Journal of Assisted Reproduction and Genetics

, Volume 34, Issue 3, pp 309–314 | Cite as

Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system?

  • Scott J. MorinEmail author
Fellows Forum


There has been much debate regarding the optimal oxygen tension in clinical embryo culture. The majority of the literature to date has compared 5% oxygen to atmospheric levels (20–21%). While the majority of modern IVF labs have accepted the superiority of 5% oxygen tension, a new debate has emerged regarding whether a further reduction after day 3 of development represents the most physiologic system. This new avenue of research is based on the premise that oxygen tension is in fact lower in the uterus than in the oviduct and that the embryo crosses the uterotubal junction sometime on day 3. While data are currently limited, recent experience with ultra-low oxygen (2%) after day 3 of development suggests that the optimal oxygen tension in embryo culture may depend on the stage of development. This review article will consider the current state of the literature and discuss ongoing efforts at studying ultra-low oxygen tension in extended culture.


Embryo culture In vitro fertilization Oxygen tension Extended culture Blastocyst transfer 


  1. 1.
    Steptoe PC, Edwards RG, Purdy JM. Human blastocysts grown in culture. Nature. 1971;29(5280):132–3.CrossRefGoogle Scholar
  2. 2.
    Bishop DW. Metabolic conditions within the oviduct of the rabbit. Int J Fertil Steril. 1957;2:11–22.Google Scholar
  3. 3.
    Mastroianni Jr L, Jones R. Oxygen tension within the rabbit fallopian tube. J Reprod Fertil. 1965;9:99–102.CrossRefPubMedGoogle Scholar
  4. 4.
    Whitten WK. The effect of oxygen on cleavage of mouse eggs. In: Abstracts of 2nd Annual Meeting, Society for the Study of Reproduction, Davis, California; 1969. p. 29.Google Scholar
  5. 5.
    Bontekoe S, Mantikou E, van Wely M, Seshadri S, Repping S, Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst Rev. 2012;(7):Art. No.:CD008950.Google Scholar
  6. 6.
    Barbieri M, Orlando G, Sciajino R, Serrao L, Fava L, Preti S. High or low oxygen tension—comparison of embryo culture in different incubators. Hum Reprod. 2012;27(Suppl 2). ii62–205. Abstract no. P-174.Google Scholar
  7. 7.
    De los Santos MJ, Gamiz P, Albert C, Galan A, Viloria T, Perers S, et al. Reduced oxygen tension improves embryo quality but not clinical pregnancy rates: a randomized clinical study into ovum donation cycles. Fertil Steril. 2013;100:402–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Nasri CO, Nobrega BN, Teixeira DM, Amorim J, Diniz LM, Barbosa MW, et al. Low versus atmospheric oxygen tension for embryo culture in assisted reproduction: a systematic review and meta-analysis. Fertil Steril. 2016;106(1):95–104.CrossRefGoogle Scholar
  9. 9.
    Kissin DM, Kulkarni AD, Mneimneh A, Warner L, Boulet SL, Crawford S, et al. Embryo transfer practices and multiple births resulting from assisted reproductive technology: an opportunity for prevention. Fertil Steril. 2015;103(4):954–61.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99(2):673–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Croxatto HB. Physiology of gamete and embryo transport through the fallopian tube. Reprod BioMed Online. 2002;4(2):160–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Kaser DJ, Bogale B, Sarda V, Farland LV, Racowsky C. Randomized controlled trial of low (5%) vs. ultra-low (2%) oxygen tension for in vitro development of human embryos. Fertil Steril. 2016;106(3):e4.CrossRefGoogle Scholar
  13. 13.
    Feil D, Lane M, Roberts CT, Kelley RL, Edwards LJ, Thompson JG, et al. Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development. J Physiol. 2006;572:87–96.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maas DH, Storey BT, Mastroianni Jr L. Oxygen tension in the oviduct of the rhesus monkey (Macaca mulatta). Fertil Steril. 1976;27:1312–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Harvey AJ. The role of oxygen in ruminant preimplantation embryo development and metabolism. Anim Reprod Sci. 2007;98(1–2):113–28.CrossRefPubMedGoogle Scholar
  16. 16.
    Khurana NK, Wales RG. Effects of oxygen concentration on the metabolism of [U-14C]glucose by mouse morulae and early blastocysts in vitro. Reprod Fertil Dev. 1989;1:99–106.CrossRefPubMedGoogle Scholar
  17. 17.
    Gardner DK, Lane M. Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod. 1996;11:2703–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Van Soom A, Yuan YQ, Peelman LJ, de Matos DG, Dewulf J, Laevens H, et al. Prevalence of apoptosis in inner cell allocation in bovine embryos cultured under different oxygen tensions with or without cysteine addition. Theriogenology. 2002;57:1453–65.CrossRefPubMedGoogle Scholar
  19. 19.
    Catt JW, Henman M. Toxic effects of oxygen on human embryo development. Hum Reprod. 2000;15 Suppl 2:199–206.CrossRefPubMedGoogle Scholar
  20. 20.
    Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 2004;62:1186–97.CrossRefPubMedGoogle Scholar
  21. 21.
    Rinaudo PF, Giritharan G, Talbi S, Dobson A, Schultz RM. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril. 2006;86 Suppl 4:1252–65.PubMedGoogle Scholar
  22. 22.
    Li W, Goossens K, Van Poucke M, Foreir K, Braeckmans K, Van Soom A, et al. High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reprod Fertil Dev. 2014;28(7):948–59.CrossRefGoogle Scholar
  23. 23.
    Katz-Jaffe MG, Linck DW, Schoolcraft WB, Gardner DK. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction. 2005;130:899–905.CrossRefPubMedGoogle Scholar
  24. 24.
    Christianson MS, Zhao Y, Shoham G, Granot I, Safran A, Khafagy A, et al. Embryo catheter loading and embryo culture techniques: results of a worldwide Web-based survey. J Assist Reprod Genet. 2014;31:1029–36.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kasterstein E, Strassburger D, Komarovsky D, Bern O, Komsky A, Raziel A, et al. The effect of two distinct levels of oxygen concentration on embryo development in a sibling oocyte study. J Assist Reprod Genet. 2013;30(8):1073–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gomes Sobrinho DB, Oliveira JB, Petersen CG, Mauri AL, Silva LF, Massaro FC, et al. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis. Reprod Biol Endocrinol. 2011;9:143.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kea B, Gebhardt J, Watt J, Westphal LM, Lathi RB, Milki AA, et al. Effect of reduced oxygen concentrations on the outcome of in vitro fertilization. Fertil Steril. 2007;87(1):213–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Peng ZF, Shi SL, Jin HX, Yao GD, Wang EY, Yang HY, et al. Impact of oxygen concentrations on fertilization, cleavage, implantation and pregnancy rates of in vitro generated human embryos. Int J Clin Exp Med. 2015;8:6179–85.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Croxatto HB, Ortiz ME, Diaz S, Hess R, Balmaceda J, Croxatto HD. Studies on the duration of egg transport by the human oviduct. II. Ovum location at various intervals following luteinizing hormone peak. Am J Obstet Gynecol. 1978;132:629–34.CrossRefPubMedGoogle Scholar
  30. 30.
    Diaz S, Ortiz ME, Croxatto HB. Studies on the duration of ovum transport by the human oviduct. III. Time interval between the luteinizing hormone peak and recovery of ova by transcervical flushing of the uterus in normal women. Am J Obstet Gynecol. 1980;137(1):116–21.CrossRefPubMedGoogle Scholar
  31. 31.
    Chason RJ, Csokmay J, Segars JH, DeCherney AH, Armant DR. Environmental and epigenetic effects upon preimplantation embryo metabolism and development. Trends Endocrinol Metab. 2011;22(10):412–20.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Leese HJ. Metabolic control during preimplantation mammalian development. Hum Reprod Update. 1995;1(1):63–72.CrossRefPubMedGoogle Scholar
  33. 33.
    Guerin P, el Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7(2):175–89.CrossRefPubMedGoogle Scholar
  34. 34.
    Thompson JG, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89(2):573–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Yang Y, Yanwen X, Ding C, Khoudja RY, Lin M, Awonuga AO, et al. Comparison of 2, 5, and 20% O2 on the development of post-thaw human embryos. J Assist Reprod Genet. 2016;33(7):919–27.CrossRefPubMedGoogle Scholar
  36. 36.
    Karagenc L, Sertkaya Z, Ciray N, Ulug U, Bahceci M. Impact of oxygen concentration on embryonic development of mouse zygotes. Reprod BioMed Online. 2004;9(4):409–17.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Reproductive Medicine Associates of New JerseyBasking RidgeUSA
  2. 2.Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations