Monkeys, mice and menses: the bloody anomaly of the spiny mouse

  • Nadia BellofioreEmail author
  • Jemma Evans


The common spiny mouse (Acomys cahirinus) is the only known rodent to demonstrate a myriad of physiological processes unseen in their murid relatives. The most recently discovered of these uncharacteristic traits: spontaneous decidual transformation of the uterus in virgin females, preceding menstruation. Menstruation occurring without experimental intervention in rodents has not been documented elsewhere to date, and natural menstruation is indeed rare in the animal kingdom outside of higher order primates. This review briefly summarises the current knowledge of spiny mouse biology and taxonomy, and explores their endocrinology which may aid in our understanding of the evolution of menstruation in this species. We propose that DHEA, synthesised by the spiny mouse (but not other rodents), humans and other menstruating primates, is integral in spontaneous decidualisation and therefore menstruation. We discuss both physiological and behavioural attributes across the menstrual cycle in the spiny mouse analogous to those observed in other menstruating species, including premenstrual syndrome. We further encourage the use of the spiny mouse as a small animal model of menstruation and female reproductive biology.


Menstruation Novel model Evolution 



The authors would like to acknowledge the critical insight into this manuscript and continued intellectual support provided by Associate Professor Peter Temple-Smith.


  1. 1.
    Bellofiore N, et al. First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus). Am J Obstet Gynecol. 2017;216(1):40. e1–40. e11.CrossRefGoogle Scholar
  2. 2.
    Hamlett G. Uterine bleeding in a bat, Glossophaga soricina. Anat Rec. 1934;60(1):9–17.CrossRefGoogle Scholar
  3. 3.
    Rasweiler JJ. Spontaneous decidual reactions and menstruation in the black mastiff bat, Molossus ater. Am J Anat. 1991;191:1–22.CrossRefGoogle Scholar
  4. 4.
    Rasweiler JJ, De Bonilla H. Menstruation in short-tailed fruit bats (Carollia spp.). J Reprod Fertil. 1992;95(1):231–48.CrossRefGoogle Scholar
  5. 5.
    Zhang X, Zhu C, Lin H, Yang Q, Ou Q, Li Y, et al. Wild fulvous fruit bats (Rousettus leschenaulti) exhibit human-like menstrual cycle. Biol Reprod. 2007;77(2):358–64.CrossRefGoogle Scholar
  6. 6.
    Van der Horst C, Gillman J. The menstrual cycle in Elephantulus. S Afr J Med Sci. 1941;6:27–42.Google Scholar
  7. 7.
    Downey B. Regulation of the estrous cycle in domestic animals—a review. Can Vet J. 1980;21(11):301–6.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Modi DN, et al. Endometrial biology during trophoblast invasion. Front Biosci (Schol Ed). 2012;4(3):1151–71.Google Scholar
  9. 9.
    Emera D, Romero R, Wagner G. The evolution of menstruation: a new model for genetic assimilation. Bioessays. 2012;34(1):26–35.CrossRefGoogle Scholar
  10. 10.
    Bellofiore N, Cousins F, Temple-Smith P, Dickinson H, Evans J. A missing piece: the spiny mouse and the puzzle of menstruating species. J Mol Endocrinol. 2018;61(1):R25–41.CrossRefGoogle Scholar
  11. 11.
    Clarke J. The adaptive significance of menstruation: the meaning of menstruation in the elimination of abnormal embryos. Hum Reprod. 1994;9(7):1204–7.CrossRefGoogle Scholar
  12. 12.
    Salker M, Teklenburg G, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS One. 2010;5(4):e10287.CrossRefGoogle Scholar
  13. 13.
    Teklenburg G, Salker M, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS One. 2010;5(4):e10258.CrossRefGoogle Scholar
  14. 14.
    Lynch VJ, Nnamani MC, Kapusta A, Brayer K, Plaza SL, Mazur EC, et al. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 2015;10(4):551–61.CrossRefGoogle Scholar
  15. 15.
    Dye L, Blundell J. Menstrual cycle and appetite control: implications for weight regulation. Hum Reprod. 1997;12(6):1142–51.CrossRefGoogle Scholar
  16. 16.
    Strassmann BI. The evolution of endometrial cycles and menstruation. Q Rev Biol. 1996;71(2):181–220.CrossRefGoogle Scholar
  17. 17.
