Journal of Assisted Reproduction and Genetics

, Volume 36, Issue 1, pp 19–28 | Cite as

Risk factors for inadequate response to ovarian stimulation in assisted reproduction cycles: systematic review

  • Maria Eduarda Bonavides Amaral
  • Dani EjzenbergEmail author
  • Denis Schapira Wajman
  • Pedro Augusto Araújo Monteleone
  • Paulo Serafini
  • Jose Maria SoaresJr
  • Edmund Chada Baracat



Controlled ovarian stimulation is a fundamental part of a successful assisted reproduction treatment, and recognizing patients at risk of a poor response allows the development of targeted research to propose new treatment strategies for this specific group. The objective of this systematic review was to determine risk factors for poor ovarian response (POR) to controlled stimulation in assisted reproduction cycles described in the literature.


The primary databases MEDLINE, Cochrane, LILACS, and SciELO were consulted, using specific terms with a restriction for articles in English or Portuguese published in the last 10 years.

Results and conclusion

Our data suggest that environmental endocrine disruptors, tobacco, genetic mutations, endometriomas, ovarian surgery, chemotherapy, and short menstrual cycles are factors that influence stimulation in assisted reproduction cycles. Further studies are necessary for characterizing patients with prior risk factors.


Poor response Poor responder Human reproduction Assisted reproduction In vitro fertilization Bologna criteria POR ART 


  1. 1.
    Speroff, Leon; Fritz, Marc A. Clinical gynecologic endocrinology and infertility.7th ed. Philadelphia: Lippincott Williams & Wilkins; c2005.Google Scholar
  2. 2.
    Garcia JE, Jones GS, Acosta AA, Wright G. HMG/hCGfollicular maturation for oocytes aspiration: phase II, 1981. Fertil Steril 1983; 39:174–179.Google Scholar
  3. 3.
    Surrey ES, Schoolcraft WB. Evaluating strategies for improving ovarian response of the poor responder undergoing assisted reproductive techniques. Fertil Steril. 2000;73:667–76.CrossRefGoogle Scholar
  4. 4.
    Jenkins JM, Davies DW, Devonport H, Anthony FW, Gadd SC, Watson RH, et al. Comparison of “poor” responders with “good” responders using a standard buserelin/human menopausal gonadotrophin regime for in-vitro fertilization. Hum Reprod. 1991;6:918–21.CrossRefGoogle Scholar
  5. 5.
    Ben-Rafael Z, Bider D, Dan U, Zolti M, Levran D, Mashiach S. Combined gonadotropin releasing hormone agonist/human menopausal gonadotropin therapy (GnRH-a/hMG) in normal, high, and poor responders to hMG. J In Vitro Fert Embryo Transf. 1991;8:33–6.CrossRefGoogle Scholar
  6. 6.
    Ferraretti AP, La Marca BC, Fauser B, Tarlatzis G, Nargund L, Gianaroli, et al. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011;26(7):1616–24.CrossRefGoogle Scholar
  7. 7.
    Polyzos NP, Nwoye M, Corona R, Blockeel C, Stoop D, Haentjens P, et al. Live birth rates in Bologna poor responders treated with ovarian stimulation for IVF/ICSI. Reprod BioMed Online. 2014;28:469–74.CrossRefGoogle Scholar
  8. 8.
    Busnelli A, Papaleo E, Del Prato D, La Vecchia I, Iachini E, Paffoni A, et al. A retrospective evaluation of prognosis and cost-effectiveness of IVF in poor responders according to the Bologna criteria. Hum Reprod. 2015;30:315–22.CrossRefGoogle Scholar
  9. 9.
    Marca L, Grisendi V, Giulini S, Sighinolfi G, Tirelli A, Argento C, et al. Live birth rates in the different combinations of the Bologna criteria poor ovarian responders: a validation study. J Assist Reprod Genet. 2015;32:931–7.CrossRefGoogle Scholar
  10. 10.
    Younis JS. The Bologna criteria for poor ovarian response; has the job been accomplished? Hum Reprod. 2012;27:1874–5.CrossRefGoogle Scholar
  11. 11.
    Papathanasiou A. Implementing the ESHRE ‘poor responder’ criteria in research studies: methodological implications. Hum Reprod. 2014;29:1835–8.CrossRefGoogle Scholar
  12. 12.
    Venetis CA. The Bologna criteria for poor ovarian response: the good, the bad and the way forward. Hum Reprod. 2014;29:1839–41.CrossRefGoogle Scholar
  13. 13.
    Ferraretti AP, Gianaroli L. The Bologna criteria for the definition of poor ovarian responders: is there a need for revision? Hum Reprod. 2014;29:1842–5.CrossRefGoogle Scholar
  14. 14.
    Younis JS, Ben-Ami M, Ben-Shlomo I. The Bologna criteria for poor ovarian response: a contemporary critical appraisal. J Ovarian Res. 2015;8:76.CrossRefGoogle Scholar
  15. 15.
    Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. Scholar
  16. 16.
    Metwally M, Cutting R, Tipton A, Skull J, Ledger WL, Li TC. Effect of increased body mass index on oocyte and embryo quality in IVF patients. Reprod BioMed Online. 2007;15(5):532–8.CrossRefGoogle Scholar
  17. 17.
    Bellver J, Busso C, Pellicer A, Remohí J, Simón C. Obesity and assisted reproductive technology outcomes. Reprod BioMed Online. 2006;12(5):562–8.CrossRefGoogle Scholar
  18. 18.
    ASRM, The Practice Committee of the American Society of Reproductive Medicine. Obesity and reproduction: a committee opinion. Fertil Steril. 2015a;104:1116–26.CrossRefGoogle Scholar
  19. 19.
    Rittenberg V, Seshadri S, Sunkara SK, Sobaleva S, Oteng-Ntim E, El-Toukhy T. Effect of body mass index on IVF treatment outcome: an updated systematic review and meta-analysis. Reprod BioMed Online. 2011;23(4):421–43.CrossRefGoogle Scholar
  20. 20.
    Pinborg A, Gaarslev C, Hougaard CO, Nyboe Andersen A, Andersen PK, Boivin J, et al. Influence of female bodyweight on IVF outcome: a longitudinal multicentre cohort study of 487 infertile couples. Reprod BioMed Online. 2011;23(4):490–9.CrossRefGoogle Scholar
  21. 21.
    Matalliotakis I, Cakmak H, Sakkas D, Mahutte N, Koumantakis G, Arici A. Impact of body mass index on IVF and ICSI outcome: a retrospective study. Reprod BioMed Online. 2008;16(6):778–83.CrossRefGoogle Scholar
  22. 22.
    Muasher S, et al. Pregnancy outcomes decline with increasing body mass index: analysis of 239,127 fresh autologous in vitro fertilization cycles from the 2008–2010 Society for Assisted Reproductive Technology registry. Fertil Steril. 2016;105(3):665–9.Google Scholar
  23. 23.
    Kilic S, Yilmaz N, Zülfikaroglu E, Sarikaya E, Kose K, Topcu O, et al. Obesity alters retrieved oocyte count and clinical pregnancy rates in high and poor responder women after in vitro fertilization. Arch Gynecol Obstet. 2010;282(1):89–96.CrossRefGoogle Scholar
  24. 24.
    Das M, Shehata F, Son WY, Tulandi T, Holzer H. Ovarian reserve and response to IVF and in vitro maturation treatment following chemotherapy. Hum Reprod. 2012;27(8):2509–14.CrossRefGoogle Scholar
  25. 25.
    Gracia CR, Sammel MD, Freeman E, Prewitt M, Carlson C, Ray A, et al. Impact of cancer therapies on ovarian reserve. Fertil Steril. 2012;97:134–40.CrossRefGoogle Scholar
  26. 26.
    Krawczuk-Rybak M, Leszczynska E, Poznanska M, Zelazowska-Rutkowska B, Wysocka J. The progressive reduction in the ovarian reserve in young women after anticancer treatment. Hormone Metab Res. 2013;45:813–9.CrossRefGoogle Scholar
  27. 27.
    Lunsford AJ, Whelan K, McCormick K, McLaren JF. Antimüllerian hormone as a measure of reproductive function in female childhood cancer survivors. Fertil Steril. 2014;101:227–31.CrossRefGoogle Scholar
  28. 28.
    Nielsen SN, Andersen AN, Schmidt KT, Rechnitzer C, Schmiegelow K, Bentzen JG, et al. A 10-year follow up of reproductive function in women treated for childhood cancer. Reprod BioMed Online. 2013;27(2):192–200.CrossRefGoogle Scholar
  29. 29.
    Thomas-Teinturier C, Allodji RS, Svetlova E, Frey MA, Oberlin O, Millischer AE, et al. Ovarian reserve after treatment with alkylating agents during childhood. Hum Reprod. 2015;30(6):1437–46.CrossRefGoogle Scholar
  30. 30.
    Brodin T, Bergh T, Berglund L, Hadziosmanovic N, Holte J. Menstrual cycle length is an age-independent marker of female fertility: results from 6271 treatment cycles of in vitro fertilization. Fertil Steril. 2008;90:1656–61.CrossRefGoogle Scholar
  31. 31.
    Gizzo S. Et Al. Menstrual cycle length: a surrogate measure of reproductive health capable of improving the accuracy of biochemical/sonographical ovarian reserve test in estimating the reproductive chances of women referred to ART. Reprod Biol Endocrinol 2015; 10;13:28.Google Scholar
  32. 32.
    Vassena R, Vidal R, Coll O, Vernaeve V. Menstrual cycle length in reproductive age women is an indicator of oocyte quality and a candidate marker of ovarian reserve. Eur J Obstet Gynecol Reprod Biol. 2014;177:130–4.CrossRefGoogle Scholar
  33. 33.
    Gleicher N, Weghofer A, Oktay K, Barad D. Relevance of triple CGG repeats in the FMR1 gene to ovarian reserve. Reprod BioMed Online. 2009;19(3):385–90.CrossRefGoogle Scholar
  34. 34.
    Tsafrir A, Altarescu G, Margalioth E, Brooks B, Renbaum P, Levy-Lahad E, et al. PGD for fragile X syndrome: ovarian function is the main determinant of success. Hum Reprod. 2010;25:2629–36.CrossRefGoogle Scholar
  35. 35.
    Shapiro M, Raanani H, Feldman B, Srebnik N, Dereck-Haim S, Manela D, et al. BRCA mutation carriers show normal ovarian response in in vitro fertilization cycles. Fertil Steril. 2015;104(5):1162–7.CrossRefGoogle Scholar
  36. 36.
    Binder H, Strick R, Zaherdoust O, Dittrich R, Hamori M, Beckmann MW, et al. Assessment of FSHR variants and antimullerian hormone in infertility patients with a reduced ovarian response to gonadotropin stimulation. Fertil Steril. 2012;97(5):E1169–75.CrossRefGoogle Scholar
  37. 37.
    Younis JS, Ben-Ami M, Izhaki I, Jadaon J, Brenner B, Sarig G. The association between poor ovarian response and thrombophilia in assisted reproduction. Eur J Obstet Gynecol Reprod Biol. 2013;166(1):65–9.CrossRefGoogle Scholar
  38. 38.
    Richardson MC, Guo M, Fauser BC, Macklon NS. Environmental and developmental origins of ovarian reserve. Hum Reprod Update. 2014;20(3):353–69.CrossRefGoogle Scholar
  39. 39.
    Hauser R, Gaskins AJ, Souter I, Smith KW, Dodge LE, Ehrlich S, et al. Urinary phthalate metabolite concentrations and reproductive outcomes among women undergoing in vitro fertilization: results from the EARTH study. Environ Health Perspect. 2016;124(6):831–9. Scholar
  40. 40.
    Mok-Lin E, Ehrlich S, Williams PL. Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Intl J Androl. 2010;33(2):385–93.CrossRefGoogle Scholar
  41. 41.
    Ehrlich S, Williams PL, Missmer SA. Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Hum Reprod. 2012;27(12):3583–92.CrossRefGoogle Scholar
  42. 42.
    Messerlian et al. for the EARTH Study Team. The Environment and Reproductive Health (EARTH) Study: a prospective preconception cohort. Human Reproduction Open, pp. 1–11, 2018.Google Scholar
  43. 43.
    Rossi BV, Berry KF, Hornstein MD, Cramer DW, Ehrlich S, Missmer SA. Effect of alcohol consumption on in vitro fertilization. Obstet Gynecol. 2011;117(1):136–42.CrossRefGoogle Scholar
  44. 44.
    Hacker MR, et al. Women’s alcohol consumption and cumulative incidence of live birth following in vitro fertilization. J Assist Reprod Genet. 2017;34:877–83.CrossRefGoogle Scholar
  45. 45.
    Gaskins AJ et al for the EARTH Study Team. The association between pre-treatment maternal alcohol and caffeine intake and outcomes of assisted reproduction in a prospectively followed cohort. Hum Reprod, Vol.32, No.9 pp. 1846–1854, 2017.Google Scholar
  46. 46.
    Firns S, Cruzat VF, Keane KN, Joesbury KA, Lee AH, Newsholme P, et al. The effect of cigarette smoking, alcohol consumption and fruit and vegetable consumption on IVF outcomes: a review and presentation of original data. Reprod Biol Endocrinol. 2015;13:134.CrossRefGoogle Scholar
  47. 47.
    Fréour T, Masson D, Dessolle L, Allaoua D, Dejoie T, Mirallie S, et al. Ovarian reserve and in vitro fertilization cycles outcome according to women smoking status and stimulation regimen. Archives Genecology Obstet. 2012;285:1177–82.CrossRefGoogle Scholar
  48. 48.
    Dólleman M, Verschuren WM, Eijkemans MJ, Dollé ME, Jansen EH, Broekmans FJ, et al. Reproductive and lifestyle determinants of anti-Müllerian hormone in a large population-based study. J Clin Endocrinol Metab. 2013;98:2106–15.CrossRefGoogle Scholar
  49. 49.
    ASRM The Practice Committee of the American Society of Reproductive Medicine. Smoking and infertility: a committee opinion. Fertil Steril 2012; 98 1400–1406.Google Scholar
  50. 50.
    ASRM The Practice Committee of the American Society of Reproductive Medicine. Subclinical hypothyroidism in the infertile female population: a guideline. Fertil Steril 2015b; 104 545–553.Google Scholar
  51. 51.
    Michalakis KG, Mesen TB, Brayboy LM, Yu B, Richter KS, Levy M, Widra E, Segars JH.. Subclinical elevations of thyroid-stimulating hormone and assisted reproductive technology outcomes. Fertil Steril 2011 30;95(8):2634–2637.Google Scholar
  52. 52.
    Kim CH, Ahn JW, Kang SP, Kim SH, Chae HD, Kang BM. Effect of levothyroxine treatment on in vitro fertilization and pregnancy outcome in infertile women with subclinical hypothyroidism undergoing in vitro fertilization/intracytoplasmic sperm injection. Fertil Steril. 2011;95:1650–4.CrossRefGoogle Scholar
  53. 53.
    Abdel Rahman AH, Aly Abbassy H, Abbassy AA. Improved in vitro fertilization outcomes after treatment of subclinical hypothyroidism in infertile women. Endocr Pract. 2010;16:792–7.CrossRefGoogle Scholar
  54. 54.
    Polyzos NP, Sakkas E, Vaiarelli A, Poppe K, Camus M, Tournaye H. Thyroid autoimmunity, hypothyroidism and ovarian reserve: a cross-sectional study of 5000 women based on age-specific AMH values. Hum Reprod. 2015;30(7):1690–6.CrossRefGoogle Scholar
  55. 55.
    Sakar MN, Unal A, Atay AE, Zebitay AG, Verit FF, Demir S, Turfan M, Omer B. Is there an effect of thyroid autoimmunity on the outcomes of assisted reproduction? J Obstet Gynaecol 2016; 36: 213–217.Google Scholar
  56. 56.
    Businelli A, et al. The impact of thyroid autoimmunity on IVF/ICSI outcome: a systematic review and meta-analysis. Hum Reprod Update. 2016;22(6):775–90.CrossRefGoogle Scholar
  57. 57.
    Nejat eJ, Jindal S, Berger D, Buyuk E, Lalioti M, Pal L. Implications of blood type for ovarian reserve. Hum Reprod. 2011;26:2513–7.CrossRefGoogle Scholar
  58. 58.
    de Mouzon J, Hazout A, Cohen-Bacrie M, Belloc S, Cohen-Bacrie P. Blood type and ovarian reserve. Hum Reprod. 2012;27:1544–5.CrossRefGoogle Scholar
  59. 59.
    Timberlake KS, Foley KL, Hurst BS, Matthews ML, Usadi RS, Marshburn PB. Association of blood type and patient characteristics with ovarian reserve. Fertil Steril. 2013;100:1735–9.CrossRefGoogle Scholar
  60. 60.
    Deng J, Jia M, Cheng X, Yan Z, Fan D, Tian X. ABO blood group and ovarian reserve: a meta-analysis and systematic review. Oncotarget. 2017;8(15):25628–36. Scholar
  61. 61.
    Pereira N, Hutchinson AP, Bender JL, Lekovich JP, Elias RT, Rosenwaks Z, et al. Is ABO blood type associated with ovarian stimulation response in patients with diminished ovarian reserve? J Assist Reprod Genet. 2015;32:985–90.CrossRefGoogle Scholar
  62. 62.
    Awartani K. Association of blood groups with ovarian reserve and outcome of in vitro fertilization treatment. Ann Saudi Med. 2016;36(2):116–20.CrossRefGoogle Scholar
  63. 63.
    Spitzer D, Corn C, Stadler J, Wirleitner B, Schuff M, Vanderzwalmen P, et al. Implications of blood type for ovarian reserve and infertility -impact on oocyte yield in IVF patients. Geburtshilfe Frauenheilkd. 2014;74:928–32.CrossRefGoogle Scholar
  64. 64.
    Matalliotakis IM, Cakmak H, Mahutte N, Fragouli Y, Arici A, Sakkas D. Women with advanced-stage endometriosis and previous surgery respond less well to gonadotropin stimulation, but have similar IVF implantation and delivery rates compared with women with tubal factor infertility. Fertil Steril. 2007;88(6):1568–72.CrossRefGoogle Scholar
  65. 65.
    Coccia ME. Impact of endometriosis on in vitro fertilization and embryo transfer cycles in young women: a stage-dependent interference. Acta Obstet Gynecol Scand. 2011;90(11):1232–8.CrossRefGoogle Scholar
  66. 66.
    Papaleo E, Ottolina J, Viganò P, Brigante C, Marsiglio E, De Michele F, et al. Deep pelvic endometriosis negatively affects ovarian reserve and the number of oocytes retrieved for in vitro fertilization. Acta Obstet Gynecol Scand. 2011;90(8):878–84.CrossRefGoogle Scholar
  67. 67.
    Mekaru K, Yagi C, Asato K, Masamoto H, Sakumoto K, Aoki Y.Effects of early endometriosis on IVF-ET outcomes. Front Biosci (Elite Ed) 2013 1;5:720–724, E5.Google Scholar
  68. 68.
    Yang C, Geng Y, Li Y, Chen C, Gao Y. Impact of ovarian endometrioma on ovarian responsiveness and IVF: a systematic review and meta-analysis. Reprod BioMed Online. 2015;31:9–19.CrossRefGoogle Scholar
  69. 69.
    Hamdam M, Dunselman G, Li TC, Cheong Y. The impact of endometrioma on IVF/ICSI outcomes: a systematic review and meta-analysis. Hum Reprod Update. 2015;21(6):809–25.CrossRefGoogle Scholar
  70. 70.
    Somigliana E, Infantino M, Benedetti F, Arnoldi M, Calanna G, Ragni G. The presence of ovarian endometriomas is associated with a reduced responsiveness to gonadotropins. Fertil Steril. 2006;86(1):192–6.CrossRefGoogle Scholar
  71. 71.
    Ashrafi M, Fakheri T, Kiani K, Sadeghi M, Akhoond MR. Impact of the endometrioma on ovarian response and pregnancy rate in in vitro fertilization cycles. Int J Fertil Steril. 2014;8(1):29–34.Google Scholar
  72. 72.
    Padhy N, Gupta S, Mahla A, Latha M, Varma T. Demographic characteristics and clinical profile of poor responders in IVF / ICSI: a comparative study. J Human Reprod Sci. 2010;3(2):91–4.CrossRefGoogle Scholar
  73. 73.
    Rustamov O, Krishnan M, Roberts SA, Fitzgerald CT. Effect of salpingectomy, ovarian cystectomy and unilateral salpingo-oopherectomy on ovarian reserve. Gynecol Surg. 2016;13:173–17.CrossRefGoogle Scholar
  74. 74.
    Mohamed AA, Al-Hussaini TK, Fathalla MM, El Shamy TT, Abdelaal II, Amer SA. The impact of excision of benign nonendometriotic ovarian cysts on ovarian reserve: a systematic review. Am J Obstet Gynecol. 2016;215(2):169–76.CrossRefGoogle Scholar
  75. 75.
    Clark CA, Laskin CA, Cadesky K. Mullerian hormone: reality check. Hum Reprod. 2014;29:184–5.CrossRefGoogle Scholar
  76. 76.
    Ledger WL. Measurement of antimüllerian hormone: not as straightforward as it seems. Fertil Steril. 2014;101:339.CrossRefGoogle Scholar
  77. 77.
    Rustamov O, Smith A, Roberts SA, Yates AP, Fitzgerald C, Krishnan M, et al. The measurement of anti-Mullerian hormone: a critical appraisal. J Clin Endocrinol Metab. 2014;99:723–32.CrossRefGoogle Scholar
  78. 78.
    Kitajima M, Defrere S, Dolmans MM, Colette S, Squifflet J, Van Langendonckt A, et al. Endometriomas as a possible cause of reduced ovarian reserve in women with endometriosis. Fertil Steril. 2011;96:685–91.CrossRefGoogle Scholar
  79. 79.
    Salihoğlu KN, Dilbaz B, Cırık DA, Ozelci R, Ozkaya E, Mollamahmutoğlu L. Short-term impact of laparoscopic cystectomy on ovarian reserve tests in bilateral and unilateral endometriotic and nonendometriotic cysts. J Minim Invasive Gynecol. 2016;23(5):719–25.CrossRefGoogle Scholar
  80. 80.
    Uncu G, Kasapoglu I, Ozerkan K, Seyhan A, Oral Yilmaztepe A, Ata B. Prospective assessment of the impact of endometriomas and their removal on ovarian reserve and determinants of the rate of decline in ovarian reserve. Hum Reprod. 2013;28(8):2140–5.CrossRefGoogle Scholar
  81. 81.
    Chen Y, Pei H, Chang Y, Chen M, Wang H, Xie H, Yao S.The impact of endometrioma and laparoscopic cystectomy on ovarian reserve and the exploration of related factors assessed by serum anti-Mullerian hormone: a prospective cohort study. J Ovarian Reserve 2014 26;7:108.Google Scholar
  82. 82.
    Raffi F, Metwally M, Amer S. The impact of excision of ovarian endometrioma on ovarian reserve: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2012;97:3146–54.CrossRefGoogle Scholar
  83. 83.
    Kwon SK, Kim SH, Yun SC, Kim DY, Chae HD, Kim CH, et al. Decline of serum antimullerian hormone levels after laparoscopic ovarian cystectomy in endometrioma and other benign cysts: a prospective cohort study. Fertil Steril. 2014;101:435–41.CrossRefGoogle Scholar
  84. 84.
    Alborzi S, Keramati P, Younesi M, Samsami A, Dadras N. The impact of laparoscopic cystectomy on ovarian reserve in patients with unilateral and bilateral endometriomas. Fertil Steril. 2014;101:427–34.CrossRefGoogle Scholar
  85. 85.
    Celik HG, Dogan E, Okyay E, Ulukus C, Saatli B, Uysal S, et al. Effect of laparoscopic excision of endometriomas on ovarian reserve: serial changes in the serum antimullerian hormone levels. Fertil Steril. 2012;97:1472–147.CrossRefGoogle Scholar
  86. 86.
    Muzzi L, Di Tucci C, Di Feliciantonio M, Marchetti C, Perniola G, Panici PB. The effect of surgery for endometrioma on ovarian reserve evaluated by antral follicle count: a systematic review and meta-analysis. Hum Reprod. 2014;29(10):2190–8.CrossRefGoogle Scholar
  87. 87.
    Gleicher N, et al. Live-birth rates in very poor prognosis patients, who are defined as poor responders under the Bologna criteria, with nonelective single embryo, two-embryo, and three or more embryos transferred. Fertil and Steril. 104(6):1435–41.Google Scholar
  88. 88.
    Steiner AZ, Pritchard D, Stanczyk FZ, Kesner JS, Meadows JW, Herring AH, et al. Association between biomarkers of ovarian reserve and infertility among older women of reproductive age. JAMA. 2017;318(14):1367–76.CrossRefGoogle Scholar
  89. 89.
    Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred c Ngu A, Johnston IH. Performance of patients with a ‘frozen pelvis' in an in vitro fertilization program. Fertil Steril 1987;47:450–455.Google Scholar
  90. 90.
    Keay SD, Barlow R, Eley A, Masson GM, Anthony FW, Jenkins JM. The relation between immunoglobulin G antibodies to Chlamydia trachomatis and poor ovarian response to gonadotropin stimulation before in vitro fertilization. Fertil Steril. 1998;70:214–8.CrossRefGoogle Scholar
  91. 91.
    Polyzos NP, Devroey P. A systematic review of randomized trials for the treatment of poor ovarian responders: is there any light at the end of the tunnel? Fertil Steril. 2011;96(5):1058–61.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Maria Eduarda Bonavides Amaral
    • 1
  • Dani Ejzenberg
    • 1
    Email author
  • Denis Schapira Wajman
    • 1
  • Pedro Augusto Araújo Monteleone
    • 1
  • Paulo Serafini
    • 1
  • Jose Maria SoaresJr
    • 1
  • Edmund Chada Baracat
    • 1
  1. 1.Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de MedicinaUniversidade de São PauloCerqueira CésarBrazil

Personalised recommendations