Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 34, Issue 10, pp 1271–1276 | Cite as

Sperm parameters that play a major role in the assessment of semen quality after cryopreservation

  • A. Palomar RiosEmail author
  • I. Molina Botella
Commentary

Semen cryopreservation is the only available method to preserve the fertility in young and adult men. Semen freezing is the first line option for the group of patients in which fertility preservation is required. Conventional slow freezing of spermatozoa is commonly used for cryopreservation of both ejaculated and surgically retrieved spermatozoa for preservation of fertility before cancer treatment, in severe male factor infertility (obstructive azoospermia) and for establishment of donor banks. Cryopreservation of spermatozoa is therefore an important part of a successful assisted reproductive technology program.

Sperm cryopreservation should be considered in cases of azoospermia so repeated surgical sperm retrieval techniques are avoided; also, regarding male patients who present impaired semen parameters, sperm cryopreservation is indicated to prevent the risk of azoospermia [1]. In addition, fertility preservation is a major concern for male cancer patients who are undergoing...

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Montagut M, Gatimel N, Bourdet-Loubère S, Daudin M, Bujan L, Mieusset R, et al. Sperm freezing to address the risk of azoospermia on the day of ICSI. Hum Reprod. 2015;30:2486–92.CrossRefPubMedGoogle Scholar
  2. 2.
    Agarwal A, Allamaneni SSR. Disruption of spermatogenesis by the cancer disease process. J Natl Cancer Inst Monogr. 2005;44195:9–12.CrossRefGoogle Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin Wiley Online Library. 2015;65:5–29.CrossRefGoogle Scholar
  4. 4.
    Auger J, Sermondade N, Eustache F. Semen quality of 4480 young cancer and systemic disease patients: baseline data and clinical considerations. Basic Clin Androl. 2016;26:3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26893905/nhttp:/www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4758099 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Watson P. The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci. 2000;60-61:481–92. Available from: http://www.animalreproductionscience.com/article/S0378432000000993/fulltext PubMedGoogle Scholar
  6. 6.
    Di Santo M, Tarozzi N, Nadalini M, Borini A. Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol. 2012;2012.Google Scholar
  7. 7.
    Kao S-H, Chao H-T, Chen H-W, Hwang TIS, Liao T-L, Wei Y-H. Increase of oxidative stress in human sperm with lower motility. Fertil Steril. 2008;89:1183–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Kopeika J, Thornhill A, Khalaf Y. The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Hum Reprod Update. 2015;21:209–27.CrossRefPubMedGoogle Scholar
  9. 9.
    Sieme H, Oldenhof H, Wolkers WF. Mode of action of cryoprotectants for sperm preservation. Anim Reprod Sci. 2016;169:2–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378432016300343 CrossRefPubMedGoogle Scholar
  10. 10.
    Nallella KP, Sharma RK, Allamaneni SSR, Aziz N, Agarwal A. Cryopreservation of human spermatozoa: comparison of two cryopreservation methods and three cryoprotectants. Fertil Steril. 2004;82:913–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Tiwari A, Tekcan M, Sati L, Murk W, Stronk J, Huszar G. A new media without animal component for sperm cryopreservation: motility and various attributes affecting paternal contribution of sperm. J Assist Reprod Genet. 2017;34:647–57. Available from:  http://dx.doi.org/10.1007/s10815-017-0888-4 CrossRefPubMedGoogle Scholar
  12. 12.
    Thomson LK, Fleming SD, Aitken RJ, De Iuliis GN, Zieschang JA, Clark AM. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod. 2009;24:2061–70.CrossRefPubMedGoogle Scholar
  13. 13.
    Ribas-Maynou J, Fernández-Encinas A, García-Peiró A, Prada E, Abad C, Amengual MJ, et al. Human semen cryopreservation: a sperm DNA fragmentation study with alkaline and neutral comet assay. Andrology. 2014;2:83–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Ergur AR, Dokras A, Giraldo JL, Habana A, Kovanci E, Huszar G. Sperm maturity and treatment choice of in vitro fertilization (IVF) or intracytoplasmic sperm injection: diminished sperm HspA2 chaperone levels predict IVF failure. Fertil Steril. 2002;77:910–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Ranganathan S, Ganguly AK, Datta K. Evidence for presence of hyaluronan binding protein on spermatozoa and its possible involvement in sperm function. Mol Reprod Dev. 1994;38:69–76. Available from: http://onlinelibrary.wiley.com/doi/10.1002/mrd.1080380112/abstract CrossRefPubMedGoogle Scholar
