Journal of Assisted Reproduction and Genetics

, Volume 34, Issue 8, pp 983–990 | Cite as

Selecting embryos with the highest implantation potential using data mining and decision tree based on classical embryo morphology and morphokinetics

  • Beatriz Carrasco
  • Gemma Arroyo
  • Yolanda Gil
  • Mª José Gómez
  • Ignacio Rodríguez
  • Pedro N. Barri
  • Anna Veiga
  • Montserrat Boada
Embryo Biology



The objective of this work was to determine which embryonic morphokinetic parameters up to D3 of in vitro development have predictive value for implantation for the selection of embryos for transfer in clinical practice based upon information generated from embryo transfers with known implantation data (KID).


A total of 800 KID embryos (100% implantation rate (IR) per transfer and 0% IR per transfer) cultured in an incubator with Time-Lapse system were retrospectively analysed. Of them, 140 embryos implanted, whereas 660 did not.


The analysis of morphokinetic parameters, together with the embryo morphology assessment on D3, enabled us to develop a hierarchical model that places the classical morphological score, the t4 and t8 morphokinetic values, as the variables with the best prognosis of implantation.


In our decision tree, the classical morphological score is the most predictive parameter. Among embryos with better morphological scores, morphokinetics permits deselection of embryos with the lowest implantation potential.


Time-lapse image acquisition Dynamic embryo evaluation Embryo kinetics Embryo selection 


  1. 1.
    Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26(6):1270–83.CrossRefGoogle Scholar
  2. 2.
    ASEBIR. Cuaderno de embriología Clínica. Criterios ASEBIR de valoración Morfológica de Oocitos, Embriones Tempranos y Blastocistos Humanos. 2015. 3ª ed.Google Scholar
  3. 3.
    Capmany G, Taylor A, Braude PR, Bolton VN. The timing of pronuclear formation, DNA synthesis and cleavage in the human 1-cell embryo. Mol Hum Reprod. 1996;2(5):299–306.CrossRefPubMedGoogle Scholar
  4. 4.
    Gonzales DS, Jones JM, Pinyopummintr T, Carnevale EM, Ginther OJ, Shapiro SS, et al. Trophectoderm projections: a potential means for locomotion, attachment and implantation of bovine, equine and human blastocysts. Hum Reprod. 1996;11(12):2739–45.CrossRefPubMedGoogle Scholar
  5. 5.
    Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28(10):1115–21.CrossRefPubMedGoogle Scholar
  6. 6.
    Kirkegaard K, Kesmodel US, Hindkjær JJ, Ingerslev HJ. Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a prospective cohort study. Hum Reprod. 2013;28(10):2643–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, et al. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril. 2013;100(2):412–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Cruz M, Garrido N, Herrero J, Pérez-Cano I, Muñoz M, Meseguer M. Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod BioMed Online. 2012;25(4):371–81.CrossRefPubMedGoogle Scholar
  9. 9.
    Hashimoto S, Kato N, Saeki K, Morimoto Y. Selection of high-potential embryos by culture in poly (dimethylsiloxane) microwells and time-lapse imaging. Fertil Steril. 2012;97(2):332–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Dal Canto M, Coticchio G, Mignini Renzini M, De Ponti E, Novara PV, Brambillasca F, et al. Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation. Reprod BioMed Online. 2012;25(5):474–80.CrossRefPubMedGoogle Scholar
  11. 11.
    Campbell A, Fishel S, Bowman N, Duffy S, Sedler M. Hickman, C.F.M odelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod BioMed Online. 2013;26(5):477–85.CrossRefPubMedGoogle Scholar
  12. 12.
    Basile N, Nogales, Mdel C, Bronet F, Florensa M, Riqueiros M, et al. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril. 2014;101(3):699–704.CrossRefPubMedGoogle Scholar
  13. 13.
    Rienzi L, Capalbo A, Stoppa M, Romano S, Maggiulli R, Albricci L, et al. No evidence of association between blastocyst aneuploidy and morphokinetic assessment in a selected population of poor-prognosis patients: a longitudinal cohort study. Reprod BioMed Online. 2015;30(1):57–66.CrossRefPubMedGoogle Scholar
  14. 14.
    Aguilar J, Motato Y, Escribá MJ, Ojeda M, Muñoz E, Meseguer M. The human first cell cycle: impact on implantation. Reprod BioMed Online. 2014;28(4):475–84.CrossRefPubMedGoogle Scholar
  15. 15.
    Azzarello A, Hoest T, Mikkelsen AL. The impact of pronuclei morphology and dynamicity on live birth outcome after time-lapse culture. Hum Reprod. 2012;27(9):2649–57.CrossRefPubMedGoogle Scholar
  16. 16.
    Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod BioMed Online. 2008;17(3):385–91.CrossRefPubMedGoogle Scholar
  17. 17.
    Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohí J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26(10):2658–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Rubio I, Galán A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–94.CrossRefPubMedGoogle Scholar
  19. 19.
    Basile N, Vime P, Florensa M, Aparicio Ruiz B, García Velasco JA, Remohí J, et al. The use of morphokinetics as a predictor of implantation: a multicentric study to define and validate an algorithm for embryo selection. Hum Reprod. 2015;30(2):276–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Kaser DJ, Racowsky C. Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update. 2014;20(5):617–31.CrossRefPubMedGoogle Scholar
  21. 21.
    Armstrong S, Arroll N, Cree LM, Jordan V, Farquhar C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst Rev. 2015;27(2):CD011320. doi: 10.1002/14651858.CD011320.pub2.Google Scholar
  22. 22.
    Kirkegaard K, Ahlström A, Ingerslev HJ, Hardarson T. Choosing the best embryo by time lapse versus standard morphology. Fertil Steril. 2015;103(2):323–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Muñoz M, Cruz M, Humaidan P, Garrido N, Pérez-Cano I, Meseguer M. The type of GnRH analogue used during controlled ovarian stimulation influences early embryo developmental kinetics: a time-lapse study. Eur J Obstet Gynecol Reprod Biol. 2013;168(2):167–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Cruz M, Garrido N, Gadea B, Muñoz M, Pérez-Cano I, Meseguer M. Oocyte insemination techniques are related to alterations of embryo developmental timing in an oocyte donation model. Reprod BioMed Online. 2013;27(4):367–75.CrossRefPubMedGoogle Scholar
  25. 25.
    Bodri D, Sugimoto T, Serna JY, Kondo M, Kato R, Kawachiya S, et al. Influence of different oocyte insemination techniques on early and late morphokinetic parameters: retrospective analysis of 500 time-lapse monitored blastocysts. Fertil Steril. 2015;104(5):175–81.CrossRefGoogle Scholar
  26. 26.
    Ciray HN, Aksoy T, Goktas C, Ozturk B, Bahceci M. Time-lapse evaluation of human embryo development in single versus sequential culture media- a sibling oocyte study. J Assist Reprod Genet. 2012;29(9):891–900.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil Steril. 2013;99(3):738–44.CrossRefPubMedGoogle Scholar
  28. 28.
    Boada M. Is there time for time-lapse in the art laboratory? Abstract book of the 30th ESHRE annual meeting, Munich, Germany. Hum Reprod. 2014;29(Suppl 1):i1–i389.CrossRefGoogle Scholar
  29. 29.
    Rubio I, Kuhlmann R, Agerholm I, Kirk J, Herrero J, Escribá MJ, et al. Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril. 2012;98(6):1458–63.CrossRefPubMedGoogle Scholar
  30. 30.
    Therneau, T., Atkinson, B., Ripley, B. Rpart: recursive partitioning and regression trees. R package version 4.1–10. 2015.Google Scholar
  31. 31.
    Chamayou S, Patrizio P, Storaci G, Tomaselli V, Alecci C, Ragolia C, et al. The use of morphokinetic parameters to select all embryos with full capacity to implant. J Assist Reprod Genet. 2013;30(5):703–10.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Human embryonic development after blastomere removal: a time-lapse analysis. Hum Reprod. 2012;27(1):97–105.CrossRefPubMedGoogle Scholar
  33. 33.
    Basile N, Morbeck D, García-Velasco J, Bronet F, Meseguer M. Type of culture media does not affect embryo kinetics: a time-lapse analysis of sibling oocytes. Hum Reprod. 2013;28(3):634–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Pool, T.B., Schoolfield, J., Han, D. Embryo Culture. 2012; Volumen 912 of the series Methods in Molecular Biology. Pp 367–386.Google Scholar
  35. 35.
    Alikani M, Calderon G, Tomkin G, Garrisi J, Kokot M, Cohen J. Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum Reprod. 2000;15(12):2634–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Yakin K, Balaban B, Urman B. Impact of the presence of one or more multinucleated blastomeres on the developmental potential of the embryo to the blastocyst stage. Fertil Steril. 2005;83(1):243–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Hardarson T, Hanson C, Sjögren A, Lundin K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Reprod. 2001;16(2):313–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Munné S. Chromosome abnormalities and their relationship to morphology and development of human embryos. Reprod BioMed Online. 2006;12(2):234–53.CrossRefPubMedGoogle Scholar
  39. 39.
    Agerholm IE, Hnida C, Crüger DG, Berg C, Bruun-Petersen G, Kølvraa S, et al. Nuclei size in relation to nuclear status and aneuploidy rate for 13 chromosomes in donated four cells embryos. J Assist Reprod Genet. 2008;25(2–3):95–102.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Scott L, Finn A, O'Leary T, McLellan S, Hill J. Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum Reprod. 2007;22(1):230–40.CrossRefPubMedGoogle Scholar
  41. 41.
    Fauque P, Audureau E, Leandri R, Delaroche L, Assouline S, Epelboin S, et al. Is the nuclear status of an embryo an independent factor to predict its ability to develop to term? Fertil Steril. 2013;99(5):1299–1304.e3.CrossRefPubMedGoogle Scholar
  42. 42.
    Kirkegaard K, Agerholm IE, Ingerslev HJ. Time-lapse monitoring as a tool for clinical embryo assessment. Hum Reprod. 2012;27(5):1277–85.CrossRefPubMedGoogle Scholar
  43. 43.
    Petersen BM, Boel M, Montag M, Gardner DK. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on day 3. Hum Reprod. 2016;31(10):2231–44.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Beatriz Carrasco
    • 1
  • Gemma Arroyo
    • 1
  • Yolanda Gil
    • 1
  • Mª José Gómez
    • 1
  • Ignacio Rodríguez
    • 1
  • Pedro N. Barri
    • 1
  • Anna Veiga
    • 1
    • 2
  • Montserrat Boada
    • 1
  1. 1.Department of Obstetrics, Gynaecology and ReproductionInstituto Universitario DexeusBarcelonaSpain
  2. 2.Banc de Línies Cel.lularsCentre de Medicina Regenerativa de Barcelona CMR[B]BarcelonaSpain

Personalised recommendations