Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 35, Issue 10, pp 1777–1786 | Cite as

Micro-RNAs involved in cellular proliferation have altered expression profiles in granulosa of young women with diminished ovarian reserve

  • Irene Woo
  • Lane K. Christenson
  • Sumedha Gunewardena
  • Sue Ann Ingles
  • Semara Thomas
  • Ali Ahmady
  • Karine Chung
  • Kristin Bendikson
  • Richard Paulson
  • Lynda K. McGinnis
REPRODUCTIVE PHYSIOLOGY AND DISEASE

Abstract

Purpose

The study aims to determine differences in micro-RNA (miRNA) expression in granulosa (GC) and cumulus cells (CC) between young women with diminished ovarian reserve (DOR) or normal ovarian reserve (NOR). Secondary objective was to identify downstream signaling pathways that could ultimately indicate causes of lower developmental competence of oocytes from young women with DOR.

Methods

The method of the study is prospective cohort study.

Results

Of the miRNA, 125 are differentially expressed in GC between DOR and NOR. Only nine miRNA were different in CC; therefore, we focused analysis on GC. In DOR GC, miR-100-5p, miR-16-5p, miR-30a-3p, and miR-193a-3p were significantly downregulated, while miR-155-5p, miR-192-5p, miR-128-3p, miR-486-5p, miR130a-3p, miR-92a-3p, miR-17-3p, miR-221-3p, and miR-175p were increased. This pattern predicted higher cell proliferation in the DOR GC. The primary pathways include MAPK, Wnt, and TGFbeta.

Conclusions

The miRNA pattern identified critical functions in cell proliferation and survival associated with DOR. GC in women with DOR seems to respond differently to the LH surge.

Keywords

Micro-RNA Granulosa cells Cumulus cells Diminished ovarian reserve 

Notes

Acknowledgements

The research was supported by NIH grant HD082484 awarded to LKM and LKC.

Supplementary material

10815_2018_1239_MOESM1_ESM.docx (25 kb)
ESM 1 (DOCX 25 kb)

References

  1. 1.
    Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122:829–38.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kidder GM, Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol. 2010;88:399–413.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118:5257–68.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gilabert-Estelles J, Braza-Boils A, Ramon LA, Zorio E, Medina P, Espana F, et al. Role of microRNAs in gynecological pathology. Curr Med Chem. 2012;19:2406–13.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.CrossRefGoogle Scholar
  6. 6.
    Mack GS. MicroRNA gets down to business. Nat Biotechnol. 2007;25:631–8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem. 2017;8:45–56.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Passetti F, Ferreira CG, Costa FF. The impact of microRNAs and alternative splicing in pharmacogenomics. Pharmacogenomics J. 2009;9:1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, Singha RS, Malakar AK, Chakraborty S. Interplay between miRNAs and human diseases. J Cell Physiol 2017.Google Scholar
  10. 10.
    Ha TY. MicroRNAs in human diseases: from Cancer to cardiovascular disease. Immune Netw. 2011;11:135–54.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fiedler SD, Carletti MZ, Hong X, Christenson LK. Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol Reprod. 2008;79:1030–7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    McGinnis LK, Luense LJ, Christenson LK. MicroRNA in ovarian biology and disease. Cold Spring Harb Perspect Med. 2015;5:a022962.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ro S, Song R, Park C, Zheng H, Sanders KM, Yan W. Cloning and expression profiling of small RNAs expressed in the mouse ovary. RNA. 2007;13:2366–80.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Otsuka M, Zheng M, Hayashi M, Lee JD, Yoshino O, Lin S, et al. Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest. 2008;118:1944–54.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E, et al. Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics. 2009;10:443.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    da Silveira JC, Winger QA, Bouma GJ, Carnevale EM. Effects of age on follicular fluid exosomal microRNAs and granulosa cell transforming growth factor-? signalling during follicle development in the mare. Reprod Fertil Dev 2015.Google Scholar
  17. 17.
    McBride D, Carre W, Sontakke SD, Hogg CO, Law A, Donadeu FX, et al. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction. 2012;144:221–33.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yin M, Lu M, Yao G, Tian H, Lian J, Liu L, et al. Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1. Mol Endocrinol. 2012;26:1129–43.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Navakanitworakul R, Hung WT, Gunewardena S, Davis JS, Chotigeat W, Christenson LK. Characterization and Small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles. Sci Rep. 2016;6:25486.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril. 2014;102:1751–61. e1751CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Diez-Fraile A, Lammens T, Tilleman K, Witkowski W, Verhasselt B, De Sutter P, et al. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum Fertil (Camb). 2014;17:90–8.CrossRefGoogle Scholar
  22. 22.
    Roth LW, McCallie B, Alvero R, Schoolcraft WB, Minjarez D, Katz-Jaffe MG. Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. J Assist Reprod Genet. 2014;31:355–62.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98:3068–79.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wood JR, Dumesic DA, Abbott DH, Strauss JF 3rd. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab. 2007;92:705–13.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    La Marca A, Minasi MG, Sighinolfi G, Greco P, Argento C, Grisendi V, et al. Female age, serum antimullerian hormone level, and number of oocytes affect the rate and number of euploid blastocysts in in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril. 2017;108:777–83. e772CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Iwase A, Nakamura T, Osuka S, Takikawa S, Goto M, Kikkawa F. Anti-Mullerian hormone as a marker of ovarian reserve: what have we learned, and what should we know? Reprod Med Biol. 2016;15:127–36.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jevnaker AM, Khuu C, Kjole E, Bryne M, Osmundsen H. Expression of members of the miRNA17-92 cluster during development and in carcinogenesis. J Cell Physiol. 2011;226:2257–66.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cohen J, Mounsambote L, Prier P, Mathieu D’Argent E, Selleret L, Chabbert-Buffet N, et al. Outcomes of first IVF/ICSI in young women with diminished ovarian reserve. Minerva Ginecol. 2016;Google Scholar
  29. 29.
    Pacella L, Zander-Fox DL, Armstrong DT, Lane M. Women with reduced ovarian reserve or advanced maternal age have an altered follicular environment. Fertil Steril. 2012;98:986–94. e981-982CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ferraretti AP, La Marca A, Fauser BC, Tarlatzis B, Nargund G, Gianaroli L. Definition EwgoPOR. ESHRE consensus on the definition of 'poor response' to ovarian stimulation for in vitro fertilization: the bologna criteria. Hum Reprod. 2011;26:1616–24.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
  32. 32.
    Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–60.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jiang P, Wu H, Wang W, Ma W, Sun X, MiPred LZ. Classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 2007;35:W339–44.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CrossRefGoogle Scholar
  35. 35.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995:289–300.Google Scholar
  36. 36.
    Chaffin CL, Schwinof KM, Stouffer RL. Gonadotropin and steroid control of granulosa cell proliferation during the periovulatory interval in rhesus monkeys. Biol Reprod. 2001;65:755–62.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132:875–86.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Liu XS, Chopp M, Wang XL, Zhang L, Hozeska-Solgot A, Tang T, et al. MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke. J Biol Chem. 2013;288:12478–88.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu J, Yao W, Yao Y, Du X, Zhou J, Ma B, et al. MiR-92a inhibits porcine ovarian granulosa cell apoptosis by targeting Smad7 gene. FEBS Lett. 2014;588:4497–503.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fan HY, Liu Z, Cahill N, Richards JS. Targeted disruption of Pten in ovarian granulosa cells enhances ovulation and extends the life span of luteal cells. Mol Endocrinol. 2008;22:2128–40.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shi L, Liu S, Zhao W, Shi J. miR-483-5p and miR-486-5p are down-regulated in cumulus cells of metaphase II oocytes from women with polycystic ovary syndrome. Reprod BioMed Online. 2015;31:565–72.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nilsson EE, Skinner MK. Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition. Mol Cell Endocrinol. 2004;214:19–25.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nilsson EE, Detzel C, Skinner MK. Platelet-derived growth factor modulates the primordial to primary follicle transition. Reproduction. 2006;131:1007–15.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ben-Haroush A, Abir R, Ao A, Jin S, Kessler-Icekson G, Feldberg D, et al. Expression of basic fibroblast growth factor and its receptors in human ovarian follicles from adults and fetuses. Fertil Steril. 2005;84(Suppl 2):1257–68.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Baumgarten SC, Armouti M, Ko C, Stocco C. IGF1R Expression in Ovarian Granulosa Cells is Essential for Steroidogenesis, Follicle Survival, and Fertility in Female Mice. Endocrinology 2017.Google Scholar
  46. 46.
    Baumgarten SC, Convissar SM, Fierro MA, Winston NJ, Scoccia B, Stocco C. IGF1R signaling is necessary for FSH-induced activation of AKT and differentiation of human cumulus granulosa cells. J Clin Endocrinol Metab. 2014;99:2995–3004.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Stapp AD, Gomez BI, Gifford CA, Hallford DM, Hernandez Gifford JA. Canonical WNT signaling inhibits follicle stimulating hormone mediated steroidogenesis in primary cultures of rat granulosa cells. PLoS One. 2014;9:e86432.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zielak-Steciwko AE, Browne JA, McGettigan PA, Gajewska M, Dzieciol M, Szulc T, et al. Expression of microRNAs and their target genes and pathways associated with ovarian follicle development in cattle. Physiol Genomics. 2014;46:735–45.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cannon JD, Cherian-Shaw M, Chaffin CL. Proliferation of rat granulosa cells during the periovulatory interval. Endocrinology. 2005;146:414–22.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ribeiro A, Freitas C, Matos L, Gouveia A, Gomes F, Silva Carvalho JL, et al. Age-related expression of TGF beta family receptors in human cumulus oophorus cells. J Assist Reprod Genet. 2017;34:1121–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Al-Edani T, Assou S, Ferrieres A, Bringer Deutsch S, Gala A, Lecellier CH, et al. Female aging alters expression of human cumulus cells genes that are essential for oocyte quality. Biomed Res Int. 2014;2014:964614.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Irene Woo
    • 1
  • Lane K. Christenson
    • 2
  • Sumedha Gunewardena
    • 2
  • Sue Ann Ingles
    • 1
  • Semara Thomas
    • 1
  • Ali Ahmady
    • 1
  • Karine Chung
    • 1
  • Kristin Bendikson
    • 1
  • Richard Paulson
    • 1
  • Lynda K. McGinnis
    • 1
  1. 1.Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations