Journal of Assisted Reproduction and Genetics

, Volume 36, Issue 1, pp 113–120 | Cite as

Altered expression of the kisspeptin/KISS1R and neurokinin B/NK3R systems in mural granulosa and cumulus cells of patients with polycystic ovarian syndrome

  • Victor Blasco
  • Francisco M. Pinto
  • Ainhoa Fernández-Atucha
  • Nicolás Prados
  • Manuel Tena-Sempere
  • Manuel Fernández-Sánchez
  • Luz CandenasEmail author
Reproductive Physiology and Disease



The neurokinin B (NKB)/NK3 receptor (NK3R) and kisspeptin (KISS1)/kisspeptin receptor (KISS1R), two systems essential for reproduction, are present in human granulosa cells (GCs) of healthy women and contribute to the control of fertility, at least partially, by acting on the gonads. However, little is known about the expression of these systems in GCs of women with polycystic ovarian syndrome (PCOS). The aim of this study was to analyze the expression of NKB/NK3R and KISS1/KISS1R in mural granulosa (MGCs) and cumulus cells (CCs) of PCOS women.


A cross-sectional study was performed in 46 healthy women and 43 PCOS women undergoing controlled ovarian stimulation. MGCs and CCs were collected from pre-ovulatory follicles after transvaginal ultrasound-guided oocyte retrieval and the expression of the genes encoding NKB (TAC3), NK3R (TACR3), KISS1, and its receptor (KISS1R) was analyzed using real-time quantitative RT-PCR.


TAC3, TACR3, and KISS1 mRNA levels were decreased in MGCs and CCs of PCOS women. TAC3 positively correlated with KISS1 in MGCs of healthy women and TACR3 was positively associated with KISS1R in CCs from healthy women. These associations were not observed in PCOS women.


The NKB/NK3R and KISS1/KISS1R systems are dysregulated in MGCs and CCs of PCOS women. The lower expression of these systems in GCs could contribute to the abnormal follicle development and defective ovulation that characterize the pathogenesis of PCOS.


Polycystic ovarian syndrome Neurokinin B Kisspeptin Granulosa cells Cumulus cells 


Funding information

This work was supported by a grant from the Ministerio de Economía y Competitividad (RTC-2014-1431-1), Spain, with joint financing by FEDER funds from the European Union.

Compliance with ethical standards

Approval for this work was obtained from the institutional Ethics Committees of CSIC and Hospital Virgen Macarena (Sevilla, Spain) and all patients gave informed written consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10815_2018_1338_MOESM1_ESM.docx (28 kb)
Table S1 (DOCX 28 kb)


  1. 1.
    Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. Lancet. 2007;370:685–97.CrossRefGoogle Scholar
  2. 2.
    Livadas S, Diamanti-Kandarakis E. Polycystic ovary syndrome: definitions, phenotypes and diagnostic approach. Front Horm Res. 2013;40:1–21.Google Scholar
  3. 3.
    El Hayek S, Bitar L, Hamdar LH, Mirza FG, Daoud G. Polycystic ovarian syndrome: an updated overview. Front Physiol. 2016;7:124.Google Scholar
  4. 4.
    Navarro VM, Tena-Sempere M. Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat Rev Endocrinol. 2011;8:40–53.CrossRefGoogle Scholar
  5. 5.
    Jayasena CN, Franks S. The management of patients with polycystic ovary syndrome. Nat Rev Endocrinol. 2014;10:624–36.CrossRefGoogle Scholar
  6. 6.
    Ramezanali F, Ashrafi M, Hemat M, Arabipoor A, Jalali S, Moini A. Assisted reproductive outcomes in women with different polycystic ovary syndrome phenotypes: the predictive value of anti-Müllerian hormone. Reprod BioMed Online. 2016;32:503–12.CrossRefGoogle Scholar
  7. 7.
    Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard S. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 2016;22:709–24.CrossRefGoogle Scholar
  8. 8.
    Lv Y, Zhao SG, Lu G, Leung CK, Xiong ZQ, Su XW, et al. Identification of reference genes for qRT-PCR in granulosa cells of healthy women and polycystic ovarian syndrome patients. Sci Rep. 2017;7:6961.CrossRefGoogle Scholar
  9. 9.
    Li R, Albertini DF. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol. 2013;14:141–52.CrossRefGoogle Scholar
  10. 10.
    de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KISS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A. 2003;100:10972–6.Google Scholar
  11. 11.
    Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349:1614–27.CrossRefGoogle Scholar
  12. 12.
    Pintado CO, Pinto FM, Pennefather JN, Hidalgo A, Baamonde A, Sanchez T, et al. A role for tachykinins in female mouse and rat reproductive function. Biol Reprod. 2003;69:940–6.CrossRefGoogle Scholar
  13. 13.
    Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet. 2009;41:354–8.CrossRefGoogle Scholar
  14. 14.
    Colledge WH. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349:1614–27.CrossRefGoogle Scholar
  15. 15.
    Lehman MN, Coolen LM, Goodman RL. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology. 2010;151:3479–89.CrossRefGoogle Scholar
  16. 16.
    Hu G, Lin C, He M, Wong AO. Neurokinin B and reproductive functions: “KNDy neuron” model in mammals and the emerging story in fish. Gen Comp Endocrinol. 2014;208:94–108.CrossRefGoogle Scholar
  17. 17.
    Clarke H, Dhillo WS, Jayasena CN. Comprehensive review on kisspeptin and its role in reproductive disorders. Endocrinol Metab. 2015;30:124–41.CrossRefGoogle Scholar
  18. 18.
    Skorupskaite K, George JT, Veldhuis JD, Millar RP, Anderson RA. Interactions between neurokinin B and kisspeptin in mediating estrogen feedback in healthy women. J Clin Endocrinol Metab. 2016;101:4628–36.CrossRefGoogle Scholar
  19. 19.
    Candenas L, Lecci A, Pinto FM, Patak E, Maggi CA, Pennefather JN. Tachykinins and tachykinin receptors: effects in the genitourinary tract. Life Sci. 2005;76:835–62.CrossRefGoogle Scholar
  20. 20.
    Page NM. Neurokinin B and pre-eclampsia: a decade of discovery. Reprod Biol Endocrinol. 2010;8:4.CrossRefGoogle Scholar
  21. 21.
    Lasaga M, Debeljuk L. Tachykinins and the hypothalamo-pituitary-gonadal axis: an update. Peptides. 2011;32:1972–8.CrossRefGoogle Scholar
  22. 22.
    Satake H, Kawada T. Overview of the primary structure, tissue distribution, and functions of tachykinins and their receptors. Curr Drug Targets. 2006;7:963–74.CrossRefGoogle Scholar
  23. 23.
    Gaytán F, Gaytán M, Castellano JM, Romero M, Roa J, Aparicio B, et al. KiSS-1 in the mammalian ovary: distribution of kisspeptin in human and marmoset and alterations in KiSS-1 mRNA levels in a rat model of ovulatory dysfunction. Am J Physiol Endocrinol Metab. 2009;296:E520–31.CrossRefGoogle Scholar
  24. 24.
    Cejudo Roman A, Pinto FM, Dorta I, Almeida TA, Hernández M, Illanes M, et al. Analysis of the expression of neurokinin B, kisspeptin and their cognate receptors, NK3R and KISS1R in the human female genital tract. Fertil Steril. 2012;97:1213–9.CrossRefGoogle Scholar
  25. 25.
    García-Ortega J, Pinto FM, Fernández-Sánchez M, Prados N, Cejudo-Román A, Almeida TA, et al. Expression of neurokinin B/NK3 receptor and kisspeptin/KISS1 receptor in human granulosa cells. Hum Reprod. 2014;29:2736–46.CrossRefGoogle Scholar
  26. 26.
    Qi X, Salem M, Zhou W, Sato-Shimizu M, Ye G, Smitz J, et al. Neurokinin B exerts direct effects on the ovary to stimulate estradiol production. Endocrinology. 2016;157:3355–65.CrossRefGoogle Scholar
