Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 36, Issue 11, pp 2333–2344 | Cite as

The impact of peak estradiol during controlled ovarian stimulation on the cumulative live birth rate of IVF/ICSI in non-PCOS patients

  • Wanlin Zhang
  • Ying Tian
  • Duo Xie
  • Ye Miao
  • Jin Liu
  • Xiaohong WangEmail author
Assisted Reproduction Technologies
  • 123 Downloads

Abstract

Objective

The study aimed to investigate the impact of the peak E2 level during controlled ovarian hyperstimulation (COS) on the cumulative live birth rate (cLBR) in non-PCOS women with normal ovarian reserve.

Materials and methods

Women between 20 and 39 years were included. Donor cycles and patients who never experienced embryo transfer were excluded. Multivariable regression and smooth curve fitting were applied for statistical analysis.

Results

A total of 1141 patients were included. The mean age, basal AFC, peak E2 level, and number of retrieved oocyte were 30.0 ± 3.7 years old, 16.8 ± 6.7, 3911.0 ± 1302.9 pg/ml, and 13.6 ± 5.5, respectively. In the overall population of the cohort, cLBR, miscarriage rate, and preterm birth rate were 66.9%, 7.4%, and 13.7%, respectively. The results of multivariable regression analysis failed to show the impact of peak E2 on the cLBR [OR (95%CI) 0.995 (0.982, 1.009), P = 0.486]. However, the result of smooth curve fitting indicated that when the peak E2 was lower than 2185 pg/ml, the cLBR increased about 12% with 100 pg/ml increasing of the peak E2. When the peak E2 was higher than 6136 pg/ml, the cLBR decreased about 10% with 100 pg/ml increasing of the peak E2.

Conclusion

We concluded that the peak E2 level on hCG trigger day is associated with the cLBR in a segmental pattern. There should be an appropriate range of the peak E2 level during COS to achieve a relative best cLBR in non-PCOS patients using stimulating protocol mainly based on GnRH agonist; however, the cutoff value must vary in different centers.

Keywords

In vitro fertilization Cumulative live birth rate Peak estradiol Retrospective cohort study 

Notes

Funding information

This work was funded by grants from the National Natural Science Foundation of China (NSFC, Grant/Award No. 81671463) and the Key Project and Development Plan-fund of Shaanxi province (Grant/Award No. 2017ZDCXL-SF-02-03).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10815_2019_1568_Fig1_ESM.png (323 kb)
Supplementary Fig. S1

(PNG 323 kb)

10815_2019_1568_MOESM1_ESM.tif (409 kb)
ESM 1 (TIFF 408 kb)

References

  1. 1.
    Crawford GE, Ledger WL. In vitro fertilisation/intracytoplasmic sperm injection beyond 2020. BJOG. 2019;126(2):237–43.  https://doi.org/10.1111/1471-0528.15526.CrossRefPubMedGoogle Scholar
  2. 2.
    De Neubourg D, Bogaerts K, Blockeel C, Coetsier T, Delvigne A, Devreker F, et al. How do cumulative live birth rates and cumulative multiple live birth rates over complete courses of assisted reproductive technology treatment per woman compare among registries? Hum Reprod (Oxford, England). 2016;31(1):93–9.  https://doi.org/10.1093/humrep/dev270.CrossRefGoogle Scholar
  3. 3.
    Imudia AN, Goldman RH, Awonuga AO, Wright DL, Styer AK, Toth TL. The impact of supraphysiologic serum estradiol levels on peri-implantation embryo development and early pregnancy outcome following in vitro fertilization cycles. J Assist Reprod Genet. 2014;31(1):65–71.  https://doi.org/10.1007/s10815-013-0117-8.CrossRefPubMedGoogle Scholar
  4. 4.
    Kara M, Kutlu T, Sofuoglu K, Devranoglu B, Cetinkaya T. Association between serum estradiol level on the hCG administration day and IVF-ICSI outcome. Iran J Reprod Med. 2012;10(1):53–8.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Rehman R, Jawaid S, Gul H, Khan R. Impact of peak estradiol levels on reproductive outcome of intracytoplasmic sperm injection. Pak J Med Sci. 2014;30(5):986–91.  https://doi.org/10.12669/pjms.305.5175.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wei M, Zhang XM, Gu FL, Lv F, Ji YR, Liu KF, et al. The impact of LH, E2, and P level of HCG administration day on outcomes of in vitro fertilization in controlled ovarian hyperstimulation. Clin Exp Obstet Gynecol. 2015;42(3):361–6.Google Scholar
  7. 7.
    Siddhartha N, Reddy NS, Pandurangi M, Tamizharasi M, Radha V, Kanimozhi K. Correlation of serum estradiol level on the day of ovulation trigger with the reproductive outcome of intracytoplasmic sperm injection. J Hum Reprod Sci. 2016;9(1):23–7.  https://doi.org/10.4103/0974-1208.178631.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bu Z, Wang K, Guo Y, Su Y, Zhai J, Sun Y. Impact of estrogen-to-oocyte ratio on live birth rate in women undergoing in vitro fertilization and embryo transfer. Int J Clin Exp Med. 2015;8(7):11327–31.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Committee Opinion No. 690: Carrier Screening in the Age of Genomic Medicine. Obstet Gynecol. 2017;129(3):e35–40.  https://doi.org/10.1097/aog.0000000000001951.
  10. 10.
    Christianson MS, Shoham G, Tobler KJ, Zhao Y, Cordeiro CN, Leong M, et al. Measurement of antral follicle count in patients undergoing in vitro fertilization treatment: results of a worldwide web-based survey. J Assist Reprod Genet. 2015;32(10):1435–40.  https://doi.org/10.1007/s10815-015-0555-6.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Group EASPCW. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Hum Reprod. 2004;81(1):19–25.Google Scholar
  12. 12.
    Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Reprod Biomed Online. 2011;22(6):632–46.  https://doi.org/10.1016/j.rbmo.2011.02.001.CrossRefGoogle Scholar
  13. 13.
    Vrtacnik P, Ostanek B, Mencej-Bedrac S, Marc J. The many faces of estrogen signaling. Biochem Med (Zagreb). 2014;24(3):329–42.  https://doi.org/10.11613/bm.2014.035.CrossRefGoogle Scholar
  14. 14.
    Foroozanfard F, Moraveji SA, Taghavi SA, Karimi F. Association between serum estradiol level on the day of hCG administration and IVF-ICSI outcome. J Obstet Gynaecol India. 2016;66(3):170–3.  https://doi.org/10.1007/s13224-015-0687-8.CrossRefPubMedGoogle Scholar
  15. 15.
    Joo BS, Park SH, An BM, Kim KS, Moon SE, Moon HS. Serum estradiol levels during controlled ovarian hyperstimulation influence the pregnancy outcome of in vitro fertilization in a concentration-dependent manner. Fertil Steril. 2010;93(2):442–6.  https://doi.org/10.1016/j.fertnstert.2009.02.066.CrossRefPubMedGoogle Scholar
  16. 16.
    Pereira N, Reichman DE, Goldschlag DE, Lekovich JP, Rosenwaks Z. Impact of elevated peak serum estradiol levels during controlled ovarian hyperstimulation on the birth weight of term singletons from fresh IVF-ET cycles. J Assist Reprod Genet. 2015;32(4):527–32.  https://doi.org/10.1007/s10815-015-0434-1.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pereira N, Elias RT, Christos PJ, Petrini AC, Hancock K, Lekovich JP, et al. Supraphysiologic estradiol is an independent predictor of low birth weight in full-term singletons born after fresh embryo transfer. Hum Reprod. 2017;32(7):1410–7.  https://doi.org/10.1093/humrep/dex095.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Imudia AN, Awonuga AO, Doyle JO, Kaimal AJ, Wright DL, Toth TL, et al. Peak serum estradiol level during controlled ovarian hyperstimulation is associated with increased risk of small for gestational age and preeclampsia in singleton pregnancies after in vitro fertilization. Fertil Steril. 2012;97(6):1374–9.  https://doi.org/10.1016/j.fertnstert.2012.03.028.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen ZJ, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med. 2016;375(6):523–33.  https://doi.org/10.1056/NEJMoa1513873.CrossRefPubMedGoogle Scholar
  20. 20.
    Shi Y, Sun Y, Hao C, Zhang H, Wei D, Zhang Y, et al. Transfer of fresh versus frozen embryos in ovulatory women. N Engl J Med. 2018;378(2):126–36.  https://doi.org/10.1056/NEJMoa1705334.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Vuong LN, Dang VQ, Ho TM, Huynh BG, Ha DT, Pham TD, et al. IVF transfer of fresh or frozen embryos in women without polycystic ovaries. N Engl J Med. 2018;378(2):137–47.  https://doi.org/10.1056/NEJMoa1703768.CrossRefPubMedGoogle Scholar
  22. 22.
    Wei D, Liu JY, Sun Y, Shi Y, Zhang B, Liu JQ, et al. Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised controlled trial. Lancet (London, England). 2019;393(10178):1310–8.  https://doi.org/10.1016/s0140-6736(18)32843-5.CrossRefGoogle Scholar
  23. 23.
    Ng EH, Chan CC, Tang OS, Yeung WS, Ho PC. Comparison of endometrial and subendometrial blood flow measured by three-dimensional power Doppler ultrasound between stimulated and natural cycles in the same patients. Hum Reprod (Oxford, England). 2004;19(10):2385–90.  https://doi.org/10.1093/humrep/deh384.CrossRefGoogle Scholar
  24. 24.
    Ng EH, Chan CC, Tang OS, Yeung WS, Ho PC. Factors affecting endometrial and subendometrial blood flow measured by three-dimensional power Doppler ultrasound during IVF treatment. Hum Reprod (Oxford, England). 2006;21(4):1062–9.  https://doi.org/10.1093/humrep/dei442.CrossRefGoogle Scholar
  25. 25.
    Kolibianakis E, Bourgain C, Albano C, Osmanagaoglu K, Smitz J, Van Steirteghem A, et al. Effect of ovarian stimulation with recombinant follicle-stimulating hormone, gonadotropin releasing hormone antagonists, and human chorionic gonadotropin on endometrial maturation on the day of oocyte pick-up. Fertil Steril. 2002;78(5):1025–9.CrossRefGoogle Scholar
  26. 26.
    Lee YL, Liu Y, Ng PY, Lee KF, Au CL, Ng EH, et al. Aberrant expression of angiopoietins-1 and -2 and vascular endothelial growth factor-a in peri-implantation endometrium after gonadotrophin stimulation. Hum Reprod (Oxford, England). 2008;23(4):894–903.  https://doi.org/10.1093/humrep/den004.CrossRefGoogle Scholar
  27. 27.
    Zapantis G, Szmyga MJ, Rybak EA, Meier UT. Premature formation of nucleolar channel systems indicates advanced endometrial maturation following controlled ovarian hyperstimulation. Hum Reprod (Oxford, England). 2013;28(12):3292–300.  https://doi.org/10.1093/humrep/det358.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Li MQ, Jin LP. Ovarian stimulation for in vitro fertilization alters the protein profile expression in endometrial secretion. Int J Clin Exp Pathol. 2013;6(10):1964–71.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Ullah K, Rahman TU, Pan HT, Guo MX, Dong XY, Liu J, et al. Serum estradiol levels in controlled ovarian stimulation directly affect the endometrium. J Mol Endocrinol. 2017;59(2):105–19.  https://doi.org/10.1530/jme-17-0036.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Namavar Jahromi BMD, Parsanezhad MEMD, Shomali ZMD, Bakhshai PMD, Alborzi MMD, Moin Vaziri NMDP, et al. Ovarian Hyperstimulation syndrome: a narrative review of its pathophysiology, risk factors, prevention, classification, and management. Iranian J Med Sci. 2018;43(3):248–60.Google Scholar
  31. 31.
    Zhang W, Ma Y, Xiong Y, Xiao X, Chen S, Wang X. Supraphysiological serum oestradiol negatively affects birthweight in cryopreserved embryo transfers: a retrospective cohort study. Reprod BioMed Online. 2019.  https://doi.org/10.1016/j.rbmo.2019.04.015.CrossRefGoogle Scholar
  32. 32.
    Tarumi W, Itoh MT, Suzuki N. Effects of 5α-dihydrotestosterone and 17β-estradiol on the mouse ovarian follicle development and oocyte maturation. PLoS One. 2014;9(6):e99423-e.  https://doi.org/10.1371/journal.pone.0099423.CrossRefGoogle Scholar
  33. 33.
    Gelbaya TA, Potdar N, Jeve YB, Nardo LG. Definition and epidemiology of unexplained infertility. Obstet Gynecol Surv. 2014;69(2):109–15.  https://doi.org/10.1097/ogx.0000000000000043.CrossRefPubMedGoogle Scholar
  34. 34.
    Somigliana E, Paffoni A, Busnelli A, Filippi F, Pagliardini L, Vigano P, et al. Age-related infertility and unexplained infertility: an intricate clinical dilemma. Hum Reprod (Oxford, England). 2016;31(7):1390–6.  https://doi.org/10.1093/humrep/dew066.CrossRefGoogle Scholar
  35. 35.
    Ge ZJ, Schatten H, Zhang CL, Sun QY. Oocyte ageing and epigenetics. Reproduction (Cambridge, England). 2015;149(3):R103–14.  https://doi.org/10.1530/rep-14-0242.CrossRefGoogle Scholar
  36. 36.
    Burger HG, Dudley EC, Robertson DM, Dennerstein L. Hormonal changes in the menopause transition. Recent Prog Horm Res. 2002;57:257–75.CrossRefGoogle Scholar
  37. 37.
    Luke B. Pregnancy and birth outcomes in couples with infertility with and without assisted reproductive technology: with an emphasis on US population-based studies. Am J Obstet Gynecol. 2017;217(3):270–81.  https://doi.org/10.1016/j.ajog.2017.03.012.CrossRefGoogle Scholar
  38. 38.
    Luke B, Gopal D, Cabral H, Stern JE, Diop H. Adverse pregnancy, birth, and infant outcomes in twins: effects of maternal fertility status and infant gender combinations; the Massachusetts outcomes study of assisted reproductive technology. Am J Obstet Gynecol. 2017;217(3):330.e1–e15.  https://doi.org/10.1016/j.ajog.2017.04.025.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu HospitalAir Force Military Medical UniversityXi’anChina
  2. 2.Department of GynecologyTraditional Chinese Medicine Hospital of Shaanxi ProvinceXi’anChina
  3. 3.Department of Obstetrics and Gynecology986 Hospital of Air ForceXi’anChina

Personalised recommendations