Male infertility: establishing sperm aneuploidy thresholds in the laboratory

  • Elena García-MengualEmail author
  • Juan Carlos Triviño
  • Alba Sáez-Cuevas
  • Juan Bataller
  • Miguel Ruíz-Jorro
  • Xavier Vendrell



Fluorescence in situ hybridization (FISH) in spermatozoa provides an estimate of the frequency of chromosomal abnormalities, but there is not a clinical consensus on how to statistically analyze sperm FISH results. We therefore propose a statistical approach to establish sperm aneuploidy thresholds in a fertile population.


We have determined the distribution and variation of the frequency of nullisomy, disomy, and diploidy for a set of 13 chromosomes (1, 2, 9, 13, 15, 16, 17, 18, 19, 21, 22, X, and Y) in sperm nuclei from 14 fertile men by means of automatized FISH. The dispersion of data has been analyzed by the non-parametric Wilcoxon Rank Sum test. We have established the threshold values for each chromosome and aneuploidy type on the basis of the confidence interval values (99.9%).


Nullisomy thresholds ranged from 0.49% for chromosome 19 to 3.09% for chromosome 22; disomy thresholds ranged from 0.30% for chromosome 21 to 1.47% for chromosome 15; diploidy thresholds ranged from 0.24% for the 9/19 chromosome set to 1.21% for the 13/21 chromosome set.


Applying this approach with clinical purposes will enable us to categorize the patient as altered or normal regarding his sperm aneuploidy. Any result surpassing the cited threshold values indicates a 99.9% probability of being significantly different from fertile controls.


Human sperm aneuploidy Fertile donors Automatized analysis Fluorescence in situ hybridization (FISH) Aneuploidy thresholds Nullisomy Disomy Diploidy 


Compliance with ethical standards

An informed consent was signed by all the donors participating in this study. The study was approved by the Institutional Research Ethics Committee.


  1. 1.
    Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–91.CrossRefGoogle Scholar
  2. 2.
    Egozcue S, Blanco J, Vendrell JM, Garcia F, Veiga A, Aran B, et al. Human male infertility: chromosome anomalies, meiotic disorders, abnormal spermatozoa and recurrent abortion. Hum Reprod Update. 2000;6(1):93–105.CrossRefGoogle Scholar
  3. 3.
    Rodrigo L, Peinado V, Mateu E, Remohi J, Pellicer A, Simon C, et al. Impact of different patterns of sperm chromosomal abnormalities on the chromosomal constitution of preimplantation embryos. Fertil Steril. 2010;94(4):1380–6.CrossRefGoogle Scholar
  4. 4.
    Sills ES, Li X, Frederick JL, Khoury CD, Potter DA. Determining parental origin of embryo aneuploidy: analysis of genetic error observed in 305 embryos derived from anonymous donor oocyte IVF cycles. Mol Cytogenet. 2014;7(1):68.CrossRefGoogle Scholar
  5. 5.
    Burrello N, Arcidiacono G, Vicari E, Asero P, Di Benedetto D, De Palma A, et al. Morphologically normal spermatozoa of patients with secretory oligo-astheno-teratozoospermia have an increased aneuploidy rate. Hum Reprod. 2004;19(10):2298–302.CrossRefGoogle Scholar
  6. 6.
    Durakbasi-Dursun HG, Zamani AG, Kutlu R, Görkemli H, Bahce M, Acar A. A new approach to chromosomal abnormalities in sperm from patients with oligoasthenoteratozoospermia: detection of double aneuploidy in addition to single aneuploidy and diploidy by five-color fluorescence in situ hybridization using one probe set. Fertil Steril. 2008;89(6):1709–17.CrossRefGoogle Scholar
  7. 7.
    Sarrate Z, Blanco J, Anton E, Egozcue S, Egozcue J, Vidal F. FISH studies of chromosome abnormalities in germ cells and its relevance in reproductive counseling. Asian J Androl. 2005;7(3):227–36.CrossRefGoogle Scholar
  8. 8.
    Tempest HG, Griffin DK. The relationship between male infertility and increased levels of sperm disomy. Cytogenet Genome Res. 2004;107(1–2):83–94.CrossRefGoogle Scholar
  9. 9.
    Vendrell X, Ferrer M, García-Mengual E, Muñoz P, Triviño JC, Calatayud C, et al. Correlation between aneuploidy, apoptotic markers and DNA fragmentation in spermatozoa from normozoospermic patients. Reprod BioMed Online. 2014;28(4):492–502.CrossRefGoogle Scholar
  10. 10.
    Egozcue J, Blanco J, Anton E, Egozcue S, Sarrate Z, Vidal F. Genetic analysis of sperm and implications of severe male infertility—a review. Placenta. 2003;24(Suppl B):S62–5.CrossRefGoogle Scholar
  11. 11.
    Collodel G, Capitani S, Baccetti B, Pammolli A, Moretti E. Sperm aneuploidies and low progressive motility. Hum Reprod. 2007;22(7):1893–8.CrossRefGoogle Scholar
  12. 12.
    Vegetti W, Van Assche E, Frias A, Verheyen G, Bianchi MM, Bonduelle M, et al. Correlation between semen parameters and sperm aneuploidy rates investigated by fluorescence in-situ hybridization in infertile men. Hum Reprod. 2000;15(2):351–65.CrossRefGoogle Scholar
  13. 13.
    Vendrell JM, Garcia F, Veiga A, Calderon G, Egozcue S, Egozcue J, et al. Meiotic abnormalities and spermatogenic parameters in severe oligoasthenozoospermia. Hum Reprod. 1999;14(2):375–8.CrossRefGoogle Scholar
  14. 14.
    Egozcue S, García F, López-Teijón M, Olivares R, Serra O, Aura M, et al. Estudio de meiosis en biopsia testicular y su correlación con el patrón seminológico. Rev Iberoam Fertil Reprod Hum. 2004;(Supl 1):252.Google Scholar
  15. 15.
    Brahem S, Mehdi M, Elghezal H, Saad A. Analysis of sperm aneuploidies and DNA fragmentation in patients with globozoospermia or with abnormal acrosomes. Urology. 2011;77(6):1343–8.CrossRefGoogle Scholar
  16. 16.
    Brahem S, Mehdi M, Elghezal H, Saad A. Study of aneuploidy rate and sperm DNA fragmentation in large-headed, multiple-tailed spermatozoa. Andrologia. 2012;44(2):130–5.CrossRefGoogle Scholar
  17. 17.
    Collodel G, Moretti E. Sperm morphology and aneuploidies: defects of supposed genetic origin. Andrologia. 2006;38(6):208–15.CrossRefGoogle Scholar
  18. 18.
    Mehdi M, Gmidene A, Brahem S, Guerin JF, Elghezal H, Saad A. Aneuploidy rate in spermatozoa of selected men with severe teratozoospermia. Andrologia. 2012;44(Suppl 1):139–43.CrossRefGoogle Scholar
  19. 19.
    Ramasamy R, Scovell JM, Kovac JR, Cook PJ, Lamb DJ, Lipshultz LI. Fluorescence in situ hybridization detects increased sperm aneuploidy in men with recurrent pregnancy loss. Fertil Steril. 2015;103(4):906–9.CrossRefGoogle Scholar
  20. 20.
    Piomboni P, Stendardi A, Gambera L. Chromosomal aberrations and aneuploidies of spermatozoa. In: Baldi E, Muratori M, editors. Genetic damage in human spermatozoa. Advances in experimental medicine and biology 791. New York: LLC Springer; 2014. p. 27–52.CrossRefGoogle Scholar
  21. 21.
    Gianaroli L, Magli MC, Cavallini G, Crippa A, Nadalini M, Bernardini L, et al. Frequency of aneuploidy in sperm from patients with extremely severe male factor infertility. Hum Reprod. 2005;20(8):2140–52.CrossRefGoogle Scholar
  22. 22.
    Harton GL, Tempest HG. Chromosomal disorders and male infertility. Asian J Androl. 2012;14(1):32–9.CrossRefGoogle Scholar
  23. 23.
    Kahraman S, Findikli N, Biricik A, Oncu N, Ogur C, Sertyel S, et al. Preliminary FISH studies on spermatozoa and embryos in patients with variable degrees of teratozoospermia and a history of poor prognosis. Reprod BioMed Online. 2006;12(6):752–61.CrossRefGoogle Scholar
  24. 24.
    Magli MC, Gianaroli L, Ferraretti AP, Gordts S, Fredericks V, Crippa A. Paternal contribution to aneuploidy in preimplantation embryos. Reprod BioMed Online. 2009;18(4):536–42.CrossRefGoogle Scholar
  25. 25.
    Tesarik J, Mendoza C. Treatment of severe male infertility by micromanipulation-assisted fertilization: an update. Front Biosci. 2007;12:105–14.CrossRefGoogle Scholar
  26. 26.
    Verpoest W, Tournaye H. ICSI: hype or hazard? Hum Fertil. 2006;9(2):81–92.CrossRefGoogle Scholar
  27. 27.
    Márquez C, Egozcue J, Martorell MR, Moreno V, Templado C. Colcemid increases the frequency of chromosome abnormalities in human sperm. Cytogenet Cell Genet. 1996;72(2–3):164–70.PubMedGoogle Scholar
  28. 28.
    Templado C, Uroz L, Estop A. New insights on the origin and relevance of aneuploidy in human spermatozoa. Mol Hum Reprod. 2013;19(10):634–43.CrossRefGoogle Scholar
  29. 29.
    Carrell DT, Emery BR. Use of automated imaging and analysis technology for the detection of aneuploidy in human sperm. Fertil Steril. 2008;90(2):434–7.CrossRefGoogle Scholar
  30. 30.
    Lammers J, Splingart C, Barrière P, Jean M, Fréour T. Double-blind prospective study comparing two automated sperm analyzers versus manual semen assessment. J Assist Reprod Genet. 2014;31(1):35–43.CrossRefGoogle Scholar
  31. 31.
    Martinez G, Gillois P, Le MM, Borye R, Esquerré-Lamare C, Satre V, et al. FISH and tips: a large scale analysis of automated versus manual scoring for sperm aneuploidy detection. Basic Clin Androl. 2013;23:13.CrossRefGoogle Scholar
  32. 32.
    Molina O, Sarrate Z, Vidal F, Blanco J. FISH on sperm: spot-counting to stop counting? Not yet. Fertil Steril. 2009;92(4):1474–80.CrossRefGoogle Scholar
  33. 33.
    Netten H, Young IT, van Vliet LJ, Tanke HJ, Vroljik H, Sloos WC. FISH and chips: automation of fluorescent dot counting in interphase cell nuclei. Cytometry. 1997;28(1):1–10.CrossRefGoogle Scholar
  34. 34.
    Perry MJ, Chen X, Lu X. Automated scoring of multiprobe FISH in human spermatozoa. Cytometry A. 2007;71(11):968–72.CrossRefGoogle Scholar
  35. 35.
    Tempest HG, Cheng SY, Gillott DJ, Handyside AH, Thornhill AR, Griffin DK. Scoring of sperm chromosomal abnormalities by manual and automated approaches: qualitative and quantitative comparisons. Asian J Androl. 2010;12(2):257–62.CrossRefGoogle Scholar
  36. 36.
    World Health Organization. Examination and processing of human semen. 2010, 5 edition. Retrieved from
  37. 37.
    Martin RH, Ko E, Rademaker A. Distribution of aneuploidy in human gametes: comparison between human sperm and oocytes. Am J Med Genet. 1991;39(3):321–31.CrossRefGoogle Scholar
  38. 38.
    Neusser M, Rogenhofer N, Dürl S, Ochsenkühn R, Trottmann M, Jurinovic V, et al. Increased chromosome 16 disomy rates in human spermatozoa and recurrent spontaneous abortions. Fertil Steril. 2015;104(5):1130–7.CrossRefGoogle Scholar
  39. 39.
    Pang MG, Hoegerman SF, Cuticchia AJ, Moon SY, Doncel GF, Acosta AA, et al. Detection of aneuploidy for chromosomes 4, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18, 21, X and Y by fluorescence in-situ hybridization in spermatozoa from nine patients with oligoasthenoteratozoospermia undergoing intracytoplasmic sperm injection. Hum Reprod. 1999;14(5):1266–73.CrossRefGoogle Scholar
  40. 40.
    Pellestor F. Differential distribution of aneuploidy in human gametes according to their sex. Hum Reprod. 1991;6(9):1252–8.CrossRefGoogle Scholar
  41. 41.
    Spriggs EL, Rademaker AW, Martin RH. Aneuploidy in human sperm: the use of multicolor FISH to test various theories of nondisjunction. Am J Hum Genet. 1996;58(2):356–62.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Sarrate Z, Vidal F, Blanco J. Meiotic abnormalities in metaphase I human spermatocytes from infertile males: frequencies, chromosomes involved, and the relationships with polymorphic karyotype and seminal parameters. Asian J Androl. 2014;16(6):838–44.CrossRefGoogle Scholar
  43. 43.
    Munné S, Bahçe M, Sandalinas M, Escudero T, Márquez C, Velilla E, et al. Differences in chromosome susceptibility to aneuploidy and survival to first trimester. Reprod BioMed Online. 2004;8(1):81–90.CrossRefGoogle Scholar
  44. 44.
    Rabinowitz M, Ryan A, Gemelos G, Hill M, Baner J, Cinnioglu C, et al. Origins and rates of aneuploidy in human blastomeres. Fertil Steril. 2012;97(2):395–401.CrossRefGoogle Scholar
  45. 45.
    Templado C, Vidal F, Estop A. Aneuploidy in human spermatozoa. Cytogenet Genome Res. 2011;133(2–4):91–9.CrossRefGoogle Scholar
  46. 46.
    Rubes J, Vozdova M, Robbins WA, Rezacova O, Perreault SD, Wyrobek AJ. Stable variants of sperm aneuploidy among healthy men show associations between germinal and somatic aneuploidy. Am J Hum Genet. 2002;70(6):1507–19.CrossRefGoogle Scholar
  47. 47.
    Tempest HG, Ko E, Rademaker A, Chan P, Robaire B, Martin RH. Intra-individual and inter-individual variations in sperm aneuploidy frequencies in normal men. Fertil Steril. 2009;91(1):185–92.CrossRefGoogle Scholar
  48. 48.
    Templado C, Bosch M, Benet J. Frequency and distribution of chromosome abnormalities in human spermatozoa. Cytogenet Genome Res. 2005;111(3–4):199–205.CrossRefGoogle Scholar
  49. 49.
    Uroz L, Rajmil O, Templado C. Meiotic chromosome abnormalities in fertile men: are they increasing? Fertil Steril. 2011;95(1):141–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Reproductive Genetics UnitSistemas Genómicos S.LPaternaSpain
  2. 2.Bioinformatics DepartmentSistemas Genómicos S.LPaternaSpain
  3. 3.CREA, Assisted Reproduction Medical CenterValenciaSpain

Personalised recommendations