    Oosterhuis W, et al. Perinatal development of the lung in rat and spiny mouse: its relation to altricial and precocial timing of birth. Neonatology. 1984;45(5):236–43.CrossRefGoogle Scholar
  18. 18.
    Dickinson H, Walker DW, Cullen-McEwen L, Wintour EM, Moritz K. The spiny mouse (Acomys cahirinus) completes nephrogenesis before birth. Am J Physiol-Renal Physiol. 2005;289(2):F273–9.CrossRefGoogle Scholar
  19. 19.
    Ellery SJ, LaRosa DA, Kett MM, Della Gatta PA, Snow RJ, Walker DW, et al. Dietary creatine supplementation during pregnancy: a study on the effects of creatine supplementation on creatine homeostasis and renal excretory function in spiny mice. Amino Acids. 2016;48(8):1819–30.CrossRefGoogle Scholar
  20. 20.
    Ireland Z, Castillo-Melendez M, Dickinson H, Snow R, Walker DW. A maternal diet supplemented with creatine from mid-pregnancy protects the newborn spiny mouse brain from birth hypoxia. Neuroscience. 2011;194:372–9.CrossRefGoogle Scholar
  21. 21.
    Ireland Z, et al. Maternal creatine: does it reach the fetus and improve survival after an acute hypoxic episode in the spiny mouse (Acomys cahirinus)? Am J Obstet Gynecol. 2008;198(4):431. e1–6.CrossRefGoogle Scholar
  22. 22.
    Gonet AE, Stauffacher W, Pictet R, Renold AE. Obesity and diabetes mellitus with striking congenital hyperplasia of the islets of Langerhans in spiny mice (Acomys cahirinus). Diabetologia. 1966;1(3–4):162–71.CrossRefGoogle Scholar
  23. 23.
    Lamers WH, Mooren PG, Griep H, Endert E, Degenhart HJ, Charles R. Hormones in perinatal rat and spiny mouse: relation to altricial and precocial timing of birth. Am J Physiol Endocrinol Metab. 1986;251(1):E78–85.CrossRefGoogle Scholar
  24. 24.
    Quinn TA, Ratnayake U, Dickinson H, Nguyen TH, McIntosh M, Castillo-Melendez M, et al. Ontogeny of the adrenal gland in the spiny mouse, with particular reference to production of the steroids cortisol and dehydroepiandrosterone. Endocrinology. 2013;154(3):1190–201.CrossRefGoogle Scholar
  25. 25.
    Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature. 2012;489(7417):561–5.CrossRefGoogle Scholar
  26. 26.
    Bellofiore N, Rana S, Dickinson H, Temple-Smith P, Evans J. Characterization of human-like menstruation in the spiny mouse: comparative studies with the human and induced mouse model. Hum Reprod. 2018;33(9):1715–26.Google Scholar
  27. 27.
    Sarich VM Rodent macromolecular systematics. In Evolutionary relationships among rodents. Boston, MA: Springer; 1985. p. 423-452.Google Scholar
  28. 28.
    Agulnik SI, Silver LM. The Cairo spiny mouse Acomys cahirinus shows a strong affinity to the Mongolian gerbil Meriones unguiculatus. Mol Biol Evol. 1996;13(1):3–6.CrossRefGoogle Scholar
  29. 29.
    Michaux J, Reyes A, Catzeflis F. Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents. Mol Biol Evol. 2001;18(11):2017–31.CrossRefGoogle Scholar
  30. 30.
    Hänni C, et al. Evolutionary relationships of Acomys and other murids (Rodentia, Mammalia) based on complete 12S rRNA mitochondrial gene sequences. Isr J Zool. 1995;41(2):131–46.Google Scholar
  31. 31.
    Peitz B. The oestrous cycle of the spiny mouse (Acomys cahirinus). J Reprod Fertil. 1981;61:453–9.CrossRefGoogle Scholar
  32. 32.
    Haughton CL, Gawriluk TR, Seifert AW. The biology and husbandry of the African spiny mouse (Acomys cahirinus) and the research uses of a laboratory colony. J Am Assoc Lab Anim Sci. 2016;55(1):9–17.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Dickinson H, Walker D. Managing a colony of spiny mice (Acomys cahirinus) for perinatal research. Australian and New Zealand Council for the Care of Animals in Research and Training (ANZCCART) News. 2007;20(1):4–11.Google Scholar
  34. 34.
    Abbott D, Bird I. Nonhuman Primates as models for human adrenal androgen production: function and dysfunction. Rev Endocr Metab Disord. 2009;10(1):33–42.CrossRefGoogle Scholar
  35. 35.
    Kimonides V, et al. Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc Natl Acad Sci. 1998;95(4):1852–7.CrossRefGoogle Scholar
  36. 36.
    Cardounel A, Regelson W, Kalimi M. Dehydroepiandrosterone protects hippocampal neurons against neurotoxin-induced cell death: mechanism of action (44437). Proc Soc Exp Biol Med. 1999;222(2):145–9.CrossRefGoogle Scholar
  37. 37.
    Warren JC, Timberlake CE. Biosynthesis of estrogens in pregnancy: precursor role of plasma dehydroisoandrosterone. Obstet Gynecol. 1964;23(5):689–98.PubMedGoogle Scholar
  38. 38.
    Labrie F, Labrie C. DHEA and intracrinology at menopause, a positive choice for evolution of the human species. Climacteric. 2013;16(2):205–13.CrossRefGoogle Scholar
  39. 39.
    Finch CE. The menopause and aging, a comparative perspective. J Steroid Biochem Mol Biol. 2014;142:132–41.CrossRefGoogle Scholar
  40. 40.
    Gibson DA, et al. Dehydroepiandrosterone enhances decidualization in women of advanced reproductive age. Fertil Steril. 2018;109(4):728–734. e2.CrossRefGoogle Scholar
  41. 41.
    Maggiolini M, Donzé O, Jeannin E, Andò S, Picard D. Adrenal androgens stimulate the proliferation of breast cancer cells as direct activators of estrogen receptor α. Cancer Res. 1999;59(19):4864–9.PubMedGoogle Scholar
  42. 42.
    Snijders MPML, et al. Immunocytochemical analysis of oestrogen receptors and progesterone receptors in the human uterus throughout the menstrual cycle and after the menopause. J Reprod Fertil. 1992;94(2):363.CrossRefGoogle Scholar
  43. 43.
    Romano GJ, Krust A, Pfaff DW. Expression and estrogen regulation of progesterone receptor mRNA in neurons of the mediobasal hypothalamus: an in situ hybridization study. Mol Endocrinol. 1989;3(8):1295–300.CrossRefGoogle Scholar
  44. 44.
    Kurita T, Lee KJ, Saunders PTK, Cooke PS, Taylor JA, Lubahn DB, et al. Regulation of progesterone receptors and decidualization in uterine stroma of the estrogen receptor-α knockout mouse1. Biol Reprod. 2001;64(1):272–83.CrossRefGoogle Scholar
  45. 45.
    Mills SJ, Ashworth JJ, Gilliver SC, Hardman MJ, Ashcroft GS. The sex steroid precursor DHEA accelerates cutaneous wound healing via the estrogen receptors. J Investig Dermatol. 2005;125(5):1053–62.CrossRefGoogle Scholar
  46. 46.
    Evans J, Salamonsen LA, Winship A, Menkhorst E, Nie G, Gargett CE, et al. Fertile ground: human endometrial programming and lessons in health and disease. Nat Rev Endocrinol. 2016;12(11):654–67.CrossRefGoogle Scholar
  47. 47.
    Garry R, Hart R, Karthigasu KA, Burke C. Structural changes in endometrial basal glands during menstruation. BJOG Int J Obstet Gynaecol. 2010;117(10):1175–85.CrossRefGoogle Scholar
  48. 48.
    Salamonsen LA. Tissue injury and repair in the female human reproductive tract. Reproduction. 2003;125:301–11.CrossRefGoogle Scholar
  49. 49.
    Cutler Jr GB, Glenn M, Bush RM, Hodgen GD, Graham CE, Loriaux DL. Adrenarche: a survey of rodents, domestic animals, and primates. 1978.Google Scholar
  50. 50.
    Conley AJ, Pattison JC, Bird IM, (editors). Variations in adrenal androgen production among (nonhuman) primates. Seminars in reproductive medicine. 2004. Copyright© 2004 by Thieme Medical Publishers, Inc., New York.Google Scholar
  51. 51.
    Pattison JC. Marmoset 17 [alpha]-hydoxylase/17, 20-lyase cytochrome P450: relationship between enzyme structure and function to low circulating DHEA levels observed in vivo. Madison: University of Wisconsin; 2008.Google Scholar
  52. 52.
    Bellofiore N, Cousins F, Temple-Smith P, Evans J. Altered exploratory behaviour and increased food intake in the spiny mouse before menstruation: a unique pre-clinical model for examining premenstrual syndrome. Hum Reprod. 2018 (In Press).
  53. 53.
    Yonkers KA, O’Brien PS, Eriksson E. Premenstrual syndrome. Lancet. 2008;371(9619):1200–10.CrossRefGoogle Scholar
  54. 54.
    Gillings MR. Were there evolutionary advantages to premenstrual syndrome? Evol Appl. 2014;7(8):897–904.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Ritchie CentreHudson Institute of Medical ResearchClaytonAustralia
  2. 2.Obstetrics and GynaecologyMonash UniversityClaytonAustralia
  3. 3.Centre for Reproductive HealthHudson Institute of Medical ResearchClaytonAustralia

Personalised recommendations