  16. 16.
    Nijs M, Creemers E, Cox A, Janssen M, Vanheusden E, Castro-Sanchez Y, et al. Influence of freeze-thawing on hyaluronic acid binding of human spermatozoa. Reprod Biomed Online Elsevier. 2009;19:202–6.CrossRefGoogle Scholar
  17. 17.
    Ye H, Huang GN, Gao Y, Liu DY. Relationship between human sperm-hyaluronan binding assay and fertilization rate in conventional in vitro fertilization. Hum Reprod. 2006;21:1545–50.CrossRefPubMedGoogle Scholar
  18. 18.
    Said TM, Gaglani A, Agarwal A. Implication of apoptosis in sperm cryoinjury. Reprod BioMed Online. 2010;21:456–62. Available from:  http://dx.doi.org/10.1016/j.rbmo.2010.05.011 CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu WJ, Liu XG. Cryodamage to plasma membrane integrity in head and tail regions of human sperm. Asian J Androl China. 2000;2:135–8.Google Scholar
  20. 20.
    Hammadeh ME, Dehn C, Hippach M, Zeginiadou T, Stieber M, Georg T, et al. Comparison between computerized slow-stage and static liquid nitrogen vapour freezing methods with respect to the deleterious effect on chromatin and morphology of spermatozoa from fertile and subfertile men. Int J Androl. 2001;24:66–72. Available from: http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2605.2001.00270.x/full CrossRefPubMedGoogle Scholar
  21. 21.
    Hossain A, Osuamkpe C, Hossain S, Phelps JY. Spontaneously developed tail swellings (SDTS) influence the accuracy of the hypo-osmotic swelling test (HOS-test) in determining membrane integrity and viability of human spermatozoa. J Assist Reprod Genet. 2010;27:83–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Lin MH, Morshedi M, Srisombut C, Nassar A, Oehninger S. Plasma membrane integrity of cryopreserved human sperm: an investigation of the results of the hypoosmotic swelling test, the water test, and eosin-Y staining. Fertil Steril. 1998;70:1148–55.CrossRefPubMedGoogle Scholar
  23. 23.
    Hotaling J, Patel D, Vendryes C. Predictors of sperm recovery after cryopreservation in testicular cancer. Asian J. 2016;18:35–8. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736354/ Google Scholar
  24. 24.
    Hamilton JA, Cissen M, Brandes M, Smeenk JM, De Bruin JP, Kremer JA, et al. Total motile sperm count: a better indicator for the severity of male factor infertility than the WHO sperm classification system. Hum Reprod. 2014;30:1110–21.CrossRefGoogle Scholar
  25. 25.
    Borges E, Setti AS, Braga DPAF, Figueira RCS, Iaconelli A. Total motile sperm count has a superior predictive value over the WHO 2010 cut-off values for the outcomes of intracytoplasmic sperm injection cycles. Andrology. 2016;4:880–6.Google Scholar
  26. 26.
    Martínez-Soto JC, Landeras J, Gadea J. Spermatozoa and seminal plasma fatty acids as predictors of cryopreservation success. Andrology. 2013;1:365–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23596043 CrossRefPubMedGoogle Scholar
  27. 27.
    Patel M, Gandotra VK, Cheema RS, Bansal AK, Kumar A. Seminal plasma heparin binding proteins improve semen quality by reducing oxidative stress during cryopreservation of cattle bull semen. Asian-Australasian J Anim Sci. 2016;29:1247–55.CrossRefGoogle Scholar
  28. 28.
    Barrios B, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JA. Seminal plasma proteins revert the cold-shock damage on ram sperm membrane. Int J Androl. 2001;24:352–9.CrossRefGoogle Scholar
  29. 29.
    Donnelly ET, McClure N, Lewis SEM. Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril. 2001;76:892–900.CrossRefPubMedGoogle Scholar
  30. 30.
    Petyim S, Neungton C, Thanaboonyawat I, Laokirkkiat P, Choavaratana R. Sperm preparation before freezing improves sperm motility and reduces apoptosis in post-freezing-thawing sperm compared with post-thawing sperm preparation. J Assist Reprod Genet. 2014;31:1673–80.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Esteves SC, Sharma RK, Thomas AJ, Agarwal A. Improvement in motion characteristics and acrosome status in cryopreserved human spermatozoa by swim-up processing before freezing. Hum Reprod. 2000;15:2173–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11006194 CrossRefPubMedGoogle Scholar
  32. 32.
    Brugnon F, Ouchchane L, Pons-Rejraji H, Artonne C, Farigoule M, Janny L. Density gradient centrifugation prior to cryopreservation and hypotaurine supplementation improve post-thaw quality of sperm from infertile men with oligoasthenoteratozoospermia. Hum Reprod. 2013;28:2045–57.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Hospital Universitari i Politècnic La Fe, Assisted Reproduction UnitValenciaSpain

Personalised recommendations