  27. 27.
    Gaytan F, Garcia-Galiano D, Dorfman MD, Manfredi-Lozano M, Castellano JM, Dissen GA, et al. Kisspeptin receptor haplo-insufficiency causes premature ovarian failure despite preserved gonadotropin secretion. Endocrinology. 2014;155:3088–97.CrossRefGoogle Scholar
  28. 28.
    Bhattacharya M, Babwah AV. Kisspeptin: beyond the brain. Endocrinology. 2015;156:1218–27.CrossRefGoogle Scholar
  29. 29.
    León S, Barroso A, Vázquez MJ, García-Galiano D, Manfredi-Lozano M, Ruiz-Pino F, et al. Direct actions of kisspeptins on GnRH neurons permit attainment of fertility but are insufficient to fully preserve gonadotropic axis activity. Sci Rep. 2016;6:19206.CrossRefGoogle Scholar
  30. 30.
    Jayasena CN, Abbara A, Comninos AN, Nijher GM, Christopoulos G, Narayanaswamy S, et al. Kisspeptin-54 triggers egg maturation in women undergoing in vitro fertilization. J Clin Invest. 2014;124:3667–77.CrossRefGoogle Scholar
  31. 31.
    Calder M, Chan YM, Raj R, Pampillo M, Elbert A, Noonan M, et al. Implantation failure in female Kiss1-/- mice is independent of their hypogonadic state and can be partially rescued by leukemia inhibitory factor. Endocrinology. 2014;155:3065–78.CrossRefGoogle Scholar
  32. 32.
    Fernandois D, Na E, Cuevas F, Cruz G, Lara HE, Paredes AH. Kisspeptin is involved in ovarian follicular development during aging in rats. J Endocrinol. 2016;228:161–70.CrossRefGoogle Scholar
  33. 33.
    Skorupskaite K, George JT, Veldhuis JD, Anderson RA. Neurokinin B regulates gonadotropin secretion, ovarian follicle growth, and the timing of ovulation in healthy women. J Clin Endocrinol Metab. 2018;103:95–104.CrossRefGoogle Scholar
  34. 34.
    Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25.Google Scholar
  35. 35.
    Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19:41–7.CrossRefGoogle Scholar
  36. 36.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:1–11.CrossRefGoogle Scholar
  37. 37.
    Castellano JM, Navarro VM, Fernández-Fernández R, Nogueiras R, Tovar S, Roa J, et al. Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology. 2005;146:3917–25.CrossRefGoogle Scholar
  38. 38.
    Dudek M, Ziarniak K, Sliwowska JH. Kisspeptin and metabolism: the brain and beyond. Front Endocrinol. 2018;9:145.CrossRefGoogle Scholar
  39. 39.
    Sánchez-Garrido MA, Ruiz-Pino F, Manfredi-Lozano M, Leon S, Garcia-Galiano D, Castaño JP, et al. Obesity-induced hypogonadism in the male: premature reproductive neuroendocrine senescence and contribution of Kiss1-mediated mechanisms. Endocrinology. 2014;155:1067–79.CrossRefGoogle Scholar
  40. 40.
    Sánchez-Garrido MA, Ruiz-Pino F, Manfredi-Lozano M, Leon S, Heras V, Castellano JM, et al. Metabolic and gonadotropic impact of sequential obesogenic insults in the female: influence of the loss of ovarian secretion. Endocrinology. 2015;156:2984–98.CrossRefGoogle Scholar
  41. 41.
    Xiao Y, Ni Y, Huang Y, Wu J, Grossmann R, Zhao R. Effects of kisspeptin-10 on progesterone secretion in cultured chicken ovarian granulosa cells from preovulatory (F1-F3) follicles. Peptides. 2011;32:2091–7.CrossRefGoogle Scholar
  42. 42.
    Laoharatchatathanin T, Terashima R, Yonezawa T, Kurusu S, Kawaminami M. Augmentation of metastin/kisspeptin mRNA expression by the proestrous luteinizing hormone surge in granulosa cells of rats: implications for luteinization. Biol Reprod. 2015;93:15.CrossRefGoogle Scholar
  43. 43.
    Castellano JM, Gaytan M, Roa J, Vigo E, Navarro VM, Bellido C, et al. Expression of KiSS-1 in rat ovary: putative local regulator of ovulation? Endocrinology. 2006;147:4852–62.CrossRefGoogle Scholar
  44. 44.
    Cielesh ME, McGrath BM, Scott CJ, Norman ST, Stephen CP. The localization of kisspeptin and kisspeptin receptor in the canine ovary during different stages of the reproductive cycle. Reprod Domest Anim. 2017;52:24–8.CrossRefGoogle Scholar
  45. 45.
    George JT, Kakkar R, Marshall J, Scott ML, Finkelman RD, Ho TW, et al. Neurokinin B receptor antagonism in women with polycystic ovary syndrome: a randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2016;101:4313–21.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Investigaciones Químicas, CSICSevilleSpain
  2. 2.IVI-RMA GlobalSevilleSpain
  3. 3.Departamento de FisiologíaUniversidad del País VascoLeioaSpain
  4. 4.Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de CórdobaCórdobaSpain
  5. 5.CIBER Fisiopatología de la Obesidad y la NutriciónISCiiiCórdobaSpain
  6. 6.Instituto Maimónides de Investigación Biomédica de Córdoba/Hospital Universitario Reina SofíaCórdobaSpain

Personalised recommendations