar
  35. 35.
    Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.CrossRefGoogle Scholar
  36. 36.
    Cho SH, An HJ, Kim KA, Ko JJ, Kim JH, Kim YR, et al. Single nucleotide polymorphisms at miR-146a/196a2 and their primary ovarian insufficiency-related target gene regulation in granulosa cells. PLoS One. 2017;12:e0183479.CrossRefGoogle Scholar
  37. 37.
    Uhlenhaut NH, Treier M. Foxl2 function in ovarian development. Mol Genet Metab. 2006;88:225–34.CrossRefGoogle Scholar
  38. 38.
    Governini L, Carrarelli P, Rocha AL, Leo VD, Luddi A, Arcuri F, et al. FOXL2 in human endometrium: hyperexpressed in endometriosis. Reprod Sci. 2014;21:1249–55.CrossRefGoogle Scholar
  39. 39.
    Bellessort B, Bachelot A, Heude É, Alfama G, Fontaine A, Le Cardinal M, et al. Role of Foxl2 in uterine maturation and function. Hum Mol Genet. 2015;24:3092–103.CrossRefGoogle Scholar
  40. 40.
    Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14:518–28.CrossRefGoogle Scholar
  41. 41.
    Han Y, Xia G, Tsang BK. Regulation of cyclin D2 expression and degradation by follicle-stimulating hormone during ratgranulosa cell proliferation in vitro. Biol Reprod. 2013;88:57.CrossRefGoogle Scholar
  42. 42.
    Suzuki Y, Kim HW, Ashraf M, Haider HK. Diazoxide potentiates mesenchymal stem cell survival via NF-kappaB-dependent miR-146a expression by targeting Fas. Am J Physiol Heart Circ Physiol. 2010;299:1077–82.CrossRefGoogle Scholar
  43. 43.
    Panzan MQ, Mattar R, Maganhin CC, Simões Rdos S, Rossi AG, Motta EL, et al. Evaluation of FAS and caspase-3 in the endometrial tissue of patients with idiopathic infertility and recurrent pregnancy loss. Eur J Obstet Gynecol Reprod Biol. 2013;167:47–52.CrossRefGoogle Scholar
  44. 44.
    Lin RJ, Lin YC, Yu AL. miR-149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Mol Carcinog. 2010;49:719–27.PubMedGoogle Scholar
  45. 45.
    Zhou M, Fu J, Xiao L, Yang S, Song Y, Zhang X, et al. miR-196a overexpression activates the MEK/ERK signal and represses the progesterone receptorand decidualization in eutopic endometrium from women with endometriosis. Hum Reprod. 2016;31:2598–608.CrossRefGoogle Scholar
  46. 46.
    Wang Y, Gan H, Su F, Zhang H, Wang S, Xian J. Role of MAPK/ERK signal pathway in recurrent miscarriage patients by case-control analysis. Int J Clin Exp Pathol. 2016;9:12773–8.Google Scholar
  47. 47.
    Murakami A, Ishida S, Thurlow J, Revest JM, Dickson C. SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter. Nucleic Acids Res. 2001;29:3347–55.CrossRefGoogle Scholar
  48. 48.
    Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 2000;16:182–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Meysam Alipour
    • 1
  • Maryam Abtin
    • 2
  • Asghar Hosseinzadeh
    • 3
  • Masoud Maleki
    • 1
    Email author
  1. 1.Department of Biology, Tabriz BranchIslamic Azad UniversityTabrizIran
  2. 2.Department of Medical Genetics, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
  3. 3.Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations