Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 34, Issue 1, pp 117–124 | Cite as

Copy number variation analysis reveals additional variants contributing to endometriosis development

  • Fernanda MafraEmail author
  • Diego Mazzotti
  • Renata Pellegrino
  • Bianca Bianco
  • Caio Parente Barbosa
  • Hakon Hakonarson
  • Denise Christofolini
Genetics

Abstract

Purpose

Endometriosis is a gynecological disease influenced by multiple genetic and environmental factors. The aim of the current study was to use SNP-array technology to identify genomic aberrations that may possibly contribute to the development of endometriosis.

Methods

We performed an SNP-array genotyping of pooled DNA samples from both patients (n = 100) and controls (n = 50). Copy number variation (CNV) calling and association analyses were performed using PennCNV software. MLPA and TaqMan Copy-Number assays were used for validation of CNVs discovered.

Results

We detected 49 CNV loci that were present in patients with endometriosis and absent in the control group. After validation procedures, we confirmed six CNV loci in the subtelomeric regions, including 1p36.33, 16p13.3, 19p13.3, and 20p13, representing gains, while 17q25.3 and 20q13.33 showed losses. Among the intrachromosomal regions, our results revealed duplication at 19q13.1 within the FCGBP gene (p = 0.007).

Conclusions

We identified CNVs previously associated with endometriosis, together with six suggestive novel loci possibly involved in this disease. The intergenic locus on chromosome 19q13.1 shows strong association with endometriosis and is under further functional investigation.

Keywords

Endometriosis Infertility Copy number variation DNA pooling SNP array 

Notes

Compliance with ethical standards

Clinical data and peripheral blood samples were collected following signed informed consent, as approved by the local Research Ethics Committee (CEP FMABC n. 310.094).

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The work was supported by a grant from Fundação de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) no. 2011/01363-7. F.M. was supported by FAPESP with two different scholarships, a PhD scholarship no. 2012/22394-8 and a scholarship for internship abroad No. 2014/07136-8, which were realized in collaboration with the Center for Applied Genomics at The Children’s Hospital of Philadelphia.

References

  1. 1.
    Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–79.CrossRefPubMedGoogle Scholar
  2. 2.
    Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–99.CrossRefPubMedGoogle Scholar
  3. 3.
    Sasson IE, Taylor HS. Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci. 2008;1127:106–15.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    de Oliveira R et al. Causes of endometriosis and prevalent infertility in patients undergoing laparoscopy without achieving pregnancy. 2015. Minerva Ginecol.Google Scholar
  5. 5.
    Bischoff F, Simpson JL. Genetic basis of endometriosis. Ann N Y Acad Sci. 2004;1034:284–99.CrossRefPubMedGoogle Scholar
  6. 6.
    Stefansson H et al. Genetic factors contribute to the risk of developing endometriosis. Hum Reprod. 2002;17(3):555–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Bouquet De Joliniere J et al. Endometriosis: a new cellular and molecular genetic approach for understanding the pathogenesis and evolutivity. Front Surg. 2014;1:16.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Kobayashi H et al. Understanding the role of epigenomic, genomic and genetic alterations in the development of endometriosis (review). Mol Med Rep. 2014;9(5):1483–505.PubMedGoogle Scholar
  9. 9.
    Spielman RS, Ewens WJ. The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet. 1996;59(5):983–9.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Montgomery GW et al. The search for genes contributing to endometriosis risk. Hum Reprod Update. 2008;14(5):447–57.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang F et al. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451–81.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Treloar SA et al. Genomewide linkage study in 1,176 affected sister pair families identifies a significant susceptibility locus for endometriosis on chromosome 10q26. Am J Hum Genet. 2005;77(3):365–76.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yang W et al. High-resolution array-comparative genomic hybridization profiling reveals 20q13.33 alterations associated with ovarian endometriosis. Gynecol Endocrinol. 2013;29(6):603–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Chettier R, Ward K, Albertsen HM. Endometriosis is associated with rare copy number variants. PLoS One. 2014;9(8), e103968.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Welter D et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D1001–6.CrossRefPubMedGoogle Scholar
  16. 16.
    ASRM. Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil Steril. 1997;67(5):817–21.CrossRefGoogle Scholar
  17. 17.
    Lahiri DK, Nurnberger Jr JI. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991;19(19):5444.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Docherty SJ et al. Applicability of DNA pools on 500 K SNP microarrays for cost-effective initial screens in genomewide association studies. BMC Genomics. 2007;8:214.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Macgregor S et al. Highly cost-efficient genome-wide association studies using DNA pools and dense SNP arrays. Nucleic Acids Res. 2008;36(6), e35.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ho DW, Yap MK, Yip SP. UPDG: utilities package for data analysis of pooled DNA GWAS. BMC Genet. 2012;13:1.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Purcell S et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang K et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17(11):1665–74.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Glessner JT, Li J, Hakonarson H. ParseCNV integrative copy number variation association software with quality tracking. Nucleic Acids Res. 2013;41(5), e64.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    MacDonald JR et al. The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 2014;42(Database issue):D986–92.CrossRefPubMedGoogle Scholar
  26. 26.
    Kent WJ et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Abraham R et al. A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med Genomics. 2008;1:44.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J Clin Invest. 2008;118(5):1590–605.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Meaburn E et al. Genotyping DNA pools on microarrays: tackling the QTL problem of large samples and large numbers of SNPs. BMC Genomics. 2005;6:52.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lin CH et al. Genome-wide copy number analysis using copy number inferring tool (CNIT) and DNA pooling. Hum Mutat. 2008;29(8):1055–62.CrossRefPubMedGoogle Scholar
  31. 31.
    Bosse Y et al. Identification of susceptibility genes for complex diseases using pooling-based genome-wide association scans. Hum Genet. 2009;125(3):305–18.CrossRefPubMedGoogle Scholar
  32. 32.
    Kim SY, Kim JH, Chung YJ. Effect of combining multiple CNV defining algorithms on the reliability of CNV calls from SNP genotyping data. Genomics Inform. 2012;10(3):194–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ota VK et al. Candidate genes for schizophrenia in a mixed Brazilian population using pooled DNA. Psychiatry Res. 2013;208(2):201–2.CrossRefPubMedGoogle Scholar
  34. 34.
    Albertsen HM et al. Genome-wide association study link novel loci to endometriosis. PLoS One. 2013;8(3), e58257.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nyholt DR et al. Genome-wide association meta-analysis identifies new endometriosis risk loci. Nat Genet. 2012;44(12):1355–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Uno S et al. A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nat Genet. 2010;42(8):707–10.CrossRefPubMedGoogle Scholar
  37. 37.
    Boyer A et al. WNT4 is required for normal ovarian follicle development and female fertility. FASEB J. 2010;24(8):3010–25.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Vainio S et al. Female development in mammals is regulated by Wnt-4 signalling. Nature. 1999;397(6718):405–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303(5663):1483–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Veiga-Castelli LC et al. Genomic alterations detected by comparative genomic hybridization in ovarian endometriomas. Braz J Med Biol Res. 2010;43(8):799–805.CrossRefPubMedGoogle Scholar
  41. 41.
    Meola J et al. Differentially expressed genes in eutopic and ectopic endometrium of women with endometriosis. Fertil Steril. 2010;93(6):1750–73.CrossRefPubMedGoogle Scholar
  42. 42.
    Torok I et al. Down-regulation of RpS21, a putative translation initiation factor interacting with P40, produces viable minute imagos and larval lethality with overgrown hematopoietic organs and imaginal discs. Mol Cell Biol. 1999;19(3):2308–21.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Thienpont B et al. Duplications of the critical Rubinstein-Taybi deletion region on chromosome 16p13.3 cause a novel recognisable syndrome. J Med Genet. 2010;47(3):155–61.CrossRefPubMedGoogle Scholar
  44. 44.
    Weiss LA et al. A genome-wide linkage and association scan reveals novel loci for autism. Nature. 2009;461(7265):802–8.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Xiong L et al. NT5E and FcGBP as key regulators of TGF-1-induced epithelial-mesenchymal transition (EMT) are associated with tumor progression and survival of patients with gallbladder cancer. Cell Tissue Res. 2014;355(2):365–74.CrossRefPubMedGoogle Scholar
  46. 46.
    Gazi MH et al. Downregulation of IgG Fc binding protein (Fc gammaBP) in prostate cancer. Cancer Biol Ther. 2008;7(1):70–5.CrossRefPubMedGoogle Scholar
  47. 47.
    O’Donovan N et al. Differential expression of IgG Fc binding protein (FcgammaBP) in human normal thyroid tissue, thyroid adenomas and thyroid carcinomas. J Endocrinol. 2002;174(3):517–24.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhou C et al. Screening of genes related to lung cancer caused by smoking with RNA-Seq. Eur Rev Med Pharmacol Sci. 2014;18(1):117–25.PubMedGoogle Scholar
  49. 49.
    Zhu H et al. Screening for differentially expressed genes between left- and right-sided colon carcinoma by microarray analysis. Oncol Lett. 2013;6(2):353–8.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Choi CH et al. Identification of differentially expressed genes according to chemosensitivity in advanced ovarian serous adenocarcinomas: expression of GRIA2 predicts better survival. Br J Cancer. 2012;107(1):91–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kobayashi K et al. Detection of Fcgamma binding protein antigen in human sera and its relation with autoimmune diseases. Immunol Lett. 2001;79(3):229–35.CrossRefPubMedGoogle Scholar
  52. 52.
    Cordeiro Q et al. A review of psychiatric genetics research in the Brazilian population. Rev Bras Psiquiatr. 2009;31(2):154–62.CrossRefPubMedGoogle Scholar
  53. 53.
    Giolo SR et al. Brazilian urban population genetic structure reveals a high degree of admixture. Eur J Hum Genet. 2012;20(1):111–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Yamaguchi-Kabata Y et al. Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies. Am J Hum Genet. 2008;83(4):445–56.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fernanda Mafra
    • 1
    • 2
    Email author
  • Diego Mazzotti
    • 2
  • Renata Pellegrino
    • 2
  • Bianca Bianco
    • 1
  • Caio Parente Barbosa
    • 1
  • Hakon Hakonarson
    • 2
  • Denise Christofolini
    • 1
  1. 1.Collective Health Department, Division of Sexual and Reproductive Health Care and Population GeneticsFaculdade de Medicina do ABCSanto AndréBrazil
  2. 2.Center for Applied GenomicsThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations