Journal of Assisted Reproduction and Genetics

, Volume 33, Issue 9, pp 1135–1147 | Cite as

The impact of FMR1 gene mutations on human reproduction and development: a systematic review

  • Vincenzo Noto
  • Conor Harrity
  • David Walsh
  • Kevin MarronEmail author



This is a comprehensive review of the literature in this field attempting to put the FMR1 gene and its evaluation into context, both in general and for the reproductive health audience.


Online database search of publications with systematic review of all papers relevant to ovarian reserve and assisted reproduction was done.


Relevant papers were identified and assessed, and an attempt was made to understand, rationalize and explain the divergent views in this field of study. Seminal and original illustrations were employed.


FMR1 is a highly conserved gene whose interpretation and effect on outcomes remains controversial in the reproductive health setting. Recent re-evaluations of the commonly accepted normal range have yielded interesting tools for possibly explaining unexpected outcomes in assisted reproduction. Fragile X investigations should perhaps become more routinely assessed in the reproductive health setting, particularly following a failed treatment cycle where oocyte quality is thought to be a contributing factor, or in the presence of a surprise finding of diminished ovarian reserve in a young patient.


Reproduction Genetics FMR1 Fragile X Assisted reproductive technology Testing 


  1. 1.
    Allen EG, Sullivan AK, Marcus M, Small C, Dominguez C, Epstein MP, et al. Examination of reproductive aging milestones among women who carry the FMR1 premutation. Hum Reprod [Internet]. 2007;22:2142–52.CrossRefGoogle Scholar
  2. 2.
    Anggono V, Huganir RL. Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol [Internet]. 2012;22:461–9. Elsevier Ltd.CrossRefGoogle Scholar
  3. 3.
    Avitzour M, Mor-Shaked H, Yanovsky-Dagan S, Aharoni S, Altarescu G, Renbaum P, et al. FMR1 epigenetic silencing commonly occurs in undifferentiated fragile X-affected embryonic stem cells. Stem cell reports [Internet]. 2014;3:699–706.CrossRefGoogle Scholar
  4. 4.
    Banchereau J, Bazan F, Blanchard D, Brière F, Galizzi JP, van Kooten C, et al. The CD40 antigen and its ligand. Annu Rev Immunol [Internet]. 1994;12:881–922. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303–0139, USA.CrossRefGoogle Scholar
  5. 5.
    Barad D, Brill H, Gleicher N. Update on the use of dehydroepiandrosterone supplementation among women with diminished ovarian function. J Assist Reprod Genet. 2007;24(12):629–34.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bianchi I, Lleo A, Gershwin ME, Invernizzi P. The X chromosome and immune associated genes. J Autoimmun [Internet]. 2012;38:J187–92.CrossRefGoogle Scholar
  7. 7.
    Bidet M, Bachelot A, Bissauge E, Golmard JL, Gricourt S, Dulon J, et al. Resumption of ovarian function and pregnancies in 358 patients with premature ovarian failure. J Clin Endocrinol Metab [Internet]. 2011;96:3864–72.CrossRefGoogle Scholar
  8. 8.
    Bodega B, Bione S, Dalprà L, Toniolo D, Ornaghi F, Vegetti W, et al. Influence of intermediate and uninterrupted FMR1 CGG expansions in premature ovarian failure manifestation. Hum Reprod [Internet]. 2006;21:952–7.CrossRefGoogle Scholar
  9. 9.
    Bösze P, László J. The streak gonad syndrome. Obstet Gynecol [Internet]. 1979;54:544–8.Google Scholar
  10. 10.
    Brandão RD, van Roozendaal K, Tserpelis D, Blok MJ. FMR1 low sub-genotype does not rescue BRCA1/2-mutated human embryos and does not explain primary ovarian insufficiency among BRCA1/2-carriers. Hum Reprod [Internet]. 2013;28:2308–11.CrossRefGoogle Scholar
  11. 11.
    Bretherick KL, Fluker MR, Robinson WP. FMR1 repeat sizes in the gray zone and high end of the normal range are associated with premature ovarian failure. Hum Genet. 2005;117(4):376–82. Epub 2005 Jun 2.PubMedCrossRefGoogle Scholar
  12. 12.
    Broekmans F, Dòlleman M. Relative contribution of advanced age and reduced follicle pool size on reproductive success. In: Trounson A, Gosden R, Eichenlaub-Ritter U, editors. Biol Pathol Oocyte Role Fertil Med Nucl Reprograming. Cambridge University Press; 2013. p. 318–29Google Scholar
  13. 13.
    Broekmans FJ, Soules MR, Fauser BC. Ovarian aging: mechanisms and clinical consequences. Endocr Rev. 2009;30:465–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Brooks WH, Renaudineau Y. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front Genet [Internet]. 2015;6:22.PubMedCentralGoogle Scholar
  15. 15.
    Budworth H, McMurray CT. A brief history of triplet repeat diseases. Methods Mol Biol [Internet]. 2013;1010:3–17.CrossRefGoogle Scholar
  16. 16.
    Bussani C, Papi L, Sestini R, Baldinotti F, Bucciantini S, Bruni V, et al. Premature ovarian failure and fragile X premutation: a study on 45 women. Eur J Obstet Gynecol Reprod Biol [Internet]. 2004;112:189–91. Elsevier.CrossRefGoogle Scholar
  17. 17.
    Chang MC, DeCaro JJ, Zheng M, Gearing M, Shubeck L, Sherman SL, et al. Ovarian histopathological and ubiquitin-immunophenotypic features in fragile X-associated primary ovarian insufficiency: a study of five cases and selected controls. Histopathology [Internet]. 2011;59:1018–23.CrossRefGoogle Scholar
  18. 18.
    Check JH, Check ML, Katsoff D. Three pregnancies despite elevated serum FSH and advanced age: case report. Hum Reprod. 2000;15:1709–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen L-S, Tassone F, Sahota P, Hagerman PJ. The (CGG)n repeat element within the 5′ untranslated region of the FMR1 message provides both positive and negative cis effects on in vivo translation of a downstream reporter. Hum Mol Genet [Internet]. 2003;12:3067–74.CrossRefGoogle Scholar
  20. 20.
    Cronister A, Teicher J, Rohlfs EM, Donnenfeld A, Hallam S. Prevalence and instability of fragile X alleles. Implications for offering fragile X prenatal diagnosis. Obstet Gynecol. 2008;111(3):596–601.PubMedCrossRefGoogle Scholar
  21. 21.
    Dagan E, Cohen Y, Mory A, Adir V, Borochowitz Z, Raanani H, et al. BRCA1/2 mutations and FMR1 alleles are randomly distributed: a case control study. Eur J Hum Genet [Internet]. 2014;22:277–9. Nature Publishing Group.CrossRefGoogle Scholar
  22. 22.
    De Geyter C, M’Rabet N, De Geyter J, Zürcher S, Moffat R, Bösch N, et al. Similar prevalence of expanded CGG repeat lengths in the fragile X mental retardation I gene among infertile women and among women with proven fertility: a prospective study. Genet Med [Internet]. 2014;16:374–8.CrossRefGoogle Scholar
  23. 23.
    Dombrowski C, Lévesque S, Morel ML, Rouillard P, Morgan K, Rousseau F. Premutation and intermediate-size FMR1 alleles in 10572 males from the general population: loss of an AGG interruption is a late event in the generation of fragile X syndrome alleles. Hum Mol Genet. 2002;11:371–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Eichler EE, Holden JJ, Popovich BW, Reiss AL, Snow K, Thibodeau SN, et al. Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet [Internet]. 1994;8:88–94. Nature Publishing Group.CrossRefGoogle Scholar
  25. 25.
    Elizur SE, Lebovitz O, Derech-Haim S, Dratviman-Storobinsky O, Feldman B, Dor J, et al. Elevated levels of FMR1 mRNA in granulosa cells are associated with low ovarian reserve in FMR1 premutation carriers. PLoS One [Internet]. 2014;9, e105121.CrossRefGoogle Scholar
  26. 26.
    Ennis S, Ward D, Murray A. Nonlinear association between CGG repeat number and age of menopause in FMR1 premutation carriers. Eur J Hum Genet. 2006;14:253–5.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fairweather D, Frisancho-Kiss S, Rose NR. Sex differences in autoimmune disease from a pathological perspective. Am J Pathol [Internet]. 2008;173:600–9.CrossRefGoogle Scholar
  28. 28.
    Fairweather D, Rose NR. Women and autoimmune diseases. Emerg Infect Dis [Internet]. 2004;10:2005–11.CrossRefGoogle Scholar
  29. 29.
    Ferraretti AP, La Marca A, Fauser BCJM, Tarlatzis B, Nargund G, Gianaroli L. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod [Internet]. 2011;26:1616–24.CrossRefGoogle Scholar
  30. 30.
    Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, Scott RT Jr. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014 Mar;101(3):656–663.e1. doi:  10.1016/j.fertnstert.2013.11.004. Epub 2013 Dec 17
  31. 31.
    Fu YH, Kuhl DP, Pizzuti A, Pieretti M, Sutcliffe JS, Richards S, et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell [Internet]. 1991;67:1047–58.CrossRefGoogle Scholar
  32. 32.
    Garber KB, Visootsak J, Warren ST. Fragile X syndrome. Eur J Hum Genet. 2008;16:666–72.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gleicher N, Kim A, Barad DH, Shohat-Tal A, Lazzaroni E, Michaeli T, et al. FMR1-dependent variability of ovarian aging patterns is already apparent in young oocyte donors. Reprod Biol Endocrinol [Internet]. 2013;11:80.CrossRefGoogle Scholar
  34. 34.
    Gleicher N, Kim A, Weghofer A, Kushnir VA, Shohat-Tal A, Lazzaroni E, et al. Hypoandrogenism in association with diminished functional ovarian reserve. Hum Reprod. 2013;28:1084–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Gleicher N, Kim A, Weghofer A, Shohat-Tal A, Lazzaroni E, Lee H-J, et al. Starting and resulting testosterone levels after androgen supplementation determine at all ages in vitro fertilization (IVF) pregnancy rates in women with diminished ovarian reserve (DOR). J Assist Reprod Genet [Internet]. 2013;30:49–62.CrossRefGoogle Scholar
  36. 36.
    Gleicher N, Weghofer A, Lee IH, Barad DH. FMR1 genotype with autoimmunity-associated polycystic ovary-like phenotype and decreased pregnancy chance. PLoS One. 2010;5:1–6.CrossRefGoogle Scholar
  37. 37.
    Gleicher N, Weghofer A, Lee IH, Barad DH. Association of FMR1 genotypes with in vitro fertilization (IVF) outcomes based on ethnicity/race. PLoS One. 2011;6:2–7.CrossRefGoogle Scholar
  38. 38.
    Gleicher N, Weghofer A, Oktay K, Barad D. Relevance of triple CGG repeats in the FMR1 gene to ovarian reserve. Reprod Biomed Online [Internet]. 2009;19:385–90.CrossRefGoogle Scholar
  39. 39.
    Gleicher N, Weghofer A, Barad DH. A pilot study of premature ovarian senescence: I. Correlation of triple CGG repeats on the FMR1 gene to ovarian reserve parameters FSH and anti-mullerian hormone. Fertil Steril. 2009;91:1700–6. Elsevier.PubMedCrossRefGoogle Scholar
  40. 40.
    Gleicher N, Weghofer A, Barad DH. Ovarian reserve determinations suggest new function of FMR1 (fragile X gene) in regulating ovarian ageing. Reprod Biomed Online [Internet]. 2010;20:768–75. Elsevier.CrossRefGoogle Scholar
  41. 41.
    Gleicher N, Weghofer A, Barad DH. Cutting edge assessment of the impact of autoimmunity on female reproductive success. J Autoimmun [Internet]. 2012;38:J74–80.CrossRefGoogle Scholar
  42. 42.
    Gleicher N, Weghofer A, Barad DH. Do BRCA1/2 mutations and low FMR1 alleles interact or not? Eur J Hum Genet [Internet]. 2014;22:155–6. Macmillan Publishers Limited.CrossRefGoogle Scholar
  43. 43.
    Gleicher N, Yu Y, Himaya E, Barad DH, Weghofer A, Wu Y-G, et al. Early decline in functional ovarian reserve in young women with low (CGGn <26) FMR1 gene alleles. Transl Res [Internet] 2015Google Scholar
  44. 44.
    Goswami D, Conway GS. Premature ovarian failure. Horm Res [Internet]. 2007;68:196–202. Karger Publishers.Google Scholar
  45. 45.
    Grindler NM, Allsworth JE, Macones GA, Kannan K, Roehl KA, Cooper AR. Persistent organic pollutants and early menopause in U.S. women. PLoS One [Internet]. 2015;10:e0116057. Public Library of Science.CrossRefGoogle Scholar
  46. 46.
    Gustin SLF, Ding VY, Desai M, Leader B, Baker VL. Evidence of an age-related correlation of ovarian reserve and FMR1 repeat number among women with ‘normal’ CGG repeat status. J Assist Reprod Genet [Internet]. 2015;32:1669–76.CrossRefGoogle Scholar
  47. 47.
    Hagerman RJ. Lessons from fragile X regarding neurobiology, autism, and neurodegeneration. J Dev Behav Pediatr. 2006;27:63–74.PubMedCrossRefGoogle Scholar
  48. 48.
    Hagerman RJ, Hall DA, Coffey S, Leehey M, Bourgeois J, Gould J, et al. Treatment of fragile X-associated tremor ataxia syndrome (FXTAS) and related neurological problems. Clin Interv Aging [Internet]. 2008;3:251–62.Google Scholar
  49. 49.
    Hawley RS, Mori CA. The human genome: a user’s guide [Internet]. 2010; Academic Press Available from:
  50. 50.
    Hennebold JD, Tanaka M, Saito J, Hanson BR, Adashi EY. Ovary-selective genes I: the generation and characterization of an ovary-selective complementary deoxyribonucleic acid library. Endocrinology [Internet]. 2000;141:2725–34.Google Scholar
  51. 51.
    Ikeda K, Baba T, Morishita M, Honnma H, Endo T, Kiya T, Saito T. Long-term treatment with dehydroepiandrosterone may lead to follicular atresia through interaction with anti-Mullerian hormone. J Ovarian Res. 2014. doi: 10.1186/1757-2215-7-46.
  52. 52.
    Jirge PR. Ovarian reserve tests. J Hum Reprod Sci [Internet]. 2011;4:108–13.CrossRefGoogle Scholar
  53. 53.
    Kara M, Aydinb T, Aranc T, Turktekind N, Ozdemirb B. Does dehydroepiandrosterone supplementation really affect IVF-ICSI outcome in women with poor ovarian reserve? Eur J Obstet Gynecol Reprod Biol. 2014;173:63–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Kashi Y, King DG. Simple sequence repeats as advantageous mutators in evolution. Trends Genet [Internet]. 2006;22:253–9.CrossRefGoogle Scholar
  55. 55.
    Kim H-P, Leonard WJ. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med [Internet]. 2007;204:1543–51.PubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kushnir VA, Yu Y, Barad DH, Weghofer A, Himaya E, Lee H-J, et al. Utilizing FMR1 gene mutations as predictors of treatment success in human in vitro fertilization. PLoS One [Internet]. 2014;9, e102274. Public Library of Science.CrossRefGoogle Scholar
  57. 57.
    Liu J, Cox L. Primary ovarian insufficiency: an update. Int J Womens Health [Internet]. 2014;6:235.CrossRefGoogle Scholar
  58. 58.
    Lledo B, Guerrero J, Ortiz JA, Morales R, Ten J, Llacer J, et al. Intermediate and normal sized CGG repeat on the FMR1 gene does not negatively affect donor ovarian response. Hum Reprod [Internet]. 2012;27:609–14.CrossRefGoogle Scholar
  59. 59.
    Long-term treatment with dehydroepiandrosterone may lead to follicular atresia through interaction with anti-mullerian hormone - 1757-2215-7-46. pdf Available from:
  60. 60.
    Lu C, Lin L, Tan H, Wu H, Sherman SL, Gao F, et al. Fragile X premutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum Mol Genet [Internet]. 2012;21:5039–47.CrossRefGoogle Scholar
  61. 61.
    Mailick MR, Hong J, Rathouz P, Baker MW, Greenberg JS, Smith L, et al. Low-normal FMR1 CGG repeat length: phenotypic associations. Front Genet [Internet]. 2014;5:1–8.Google Scholar
  62. 62.
    Mamas L, Mamas E. Dehydroepiandrosterone supplementation in assisted reproduction: rationale and results. Curr Opin Obstet Gynecol. 2009;21(4):306–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Marozzi A. Association between idiopathic premature ovarian failure and fragile X premutation. Hum Reprod [Internet]. 2000;15:197–202.CrossRefGoogle Scholar
  64. 64.
    Marron KD, Cummins P, Harrity C, Walsh DJ, Walsh APH, Sills ES. Impact of pre-mixing AMH serum samples with standard assay buffer: ovarian reserve estimations and implications for clinical IVF providers. Journal of Reproductive Endocrinology & Infertility. 2016;2(1):10.Google Scholar
  65. 65.
    Mirkin SM. Expandable DNA, repeats and human disease. Nature [Internet]. 2007;447:932–40.CrossRefGoogle Scholar
  66. 66.
    Monaghan KD, Lyon E, Spector EB. ACMG Standards and Guidelines for fragile X testing: a revision to the disease-specific supplements to the Standards and Guidelines for Clinical Genetics Laboratories of the American College of Medical Genetics and Genomics. Genet Med. 2013;15(7):575–86.PubMedCrossRefGoogle Scholar
  67. 67.
    Nakamoto M, Nalavadi V, Epstein MP, Narayanan U, Bassell GJ, Warren ST. Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proc Natl Acad Sci U S A [Internet]. 2007;104:15537–42.CrossRefGoogle Scholar
  68. 68.
    Nelson LM. Clinical practice. Primary ovarian insufficiency. N Engl J Med [Internet]. 2009;360:606–14.CrossRefGoogle Scholar
  69. 69.
    Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front Neuroendocrinol [Internet]. 2014;35:347–69.CrossRefGoogle Scholar
  70. 70.
    Oostra BA, Willemsen R. A fragile balance: FMR1 expression levels. Hum Mol Genet. 2003;12:R249–57.PubMedCrossRefGoogle Scholar
  71. 71.
    Pastore LM, Johnson J. The FMR1 gene, infertility, and reproductive decision-making: a review. Front Genet. 2014;5:195.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Persani L, Rossetti R, Cacciatore C. Genes involved in human premature ovarian failure. J Mol Endocrinol [Internet]. 2010;45:257–79.CrossRefGoogle Scholar
  73. 73.
    Pouresmaeili F, Fazeli Z. Premature ovarian failure: a critical condition in the reproductive potential with various genetic causes. Int J Fertil Steril [Internet]. 2014;8:1–12.Google Scholar
  74. 74.
    Pu D, Xing Y, Gao Y, Gu L, Wu J. Gene variation and premature ovarian failure: a meta-analysis. Eur J Obstet Gynecol Reprod Biol [Internet]. 2014;182:226–37.CrossRefGoogle Scholar
  75. 75.
    Reches A, Malcov M, Ben-Yosef D, Azem F, Amit A, Yaron Y. Preimplantation genetic diagnosis for fragile X syndrome: is there increased transmission of abnormal FMR1 alleles among female heterozygotes? Prenat Diagn. 2009;29(1):57–61. doi: 10.1002/pd.2179.PubMedCrossRefGoogle Scholar
  76. 76.
    Reindollar RH. Turner syndrome: contemporary thoughts and reproductive issues. Semin Reprod Med [Internet]. 2011;29:342–52.CrossRefGoogle Scholar
  77. 77.
    Rohr J, Allen EG, Charen K, Giles J, He W, Dominguez C, et al. Anti-mullerian hormone indicates early ovarian decline in fragile X mental retardation (FMR1) premutation carriers: a preliminary study. Hum Reprod [Internet]. 2008;23:1220–5.CrossRefGoogle Scholar
  78. 78.
    Santoro N, Isaac B, Neal-Perry G, Adel T, Weingart L, Nussbaum A, et al. Impaired folliculogenesis and ovulation in older reproductive aged women. J Clin Endocrinol Metab. 2003;88:5502–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Satwik R, Kochhar M, Gupta SM, Majumdar A. Anti-mullerian hormone cut-off values for predicting poor ovarian response to exogenous ovarian stimulation in in-vitro fertilization. J Hum Reprod Sci [Internet]. 2012;5:206–12.CrossRefGoogle Scholar
  80. 80.
    Scheffer GJ, Broekmans FJM, Looman CWN, Blankenstein M, Fauser BCJM, DeJong FH, et al. The number of antral follicles in normal women with proven fertility is the best reflection of reproductive age. Hum Reprod. 2003;18:700–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Schuettler J, Peng Z, