Advertisement

Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications

  • M. G. Da Broi
  • V. S. I. Giorgi
  • F. Wang
  • D. L. Keefe
  • D. Albertini
  • P. A. NavarroEmail author
Review

Abstract

An equilibrium needs to be established by the cellular and acellular components of the ovarian follicle if developmental competence is to be acquired by the oocyte. Both cumulus cells (CCs) and follicular fluid (FF) are critical determinants for oocyte quality. Understanding how CCs and FF influence oocyte quality in the presence of deleterious systemic or pelvic conditions may impact clinical decisions in the course of managing infertility. Given that the functional integrities of FF and CCs are susceptible to concurrent pathological conditions, it is important to understand how pathophysiological factors influence natural fertility and the outcomes of pregnancy arising from the use of assisted reproduction technologies (ARTs). Accordingly, this review discusses the roles of CCs and FF in ensuring oocyte competence and present new insights on pathological conditions that may interfere with oocyte quality by altering the intrafollicular environment.

Keywords

Oocyte Follicular fluid Cumulus cells Developmental competence 

Notes

Funding

This work was supported in part by a scholarship the Foundation for Research Support of the State of São Paulo (FAPESP, grant number 2015/21907-0, Brazil) to PAN.

References

  1. 1.
    Eppig JJ, Schultz RM, O'Brien M, Chesnel F. Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev Biol. 1994;164(1):1–9.  https://doi.org/10.1006/dbio.1994.1175.PubMedCrossRefGoogle Scholar
  2. 2.
    Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103(2):303–16.  https://doi.org/10.1016/j.fertnstert.2014.11.015.PubMedCrossRefGoogle Scholar
  3. 3.
    Da Broi MG, de Albuquerque FO, de Andrade AZ, Cardoso RL, Jordão Junior AA, Navarro PA. Increased concentration of 8-hydroxy-2′-deoxyguanosine in follicular fluid of infertile women with endometriosis. Cell Tissue Res. 2016;  https://doi.org/10.1007/s00441-016-2428-4.
  4. 4.
    Barcelos ID, Donabella FC, Ribas CP, Meola J, Ferriani RA, de Paz CC, et al. Down-regulation of the CYP19A1 gene in cumulus cells of infertile women with endometriosis. Reprod BioMed Online. 2015;30(5):532–41.  https://doi.org/10.1016/j.rbmo.2015.01.012.PubMedCrossRefGoogle Scholar
  5. 5.
    Donabela FC, Meola J, Padovan CC, de Paz CC, Navarro PA. Higher SOD1 gene expression in cumulus cells from infertile women with moderate and severe endometriosis. Reprod Sci. 2015;22(11):1452–60.  https://doi.org/10.1177/1933719115585146.PubMedCrossRefGoogle Scholar
  6. 6.
    Liu Z, Liu C, Hao C, Xue Q, Huang X, Zhang N, et al. Aberrant expression of angiopoietin-like proteins 1 and 2 in cumulus cells is potentially associated with impaired oocyte developmental competence in polycystic ovary syndrome. Gynecol Endocrinol. 2016;32(7):557–61.  https://doi.org/10.3109/09513590.2016.1138463.PubMedCrossRefGoogle Scholar
  7. 7.
    Huang X, Hao C, Bao H, Wang M, Dai H. Aberrant expression of long noncoding RNAs in cumulus cells isolated from PCOS patients. J Assist Reprod Genet. 2016;33(1):111–21.  https://doi.org/10.1007/s10815-015-0630-z.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhao H, Zhao Y, Li T, Li M, Li J, Li R, et al. Metabolism alteration in follicular niche: the nexus among intermediary metabolism, mitochondrial function, and classic polycystic ovary syndrome. Free Radic Biol Med. 2015;86:295–307.  https://doi.org/10.1016/j.freeradbiomed.2015.05.013.PubMedCrossRefGoogle Scholar
  9. 9.
    Huang X, Hao C, Shen X, Liu X, Shan Y, Zhang Y, et al. Differences in the transcriptional profiles of human cumulus cells isolated from MI and MII oocytes of patients with polycystic ovary syndrome. Reproduction. 2013;145(6):597–608.  https://doi.org/10.1530/REP-13-0005.PubMedCrossRefGoogle Scholar
  10. 10.
    Wu LL, Russell DL, Wong SL, Chen M, Tsai TS, St John JC, et al. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development. 2015;142(4):681–91.  https://doi.org/10.1242/dev.114850.PubMedCrossRefGoogle Scholar
  11. 11.
    Wu LL, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, et al. High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology. 2010;151(11):5438–45.  https://doi.org/10.1210/en.2010-0551.PubMedCrossRefGoogle Scholar
  12. 12.
    Bromfield JJ, Santos JE, Block J, Williams RS, Sheldon IM. Physiology and endocrinology symposium: uterine infection: linking infection and innate immunity with infertility in the high-producing dairy cow. J Anim Sci. 2015;93(5):2021–33.  https://doi.org/10.2527/jas.2014-8496.PubMedCrossRefGoogle Scholar
  13. 13.
    Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015;21(4):427–54.  https://doi.org/10.1093/humupd/dmv011.PubMedCrossRefGoogle Scholar
  14. 14.
    Russell DL, Gilchrist RB, Brown HM, Thompson JG. Bidirectional communication between cumulus cells and the oocyte: old hands and new players? Theriogenology. 2016;86(1):62–8.  https://doi.org/10.1016/j.theriogenology.2016.04.019.PubMedCrossRefGoogle Scholar
  15. 15.
    Wigglesworth K, Lee KB, O'Brien MJ, Peng J, Matzuk MM, Eppig JJ. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proc Natl Acad Sci U S A. 2013;110(39):E3723–9.  https://doi.org/10.1073/pnas.1314829110.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kidder GM, Vanderhyden BC. Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol. 2010;88(4):399–413.  https://doi.org/10.1139/y10-009.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14(2):159–77.  https://doi.org/10.1093/humupd/dmm040.PubMedCrossRefGoogle Scholar
  18. 18.
    Monniaux D. Driving folliculogenesis by the oocyte-somatic cell dialog: lessons from genetic models. Theriogenology. 2016;86(1):41–53.  https://doi.org/10.1016/j.theriogenology.2016.04.017.PubMedCrossRefGoogle Scholar
  19. 19.
    Ge L, Sui HS, Lan GC, Liu N, Wang JZ, Tan JH. Coculture with cumulus cells improves maturation of mouse oocytes denuded of the cumulus oophorus: observations of nuclear and cytoplasmic events. Fertil Steril. 2008;90(6):2376–88.  https://doi.org/10.1016/j.fertnstert.2007.10.054.PubMedCrossRefGoogle Scholar
  20. 20.
    Winterhager E, Kidder GM. Gap junction connexins in female reproductive organs: implications for women's reproductive health. Hum Reprod Update. 2015;21(3):340–52.  https://doi.org/10.1093/humupd/dmv007.PubMedCrossRefGoogle Scholar
  21. 21.
    Kidder GM, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reproduction. 2002;123(5):613–20.PubMedCrossRefGoogle Scholar
  22. 22.
    FitzHarris G, Siyanov V, Baltz JM. Granulosa cells regulate oocyte intracellular pH against acidosis in preantral follicles by multiple mechanisms. Development. 2007;134(23):4283–95.  https://doi.org/10.1242/dev.005272.PubMedCrossRefGoogle Scholar
  23. 23.
    Simon AM, Goodenough DA, Li E, Paul DL. Female infertility in mice lacking connexin 37. Nature. 1997;385(6616):525–9.  https://doi.org/10.1038/385525a0.PubMedCrossRefGoogle Scholar
  24. 24.
    Joyce IM, Pendola FL, Wigglesworth K, Eppig JJ. Oocyte regulation of kit ligand expression in mouse ovarian follicles. Dev Biol. 1999;214(2):342–53.  https://doi.org/10.1006/dbio.1999.9437.PubMedCrossRefGoogle Scholar
  25. 25.
    Thomas FH, Vanderhyden BC. Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod Biol Endocrinol. 2006;4:19.  https://doi.org/10.1186/1477-7827-4-19.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Su YQ, Sugiura K, Wigglesworth K, O'Brien MJ, Affourtit JP, Pangas SA, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2008;135(1):111–21.  https://doi.org/10.1242/dev.009068.PubMedCrossRefGoogle Scholar
  27. 27.
    Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, et al. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development. 2007;134(14):2593–603.  https://doi.org/10.1242/dev.006882.PubMedCrossRefGoogle Scholar
  28. 28.
    Thomas FH, Ethier JF, Shimasaki S, Vanderhyden BC. Follicle-stimulating hormone regulates oocyte growth by modulation of expression of oocyte and granulosa cell factors. Endocrinology. 2005;146(2):941–9.  https://doi.org/10.1210/en.2004-0826.PubMedCrossRefGoogle Scholar
  29. 29.
    Williams CJ, Erickson GF. Morphology and physiology of the ovary. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM et al., editors. Endotext. South Dartmouth (MA); 2000.Google Scholar
  30. 30.
    Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121(5):647–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Buratini J, Price CA. Follicular somatic cell factors and follicle development. Reprod Fertil Dev. 2011;23(1):32–9.  https://doi.org/10.1071/RD10224.PubMedCrossRefGoogle Scholar
  32. 32.
    Pincus G, Enzmann EV. The comparative behavior of mammalian eggs in vivo and in vitro : I. The activation of ovarian eggs. J Exp Med. 1935;62(5):665–75.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Buccione R, Vanderhyden BC, Caron PJ, Eppig JJ. FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte. Dev Biol. 1990;138(1):16–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Salustri A, Yanagishita M, Hascall VC. Mouse oocytes regulate hyaluronic acid synthesis and mucification by FSH-stimulated cumulus cells. Dev Biol. 1990;138(1):26–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Salustri A, Ulisse S, Yanagishita M, Hascall VC. Hyaluronic acid synthesis by mural granulosa cells and cumulus cells in vitro is selectively stimulated by a factor produced by oocytes and by transforming growth factor-beta. J Biol Chem. 1990;265(32):19517–23.PubMedGoogle Scholar
  36. 36.
    Miyoshi T, Otsuka F, Nakamura E, Inagaki K, Ogura-Ochi K, Tsukamoto N, et al. Regulatory role of kit ligand-c-kit interaction and oocyte factors in steroidogenesis by rat granulosa cells. Mol Cell Endocrinol. 2012;358(1):18–26.  https://doi.org/10.1016/j.mce.2012.02.011.PubMedCrossRefGoogle Scholar
  37. 37.
    Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122(6):829–38.PubMedCrossRefGoogle Scholar
  38. 38.
    Varani S, Elvin JA, Yan C, DeMayo J, DeMayo FJ, Horton HF, et al. Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol Endocrinol. 2002;16(6):1154–67.  https://doi.org/10.1210/mend.16.6.0859.PubMedCrossRefGoogle Scholar
  39. 39.
    Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol. 1999;13(6):1018–34.  https://doi.org/10.1210/mend.13.6.0309.PubMedCrossRefGoogle Scholar
  40. 40.
    Su YQ, Wu X, O'Brien MJ, Pendola FL, Denegre JN, Matzuk MM, et al. Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol. 2004;276(1):64–73.  https://doi.org/10.1016/j.ydbio.2004.08.020.PubMedCrossRefGoogle Scholar
  41. 41.
    Gueripel X, Brun V, Gougeon A. Oocyte bone morphogenetic protein 15, but not growth differentiation factor 9, is increased during gonadotropin-induced follicular development in the immature mouse and is associated with cumulus oophorus expansion. Biol Reprod. 2006;75(6):836–43.  https://doi.org/10.1095/biolreprod.106.055574.PubMedCrossRefGoogle Scholar
  42. 42.
    Yoshino O, McMahon HE, Sharma S, Shimasaki S. A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse. Proc Natl Acad Sci U S A. 2006;103(28):10678–83.  https://doi.org/10.1073/pnas.0600507103.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Moore RK, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J Biol Chem. 2003;278(1):304–10.  https://doi.org/10.1074/jbc.M207362200.PubMedCrossRefGoogle Scholar
  44. 44.
    McNatty KP, Juengel JL, Reader KL, Lun S, Myllymaa S, Lawrence SB, et al. Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction. 2005;129(4):481–7.  https://doi.org/10.1530/rep.1.00517.PubMedCrossRefGoogle Scholar
  45. 45.
    Su YQ, Sugiura K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med. 2009;27(1):32–42.  https://doi.org/10.1055/s-0028-1108008.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Otsuka F, Shimasaki S. A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: its role in regulating granulosa cell mitosis. Proc Natl Acad Sci U S A. 2002;99(12):8060–5.  https://doi.org/10.1073/pnas.122066899.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chang HM, Cheng JC, Taylor E, Leung PC. Oocyte-derived BMP15 but not GDF9 down-regulates connexin43 expression and decreases gap junction intercellular communication activity in immortalized human granulosa cells. Mol Hum Reprod. 2014;20(5):373–83.  https://doi.org/10.1093/molehr/gau001.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gittens JE, Barr KJ, Vanderhyden BC, Kidder GM. Interplay between paracrine signaling and gap junctional communication in ovarian follicles. J Cell Sci. 2005;118(Pt 1):113–22.  https://doi.org/10.1242/jcs.01587.PubMedCrossRefGoogle Scholar
  49. 49.
    Saito T, Hiroi M, Kato T. Development of glucose utilization studied in single oocytes and preimplantation embryos from mice. Biol Reprod. 1994;50(2):266–70.PubMedCrossRefGoogle Scholar
  50. 50.
    Downs SM, Utecht AM. Metabolism of radiolabeled glucose by mouse oocytes and oocyte-cumulus cell complexes. Biol Reprod. 1999;60(6):1446–52.PubMedCrossRefGoogle Scholar
  51. 51.
    Paczkowski M, Silva E, Schoolcraft WB, Krisher RL. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol Reprod. 2013;88(5):111.  https://doi.org/10.1095/biolreprod.113.108548.PubMedCrossRefGoogle Scholar
  52. 52.
    Cetica P, Pintos L, Dalvit G, Beconi M. Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction. 2002;124(5):675–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139(4):685–95.  https://doi.org/10.1530/REP-09-0345.PubMedCrossRefGoogle Scholar
  54. 54.
    Downs SM, Humpherson PG, Leese HJ. Meiotic induction in cumulus cell-enclosed mouse oocytes: involvement of the pentose phosphate pathway. Biol Reprod. 1998;58(4):1084–94.PubMedCrossRefGoogle Scholar
  55. 55.
    Hashimoto S, Minami N, Yamada M, Imai H. Excessive concentration of glucose during in vitro maturation impairs the developmental competence of bovine oocytes after in vitro fertilization: relevance to intracellular reactive oxygen species and glutathione contents. Mol Reprod Dev. 2000;56(4):520–6.  https://doi.org/10.1002/1098-2795(200008)56:4<520::AID-MRD10>3.0.CO;2-0.PubMedCrossRefGoogle Scholar
  56. 56.
    Edwards RG. Follicular fluid. J Reprod Fertil. 1974;37(1):189–219.PubMedCrossRefGoogle Scholar
  57. 57.
    Ambekar AS, Nirujogi RS, Srikanth SM, Chavan S, Kelkar DS, Hinduja I, et al. Proteomic analysis of human follicular fluid: a new perspective towards understanding folliculogenesis. J Proteome. 2013;87:68–77.  https://doi.org/10.1016/j.jprot.2013.05.017.CrossRefGoogle Scholar
  58. 58.
    Von Wald T, Monisova Y, Hacker MR, Yoo SW, Penzias AS, Reindollar RR, et al. Age-related variations in follicular apolipoproteins may influence human oocyte maturation and fertility potential. Fertil Steril. 2010;93(7):2354–61.  https://doi.org/10.1016/j.fertnstert.2008.12.129.CrossRefGoogle Scholar
  59. 59.
    Moreno JM, Núñez MJ, Quiñonero A, Martínez S, de la Orden M, Simón C, et al. Follicular fluid and mural granulosa cells microRNA profiles vary in in vitro fertilization patients depending on their age and oocyte maturation stage. Fertil Steril. 2015;104(4):1037–46.e1.  https://doi.org/10.1016/j.fertnstert.2015.07.001.PubMedCrossRefGoogle Scholar
  60. 60.
    Liu N, Ma Y, Li R, Jin H, Li M, Huang X, et al. Comparison of follicular fluid amphiregulin and EGF concentrations in patients undergoing IVF with different stimulation protocols. Endocrine. 2012;42(3):708–16.  https://doi.org/10.1007/s12020-012-9706-z.PubMedCrossRefGoogle Scholar
  61. 61.
    Chattopadhayay R, Ganesh A, Samanta J, Jana SK, Chakravarty BN, Chaudhury K. Effect of follicular fluid oxidative stress on meiotic spindle formation in infertile women with polycystic ovarian syndrome. Gynecol Obstet Investig. 2010;69(3):197–202.  https://doi.org/10.1159/000270900.CrossRefGoogle Scholar
  62. 62.
    Prieto L, Quesada JF, Cambero O, Pacheco A, Pellicer A, Codoceo R, et al. Analysis of follicular fluid and serum markers of oxidative stress in women with infertility related to endometriosis. Fertil Steril. 2012;98(1):126–30.  https://doi.org/10.1016/j.fertnstert.2012.03.052.PubMedCrossRefGoogle Scholar
  63. 63.
    Gode F, Gulekli B, Dogan E, Korhan P, Dogan S, Bige O, et al. Influence of follicular fluid GDF9 and BMP15 on embryo quality. Fertil Steril. 2011;95(7):2274–8.  https://doi.org/10.1016/j.fertnstert.2011.03.045.PubMedCrossRefGoogle Scholar
  64. 64.
    Yang WJ, Liu FC, Hsieh JS, Chen CH, Hsiao SY, Lin CS. Matrix metalloproteinase 2 level in human follicular fluid is a reliable marker of human oocyte maturation in in vitro fertilization and intracytoplasmic sperm injection cycles. Reprod Biol Endocrinol. 2015;13:102.  https://doi.org/10.1186/s12958-015-0099-8.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Hennet ML, Combelles CM. The antral follicle: a microenvironment for oocyte differentiation. Int J Dev Biol. 2012;56(10–12):819–31.  https://doi.org/10.1387/ijdb.120133cc.PubMedCrossRefGoogle Scholar
  66. 66.
    Shkolnik K, Tadmor A, Ben-Dor S, Nevo N, Galiani D, Dekel N. Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci U S A. 2011;108(4):1462–7.  https://doi.org/10.1073/pnas.1017213108.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Choi WJ, Banerjee J, Falcone T, Bena J, Agarwal A, Sharma RK. Oxidative stress and tumor necrosis factor-alpha-induced alterations in metaphase II mouse oocyte spindle structure. Fertil Steril. 2007;88(4 Suppl):1220–31.  https://doi.org/10.1016/j.fertnstert.2007.02.067.PubMedCrossRefGoogle Scholar
  68. 68.
    Tarín JJ, Vendrell FJ, Ten J, Blanes R, van Blerkom J, Cano A. The oxidizing agent tertiary butyl hydroperoxide induces disturbances in spindle organization, c-meiosis, and aneuploidy in mouse oocytes. Mol Hum Reprod. 1996;2(12):895–901.PubMedCrossRefGoogle Scholar
  69. 69.
    Hu Y, Betzendahl I, Cortvrindt R, Smitz J, Eichenlaub-Ritter U. Effects of low O2 and ageing on spindles and chromosomes in mouse oocytes from pre-antral follicle culture. Hum Reprod. 2001;16(4):737–48.PubMedCrossRefGoogle Scholar
  70. 70.
    Navarro PA, Liu L, Keefe DL. In vivo effects of arsenite on meiosis, preimplantation development, and apoptosis in the mouse. Biol Reprod. 2004;70(4):980–5.  https://doi.org/10.1095/biolreprod.103.020586.PubMedCrossRefGoogle Scholar
  71. 71.
    Seibel MM, Smith D, Dlugi AM, Levesque L. Periovulatory follicular fluid hormone levels in spontaneous human cycles. J Clin Endocrinol Metab. 1989;68(6):1073–7.  https://doi.org/10.1210/jcem-68-6-1073.PubMedCrossRefGoogle Scholar
  72. 72.
    von Wolff M, Kollmann Z, Flück CE, Stute P, Marti U, Weiss B, et al. Gonadotrophin stimulation for in vitro fertilization significantly alters the hormone milieu in follicular fluid: a comparative study between natural cycle IVF and conventional IVF. Hum Reprod. 2014;29(5):1049–57.  https://doi.org/10.1093/humrep/deu044.CrossRefGoogle Scholar
  73. 73.
    Robker RL, Wu LL, Yang X. Inflammatory pathways linking obesity and ovarian dysfunction. J Reprod Immunol. 2011;88(2):142–8.  https://doi.org/10.1016/j.jri.2011.01.008.PubMedCrossRefGoogle Scholar
  74. 74.
    Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH, Kim WW. Relationships between concentrations of tumor necrosis factor-alpha and nitric oxide in follicular fluid and oocyte quality. J Assist Reprod Genet. 2000;17(4):222–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Gaafar TM, Hanna MO, Hammady MR, Amr HM, Osman OM, Nasef A, et al. Evaluation of cytokines in follicular fluid and their effect on fertilization and pregnancy outcome. Immunol Investig. 2014;43(6):572–84.  https://doi.org/10.3109/08820139.2014.901974.CrossRefGoogle Scholar
  76. 76.
    Altun T, Jindal S, Greenseid K, Shu J, Pal L. Low follicular fluid IL-6 levels in IVF patients are associated with increased likelihood of clinical pregnancy. J Assist Reprod Genet. 2011;28(3):245–51.  https://doi.org/10.1007/s10815-010-9502-8.PubMedCrossRefGoogle Scholar
  77. 77.
    Hurwitz A, Ricciarelli E, Botero L, Rohan RM, Hernandez ER, Adashi EY. Endocrine- and autocrine-mediated regulation of rat ovarian (theca-interstitial) interleukin-1 beta gene expression: gonadotropin-dependent preovulatory acquisition. Endocrinology. 1991;129(6):3427–9.  https://doi.org/10.1210/endo-129-6-3427.PubMedCrossRefGoogle Scholar
  78. 78.
    Wu YT, Tang L, Cai J, Lu XE, Xu J, Zhu XM, et al. High bone morphogenetic protein-15 level in follicular fluid is associated with high quality oocyte and subsequent embryonic development. Hum Reprod. 2007;22(6):1526–31.  https://doi.org/10.1093/humrep/dem029.PubMedCrossRefGoogle Scholar
  79. 79.
    Emonard H, Grimaud JA. Matrix metalloproteinases. A review. Cell Mol Biol. 1990;36(2):131–53.PubMedGoogle Scholar
  80. 80.
    Deady LD, Shen W, Mosure SA, Spradling AC, Sun J. Matrix metalloproteinase 2 is required for ovulation and corpus luteum formation in Drosophila. PLoS Genet. 2015;11(2):e1004989.  https://doi.org/10.1371/journal.pgen.1004989.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Moreno-Moya JM, Vilella F, Simón C. MicroRNA: key gene expression regulators. Fertil Steril. 2014;101(6):1516–23.  https://doi.org/10.1016/j.fertnstert.2013.10.042.PubMedCrossRefGoogle Scholar
  82. 82.
    Takeo S, Kimura K, Shirasuna K, Kuwayama T, Iwata H. Age-associated deterioration in follicular fluid induces a decline in bovine oocyte quality. Reprod Fertil Dev. 2016;  https://doi.org/10.1071/RD15228.
  83. 83.
    da Silveira JC, de Andrade GM, Nogueira MF, Meirelles FV, Perecin F. Involvement of miRNAs and cell-secreted vesicles in mammalian ovarian antral follicle development. Reprod Sci. 2015;22(12):1474–83.  https://doi.org/10.1177/1933719115574344.PubMedCrossRefGoogle Scholar
  84. 84.
    Diez-Fraile A, Lammens T, Tilleman K, Witkowski W, Verhasselt B, De Sutter P, et al. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum Fertil (Camb). 2014;17(2):90–8.  https://doi.org/10.3109/14647273.2014.897006.CrossRefGoogle Scholar
  85. 85.
    Wdowiak A. Comparing antioxidant enzyme levels in follicular fluid in ICSI-treated patients. Gynecol Obstet Fertil. 2015;43(7–8):515–21.  https://doi.org/10.1016/j.gyobfe.2015.06.004.PubMedCrossRefGoogle Scholar
  86. 86.
    Kedem A, Yung Y, Yerushalmi GM, Haas J, Maman E, Hanochi M, et al. Anti Müllerian hormone (AMH) level and expression in mural and cumulus cells in relation to age. J Ovarian Res. 2014;7:113.  https://doi.org/10.1186/s13048-014-0113-3.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Pacella L, Zander-Fox DL, Armstrong DT, Lane M. Women with reduced ovarian reserve or advanced maternal age have an altered follicular environment. Fertil Steril. 2012;98(4):986–94.e1-2.  https://doi.org/10.1016/j.fertnstert.2012.06.025.PubMedCrossRefGoogle Scholar
  88. 88.
    Fujii J, Iuchi Y, Okada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol. 2005;3:43.  https://doi.org/10.1186/1477-7827-3-43.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Agarwal A, Said TM, Bedaiwy MA, Banerjee J, Alvarez JG. Oxidative stress in an assisted reproductive techniques setting. Fertil Steril. 2006;86(3):503–12.  https://doi.org/10.1016/j.fertnstert.2006.02.088.PubMedCrossRefGoogle Scholar
  90. 90.
    Halis G, Arici A. Endometriosis and inflammation in infertility. Ann N Y Acad Sci. 2004;1034:300–15.  https://doi.org/10.1196/annals.1335.032.PubMedCrossRefGoogle Scholar
  91. 91.
    Karagouni EE, Chryssikopoulos A, Mantzavinos T, Kanakas N, Dotsika EN. Interleukin-1beta and interleukin-1alpha may affect the implantation rate of patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 1998;70(3):553–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Uri-Belapolsky S, Miller I, Shaish A, Levi M, Harats D, Ninio-Many L, et al. Interleukin 1-alpha deficiency increases the expression of follicle-stimulating hormone receptors in granulosa cells. Mol Reprod Dev. 2017;84(6):460–7.  https://doi.org/10.1002/mrd.22799.PubMedCrossRefGoogle Scholar
  93. 93.
    Vujisic S, Lepej SZ, Emedi I, Bauman R, Remenar A, Tiljak MK. Ovarian follicular concentration of IL-12, IL-15, IL-18 and p40 subunit of IL-12 and IL-23. Hum Reprod. 2006;21(10):2650–5.  https://doi.org/10.1093/humrep/del217.PubMedCrossRefGoogle Scholar
  94. 94.
    Palini S, Benedetti S, Tagliamonte MC, De Stefani S, Primiterra M, Polli V, et al. Influence of ovarian stimulation for IVF/ICSI on the antioxidant defence system and relationship to outcome. Reprod BioMed Online. 2014;29(1):65–71.  https://doi.org/10.1016/j.rbmo.2014.03.010.PubMedCrossRefGoogle Scholar
  95. 95.
    Bedaiwy MA, Elnashar SA, Goldberg JM, Sharma R, Mascha EJ, Arrigain S, et al. Effect of follicular fluid oxidative stress parameters on intracytoplasmic sperm injection outcome. Gynecol Endocrinol. 2012;28(1):51–5.  https://doi.org/10.3109/09513590.2011.579652.PubMedCrossRefGoogle Scholar
  96. 96.
    Siu MK, Cheng CY. The blood-follicle barrier (BFB) in disease and in ovarian function. Adv Exp Med Biol. 2012;763:186–92.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Tamanini C, De Ambrogi M. Angiogenesis in developing follicle and corpus luteum. Reprod Domest Anim. 2004;39(4):206–16.  https://doi.org/10.1111/j.1439-0531.2004.00505.x.PubMedCrossRefGoogle Scholar
  98. 98.
    Berisha B, Schams D, Kosmann M, Amselgruber W, Einspanier R. Expression and localisation of vascular endothelial growth factor and basic fibroblast growth factor during the final growth of bovine ovarian follicles. J Endocrinol. 2000;167(3):371–82.PubMedCrossRefGoogle Scholar
  99. 99.
    Murdoch WJ, Nix KJ, Dunn TG. Dynamics of ovarian blood supply to periovulatory follicles of the ewe. Biol Reprod. 1983;28(4):1001–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Mauro A, Martelli A, Berardinelli P, Russo V, Bernabò N, Di Giacinto O, et al. Effect of antiprogesterone RU486 on VEGF expression and blood vessel remodeling on ovarian follicles before ovulation. PLoS One. 2014;9(4):e95910.  https://doi.org/10.1371/journal.pone.0095910.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Shimasaki S, Moore RK, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004;25(1):72–101.  https://doi.org/10.1210/er.2003-0007.PubMedCrossRefGoogle Scholar
  102. 102.
    Akiyama I, Yoshino O, Osuga Y, Shi J, Harada M, Koga K, et al. Bone morphogenetic protein 7 increased vascular endothelial growth factor (VEGF)-a expression in human granulosa cells and VEGF receptor expression in endothelial cells. Reprod Sci. 2014;21(4):477–82.  https://doi.org/10.1177/1933719113503411.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Mitsube K, Brannstrom M, Haraldsson B. Modulation of microvascular permeability in the preovulatory rat ovary by an ovulatory gonadotropin stimulus. Fertil Steril. 2013;99(3):903–9.  https://doi.org/10.1016/j.fertnstert.2012.11.017.PubMedCrossRefGoogle Scholar
  104. 104.
    Pinto CR, Paccamonti DL, Eilts BE, Venugopal CS, Short CR, Gentry LR, et al. Concentrations of nitric oxide in equine preovulatory follicles before and after administration of human chorionic gonadotropin. Theriogenology. 2003;60(5):819–27.PubMedCrossRefGoogle Scholar
  105. 105.
    Jablonka-Shariff A, Olson LM. The role of nitric oxide in oocyte meiotic maturation and ovulation: meiotic abnormalities of endothelial nitric oxide synthase knock-out mouse oocytes. Endocrinology. 1998;139(6):2944–54.  https://doi.org/10.1210/endo.139.6.6054.PubMedCrossRefGoogle Scholar
  106. 106.
    Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82(6):1021–9.  https://doi.org/10.1095/biolreprod.109.082941.PubMedCrossRefGoogle Scholar
  107. 107.
    McConnell NA, Yunus RS, Gross SA, Bost KL, Clemens MG, Hughes FM Jr. Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. Endocrinology. 2002;143(8):2905–12.  https://doi.org/10.1210/endo.143.8.8953.PubMedCrossRefGoogle Scholar
  108. 108.
    Skowronski MT, Kwon TH, Nielsen S. Immunolocalization of aquaporin 1, 5, and 9 in the female pig reproductive system. J Histochem Cytochem. 2009;57(1):61–7.  https://doi.org/10.1369/jhc.2008.952499.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Pancarci SM, Ari U, Atakisi O, Güngör O, Ciğremiş Y, Bollwein H. Nitric oxide concentrations, estradiol-17β progesterone ratio in follicular fluid, and COC quality with respect to perifollicular blood flow in cows. Anim Reprod Sci. 2012;130(1–2):9–15.  https://doi.org/10.1016/j.anireprosci.2011.12.013.PubMedCrossRefGoogle Scholar
  110. 110.
    Nargund G, Bourne T, Doyle P, Parsons J, Cheng W, Campbell S, et al. Associations between ultrasound indices of follicular blood flow, oocyte recovery and preimplantation embryo quality. Hum Reprod. 1996;11(1):109–13.PubMedCrossRefGoogle Scholar
  111. 111.
    Nargund G, Doyle PE, Bourne TH, Parsons JH, Cheng WC, Campbell S, et al. Ultrasound derived indices of follicular blood flow before HCG administration and the prediction of oocyte recovery and preimplantation embryo quality. Hum Reprod. 1996;11(11):2512–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Huey S, Abuhamad A, Barroso G, Hsu MI, Kolm P, Mayer J, et al. Perifollicular blood flow Doppler indices, but not follicular pO2, pCO2, or pH, predict oocyte developmental competence in in vitro fertilization. Fertil Steril. 1999;72(4):707–12.PubMedCrossRefGoogle Scholar
  113. 113.
    Coulam CB, Goodman C, Rinehart JS. Colour Doppler indices of follicular blood flow as predictors of pregnancy after in-vitro fertilization and embryo transfer. Hum Reprod. 1999;14(8):1979–82.PubMedCrossRefGoogle Scholar
  114. 114.
    Monteleone P, Giovanni Artini P, Simi G, Casarosa E, Cela V, Genazzani AR. Follicular fluid VEGF levels directly correlate with perifollicular blood flow in normoresponder patients undergoing IVF. J Assist Reprod Genet. 2008;25(5):183–6.  https://doi.org/10.1007/s10815-008-9218-1.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Vural F, Vural B, Doğer E, Çakıroğlu Y, Çekmen M. Perifollicular blood flow and its relationship with endometrial vascularity, follicular fluid EG-VEGF, IGF-1, and inhibin-a levels and IVF outcomes. J Assist Reprod Genet. 2016;  https://doi.org/10.1007/s10815-016-0780-7.
  116. 116.
    Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev. 2002;61(3):414–24.  https://doi.org/10.1002/mrd.10102.PubMedCrossRefGoogle Scholar
  117. 117.
    Shaeib F, Khan SN, Ali I, Thakur M, Saed MG, Dai J, et al. The defensive role of cumulus cells against reactive oxygen species insult in metaphase II mouse oocytes. Reprod Sci. 2016;23(4):498–507.  https://doi.org/10.1177/1933719115607993.PubMedCrossRefGoogle Scholar
  118. 118.
    Lolicato F, Brouwers JF, de Lest CH, Wubbolts R, Aardema H, Priore P, et al. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity. Biol Reprod. 2015;92(1):16.  https://doi.org/10.1095/biolreprod.114.120634.PubMedCrossRefGoogle Scholar
  119. 119.
    Borradaile NM, Han X, Harp JD, Gale SE, Ory DS, Schaffer JE. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res. 2006;47(12):2726–37.  https://doi.org/10.1194/jlr.M600299-JLR200.PubMedCrossRefGoogle Scholar
  120. 120.
    Jungheim ES, Macones GA, Odem RR, Patterson BW, Lanzendorf SE, Ratts VS, et al. Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitro fertilization. Fertil Steril. 2011;95(6):1970–4.  https://doi.org/10.1016/j.fertnstert.2011.01.154.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Price JC, Bromfield JJ, Sheldon IM. Pathogen-associated molecular patterns initiate inflammation and perturb the endocrine function of bovine granulosa cells from ovarian dominant follicles via TLR2 and TLR4 pathways. Endocrinology. 2013;154(9):3377–86.  https://doi.org/10.1210/en.2013-1102.PubMedCrossRefGoogle Scholar
  122. 122.
    Gupta S, Goldberg JM, Aziz N, Goldberg E, Krajcir N, Agarwal A. Pathogenic mechanisms in endometriosis-associated infertility. Fertil Steril. 2008;90(2):247–57.  https://doi.org/10.1016/j.fertnstert.2008.02.093.PubMedCrossRefGoogle Scholar
  123. 123.
    Ibrahim LA, Kramer JM, Williams RS, Bromfield JJ. Human granulosa-luteal cells initiate an innate immune response to pathogen-associated molecules. Reproduction. 2016;152(4):261–70.  https://doi.org/10.1530/REP-15-0573.PubMedCrossRefGoogle Scholar
  124. 124.
    Carneiro LC, Cronin JG, Sheldon IM. Mechanisms linking bacterial infections of the bovine endometrium to disease and infertility. Reprod Biol. 2016;16(1):1–7.  https://doi.org/10.1016/j.repbio.2015.12.002.PubMedCrossRefGoogle Scholar
  125. 125.
    Neuer A, Lam KN, Tiller FW, Kiesel L, Witkin SS. Humoral immune response to membrane components of Chlamydia trachomatis and expression of human 60 kDa heat shock protein in follicular fluid of in-vitro fertilization patients. Hum Reprod. 1997;12(5):925–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Garrido N, Navarro J, Remohí J, Simón C, Pellicer A. Follicular hormonal environment and embryo quality in women with endometriosis. Hum Reprod Update. 2000;6(1):67–74.PubMedCrossRefGoogle Scholar
  127. 127.
    Pellicer A, Albert C, Mercader A, Bonilla-Musoles F, Remohí J, Simón C. The follicular and endocrine environment in women with endometriosis: local and systemic cytokine production. Fertil Steril. 1998;70(3):425–31.PubMedCrossRefGoogle Scholar
  128. 128.
    Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod. 2012;86(2):27.  https://doi.org/10.1095/biolreprod.111.095224.PubMedCrossRefGoogle Scholar
  129. 129.
    Tatemoto H, Sakurai N, Muto N. Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol Reprod. 2000;63(3):805–10.PubMedCrossRefGoogle Scholar
  130. 130.
    Meldrum DR, Casper RF, Diez-Juan A, Simon C, Domar AD, Frydman R. Aging and the environment affect gamete and embryo potential: can we intervene? Fertil Steril. 2016;105(3):548–59.  https://doi.org/10.1016/j.fertnstert.2016.01.013.PubMedCrossRefGoogle Scholar
  131. 131.
    Broekmans FJ, Knauff EA, te Velde ER, Macklon NS, Fauser BC. Female reproductive ageing: current knowledge and future trends. Trends Endocrinol Metab. 2007;18(2):58–65.  https://doi.org/10.1016/j.tem.2007.01.004.PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang D, Zhang X, Zeng M, Yuan J, Liu M, Yin Y, et al. Increased DNA damage and repair deficiency in granulosa cells are associated with ovarian aging in rhesus monkey. J Assist Reprod Genet. 2015;32(7):1069–78.  https://doi.org/10.1007/s10815-015-0483-5.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Keefe D, Kumar M, Kalmbach K. Oocyte competency is the key to embryo potential. Fertil Steril. 2015;103(2):317–22.  https://doi.org/10.1016/j.fertnstert.2014.12.115.PubMedCrossRefGoogle Scholar
  134. 134.
    Eichenlaub-Ritter U, Wieczorek M, Luke S, Seidel T. Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion. 2011;11(5):783–96.  https://doi.org/10.1016/j.mito.2010.08.011.PubMedCrossRefGoogle Scholar
  135. 135.
    Cheng EH, Chen SU, Lee TH, Pai YP, Huang LS, Huang CC, et al. Evaluation of telomere length in cumulus cells as a potential biomarker of oocyte and embryo quality. Hum Reprod. 2013;28(4):929–36.  https://doi.org/10.1093/humrep/det004.PubMedCrossRefGoogle Scholar
  136. 136.
    Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH, Kim WW. Cumulus cells apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF-ET. J Assist Reprod Genet. 2001;18(9):490–8.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    McReynolds S, Dzieciatkowska M, McCallie BR, Mitchell SD, Stevens J, Hansen K, et al. Impact of maternal aging on the molecular signature of human cumulus cells. Fertil Steril. 2012;98(6):1574–80 e5.  https://doi.org/10.1016/j.fertnstert.2012.08.012.PubMedCrossRefGoogle Scholar
  138. 138.
    Zhang GM, Gu CH, Zhang YL, Sun HY, Qian WP, Zhou ZR, et al. Age-associated changes in gene expression of goat oocytes. Theriogenology. 2013;80(4):328–36.  https://doi.org/10.1016/j.theriogenology.2013.04.019.PubMedCrossRefGoogle Scholar
  139. 139.
    Lee MS, Liu CH, Lee TH, Wu HM, Huang CC, Huang LS, et al. Association of creatin kinase B and peroxiredoxin 2 expression with age and embryo quality in cumulus cells. J Assist Reprod Genet. 2010;27(11):629–39.  https://doi.org/10.1007/s10815-010-9459-7.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Molinari E, Bar H, Pyle AM, Patrizio P. Transcriptome analysis of human cumulus cells reveals hypoxia as the main determinant of follicular senescence. Mol Hum Reprod. 2016;22(8):866–76.  https://doi.org/10.1093/molehr/gaw038.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Prescott J, Farland LV, Tobias DK, Gaskins AJ, Spiegelman D, Chavarro JE, et al. A prospective cohort study of endometriosis and subsequent risk of infertility. Hum Reprod. 2016;31(7):1475–82.  https://doi.org/10.1093/humrep/dew085.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Medicine PCotASfR. Endometriosis and infertility: a committee opinion. Fertil Steril. 2012;98(3):591–8.  https://doi.org/10.1016/j.fertnstert.2012.05.031.CrossRefGoogle Scholar
  143. 143.
    Barcelos ID, Vieira RC, Ferreira EM, Martins WP, Ferriani RA, Navarro PA. Comparative analysis of the spindle and chromosome configurations of in vitro-matured oocytes from patients with endometriosis and from control subjects: a pilot study. Fertil Steril. 2009;92(5):1749–52.  https://doi.org/10.1016/j.fertnstert.2009.05.006.PubMedCrossRefGoogle Scholar
  144. 144.
    Da Broi MG, Malvezzi H, Paz CC, Ferriani RA, Navarro PA. Follicular fluid from infertile women with mild endometriosis may compromise the meiotic spindles of bovine metaphase II oocytes. Hum Reprod. 2014;29(2):315–23.  https://doi.org/10.1093/humrep/det378.PubMedCrossRefGoogle Scholar
  145. 145.
    Giorgi VS, Da Broi MG, Paz CC, Ferriani RA, Navarro PA. N-acetyl-cysteine and L-carnitine prevent meiotic oocyte damage induced by follicular fluid from infertile women with mild endometriosis. Reprod Sci. 2016;23(3):342–51.  https://doi.org/10.1177/1933719115602772.PubMedCrossRefGoogle Scholar
  146. 146.
    Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.PubMedCrossRefGoogle Scholar
  147. 147.
    Carvalho LF, Samadder AN, Agarwal A, Fernandes LF, Abrão MS. Oxidative stress biomarkers in patients with endometriosis: systematic review. Arch Gynecol Obstet. 2012;286(4):1033–40.  https://doi.org/10.1007/s00404-012-2439-7.PubMedCrossRefGoogle Scholar
  148. 148.
    Szczepańska M, Koźlik J, Skrzypczak J, Mikołajczyk M. Oxidative stress may be a piece in the endometriosis puzzle. Fertil Steril. 2003;79(6):1288–93.PubMedCrossRefGoogle Scholar
  149. 149.
    Murphy AA, Santanam N, Morales AJ, Parthasarathy S. Lysophosphatidyl choline, a chemotactic factor for monocytes/T-lymphocytes is elevated in endometriosis. J Clin Endocrinol Metab. 1998;83(6):2110–3.  https://doi.org/10.1210/jcem.83.6.4823.PubMedCrossRefGoogle Scholar
  150. 150.
    Donnez J, Binda MM, Donnez O, Dolmans MM. Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis. Fertil Steril. 2016;  https://doi.org/10.1016/j.fertnstert.2016.07.1075.
  151. 151.
    Mansour G, Abdelrazik H, Sharma RK, Radwan E, Falcone T, Agarwal A. L-carnitine supplementation reduces oocyte cytoskeleton damage and embryo apoptosis induced by incubation in peritoneal fluid from patients with endometriosis. Fertil Steril. 2009;91(5 Suppl):2079–86.  https://doi.org/10.1016/j.fertnstert.2008.02.097.PubMedCrossRefGoogle Scholar
  152. 152.
    Andrade AZ, Rodrigues JK, Dib LA, Romão GS, Ferriani RA, Jordão Junior AA, et al. Serum markers of oxidative stress in infertile women with endometriosis. Rev Bras Ginecol Obstet. 2010;32(6):279–85.PubMedCrossRefGoogle Scholar
  153. 153.
    Singh AK, Dutta M, Chattopadhyay R, Chakravarty B, Chaudhury K. Intrafollicular interleukin-8, interleukin-12, and adrenomedullin are the promising prognostic markers of oocyte and embryo quality in women with endometriosis. J Assist Reprod Genet. 2016;  https://doi.org/10.1007/s10815-016-0782-5.
  154. 154.
    Singh AK, Chattopadhyay R, Chakravarty B, Chaudhury K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod Toxicol. 2013;42:116–24.  https://doi.org/10.1016/j.reprotox.2013.08.005.PubMedCrossRefGoogle Scholar
  155. 155.
    Molloy D, Martin M, Speirs A, Lopata A, Clarke G, McBain J, et al. Performance of patients with a “frozen pelvis” in an in vitro fertilization program. Fertil Steril. 1987;47(3):450–5.PubMedCrossRefGoogle Scholar
  156. 156.
    Keay SD, Barlow R, Eley A, Masson GM, Anthony FW, Jenkins JM. The relation between immunoglobulin G antibodies to Chlamydia trachomatis and poor ovarian response to gonadotropin stimulation before in vitro fertilization. Fertil Steril. 1998;70(2):214–8.PubMedCrossRefGoogle Scholar
  157. 157.
    Ferraretti AP, La Marca A, Fauser BC, Tarlatzis B, Nargund G, Gianaroli L, et al. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011;26(7):1616–24.  https://doi.org/10.1093/humrep/der092.PubMedCrossRefGoogle Scholar
  158. 158.
    Beckers NG, Macklon NS, Eijkemans MJ, Fauser BC. Women with regular menstrual cycles and a poor response to ovarian hyperstimulation for in vitro fertilization exhibit follicular phase characteristics suggestive of ovarian aging. Fertil Steril. 2002;78(2):291–7.PubMedCrossRefGoogle Scholar
  159. 159.
    de Boer EJ, den Tonkelaar I, te Velde ER, Burger CW, Klip H, van Leeuwen FE, et al. A low number of retrieved oocytes at in vitro fertilization treatment is predictive of early menopause. Fertil Steril. 2002;77(5):978–85.PubMedCrossRefGoogle Scholar
  160. 160.
    Lawson R, El-Toukhy T, Kassab A, Taylor A, Braude P, Parsons J, et al. Poor response to ovulation induction is a stronger predictor of early menopause than elevated basal FSH: a life table analysis. Hum Reprod. 2003;18(3):527–33.PubMedCrossRefGoogle Scholar
  161. 161.
    Busnelli A, Papaleo E, Del Prato D, La Vecchia I, Iachini E, Paffoni A, et al. A retrospective evaluation of prognosis and cost-effectiveness of IVF in poor responders according to the Bologna criteria. Hum Reprod. 2015;30(2):315–22.  https://doi.org/10.1093/humrep/deu319.PubMedCrossRefGoogle Scholar
  162. 162.
    Szmidt NA, Bhattacharya S, Maheshwari A. Does poor ovarian response to gonadotrophins predict early menopause? A retrospective cohort study with minimum of 10-year follow-up. Hum Fertil (Camb). 2016;19(3):212–9.  https://doi.org/10.1080/14647273.2016.1221149.CrossRefGoogle Scholar
  163. 163.
    Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 1996;17(2):121–55.  https://doi.org/10.1210/edrv-17-2-121.PubMedCrossRefGoogle Scholar
  164. 164.
    Herath S, Williams EJ, Lilly ST, Gilbert RO, Dobson H, Bryant CE, et al. Ovarian follicular cells have innate immune capabilities that modulate their endocrine function. Reproduction. 2007;134(5):683–93.  https://doi.org/10.1530/REP-07-0229.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Bromfield JJ, Sheldon IM. Lipopolysaccharide initiates inflammation in bovine granulosa cells via the TLR4 pathway and perturbs oocyte meiotic progression in vitro. Endocrinology. 2011;152(12):5029–40.  https://doi.org/10.1210/en.2011-1124.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Bromfield JJ, Sheldon IM. Lipopolysaccharide reduces the primordial follicle pool in the bovine ovarian cortex ex vivo and in the murine ovary in vivo. Biol Reprod. 2013;88(4):98.  https://doi.org/10.1095/biolreprod.112.106914.PubMedCrossRefGoogle Scholar
  167. 167.
    Bellver J, Busso C, Pellicer A, Remohí J, Simón C. Obesity and assisted reproductive technology outcomes. Reprod BioMed Online. 2006;12(5):562–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Luke B, Brown MB, Stern JE, Missmer SA, Fujimoto VY, Leach R, et al. Female obesity adversely affects assisted reproductive technology (ART) pregnancy and live birth rates. Hum Reprod. 2011;26(1):245–52.  https://doi.org/10.1093/humrep/deq306.PubMedCrossRefGoogle Scholar
  169. 169.
    Marquard KL, Stephens SM, Jungheim ES, Ratts VS, Odem RR, Lanzendorf S, et al. Polycystic ovary syndrome and maternal obesity affect oocyte size in in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril. 2011;95(6):2146–9, 9.e1.  https://doi.org/10.1016/j.fertnstert.2010.10.026.PubMedCrossRefGoogle Scholar
  170. 170.
    Machtinger R, Combelles CM, Missmer SA, Correia KF, Fox JH, Racowsky C. The association between severe obesity and characteristics of failed fertilized oocytes. Hum Reprod. 2012;27(11):3198–207.  https://doi.org/10.1093/humrep/des308.PubMedCrossRefGoogle Scholar
  171. 171.
    Purcell SH, Moley KH. The impact of obesity on egg quality. J Assist Reprod Genet. 2011;28(6):517–24.  https://doi.org/10.1007/s10815-011-9592-y.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Brewer CJ, Balen AH. The adverse effects of obesity on conception and implantation. Reproduction. 2010;140(3):347–64.  https://doi.org/10.1530/REP-09-0568.PubMedCrossRefGoogle Scholar
  173. 173.
    Poretsky L, Cataldo NA, Rosenwaks Z, Giudice LC. The insulin-related ovarian regulatory system in health and disease. Endocr Rev. 1999;20(4):535–82.  https://doi.org/10.1210/edrv.20.4.0374.PubMedCrossRefGoogle Scholar
  174. 174.
    Bützow TL, Lehtovirta M, Siegberg R, Hovatta O, Koistinen R, Seppäla M, et al. The decrease in luteinizing hormone secretion in response to weight reduction is inversely related to the severity of insulin resistance in overweight women. J Clin Endocrinol Metab. 2000;85(9):3271–5.  https://doi.org/10.1210/jcem.85.9.6821.PubMedCrossRefGoogle Scholar
  175. 175.
    Phy JL, Conover CA, Abbott DH, Zschunke MA, Walker DL, Session DR, et al. Insulin and messenger ribonucleic acid expression of insulin receptor isoforms in ovarian follicles from nonhirsute ovulatory women and polycystic ovary syndrome patients. J Clin Endocrinol Metab. 2004;89(7):3561–6.  https://doi.org/10.1210/jc.2003-031888.PubMedCrossRefGoogle Scholar
  176. 176.
    Robker RL, Akison LK, Bennett BD, Thrupp PN, Chura LR, Russell DL, et al. Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J Clin Endocrinol Metab. 2009;94(5):1533–40.  https://doi.org/10.1210/jc.2008-2648.PubMedCrossRefGoogle Scholar
  177. 177.
    Wang Q, Frolova AI, Purcell S, Adastra K, Schoeller E, Chi MM, et al. Mitochondrial dysfunction and apoptosis in cumulus cells of type I diabetic mice. PLoS One. 2010;5(12):e15901.  https://doi.org/10.1371/journal.pone.0015901.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Ratchford AM, Esguerra CR, Moley KH. Decreased oocyte-granulosa cell gap junction communication and connexin expression in a type 1 diabetic mouse model. Mol Endocrinol. 2008;22(12):2643–54.  https://doi.org/10.1210/me.2007-0495.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Colton SA, Humpherson PG, Leese HJ, Downs SM. Physiological changes in oocyte-cumulus cell complexes from diabetic mice that potentially influence meiotic regulation. Biol Reprod. 2003;69(3):761–70.  https://doi.org/10.1095/biolreprod.102.013649.PubMedCrossRefGoogle Scholar
  180. 180.
    Boots CE, Boudoures A, Zhang W, Drury A, Moley KH. Obesity-induced oocyte mitochondrial defects are partially prevented and rescued by supplementation with co-enzyme Q10 in a mouse model. Hum Reprod. 2016;31(9):2090–7.  https://doi.org/10.1093/humrep/dew181.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Dumesic DA, Abbott DH. Implications of polycystic ovary syndrome on oocyte development. Semin Reprod Med. 2008;26(1):53–61.  https://doi.org/10.1055/s-2007-992925.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Franks S, Mason H, Willis D. Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol. 2000;163(1–2):49–52.PubMedCrossRefGoogle Scholar
  183. 183.
    Foong SC, Abbott DH, Zschunke MA, Lesnick TG, Phy JL, Dumesic DA. Follicle luteinization in hyperandrogenic follicles of polycystic ovary syndrome patients undergoing gonadotropin therapy for in vitro fertilization. J Clin Endocrinol Metab. 2006;91(6):2327–33.  https://doi.org/10.1210/jc.2005-2142.PubMedCrossRefGoogle Scholar
  184. 184.
    Kwon H, Choi DH, Bae JH, Kim JH, Kim YS. mRNA expression pattern of insulin-like growth factor components of granulosa cells and cumulus cells in women with and without polycystic ovary syndrome according to oocyte maturity. Fertil Steril. 2010;94(6):2417–20.  https://doi.org/10.1016/j.fertnstert.2010.03.053.PubMedCrossRefGoogle Scholar
  185. 185.
    Wissing ML, Sonne SB, Westergaard D, Nguyen K, Belling K, Høst T, et al. The transcriptome of corona radiata cells from individual MІІ oocytes that after ICSI developed to embryos selected for transfer: PCOS women compared to healthy women. J Ovarian Res. 2014;7:110.  https://doi.org/10.1186/s13048-014-0110-6.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Huang X, Liu C, Hao C, Tang Q, Liu R, Lin S, et al. Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes oestradiol secretion by targeting MAP3K8. Reproduction. 2016;151(6):643–55.  https://doi.org/10.1530/REP-16-0071.PubMedCrossRefGoogle Scholar
  187. 187.
    Liu S, Zhang X, Shi C, Lin J, Chen G, Wu B, et al. Altered microRNAs expression profiling in cumulus cells from patients with polycystic ovary syndrome. J Transl Med. 2015;13:238.  https://doi.org/10.1186/s12967-015-0605-y.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Pruksananonda K, Wasinarom A, Sereepapong W, Sirayapiwat P, Rattanatanyong P, Mutirangura A. Epigenetic modification of long interspersed elements-1 in cumulus cells of mature and immature oocytes from patients with polycystic ovary syndrome. Clin Exp Reprod Med. 2016;43(2):82–9.  https://doi.org/10.5653/cerm.2016.43.2.82.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Teede H, Deeks A, Moran L. Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010;8:41.  https://doi.org/10.1186/1741-7015-8-41.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Cano F, García-Velasco JA, Millet A, Remohí J, Simón C, Pellicer A. Oocyte quality in polycystic ovaries revisited: identification of a particular subgroup of women. J Assist Reprod Genet. 1997;14(5):254–61.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Yang R, Yang S, Li R, Liu P, Qiao J, Zhang Y. Effects of hyperandrogenism on metabolic abnormalities in patients with polycystic ovary syndrome: a meta-analysis. Reprod Biol Endocrinol. 2016;14(1):67.  https://doi.org/10.1186/s12958-016-0203-8.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Polzikov M, Yakovenko S, Voznesenskaya J, Troshina M, Zatsepina O. Overexpression of ribosomal RNA in cumulus cells of patients with polycystic ovary syndrome. J Assist Reprod Genet. 2012;29(10):1141–5.  https://doi.org/10.1007/s10815-012-9827-6.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. G. Da Broi
    • 1
  • V. S. I. Giorgi
    • 1
  • F. Wang
    • 2
  • D. L. Keefe
    • 2
    • 3
  • D. Albertini
    • 4
  • P. A. Navarro
    • 1
    Email author
  1. 1.Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto School of MedicineUniversity of São PauloRibeirao PretoBrazil
  2. 2.Department of Obstetrics and Gynecology, Laboratory of Reproductive MedicineNYU School of MedicineNew YorkUSA
  3. 3.Department of Obstetrics and GynecologyNew York University, Langone Medical CenterNew YorkUSA
  4. 4.The Center for Human ReproductionNew YorkUSA

Personalised recommendations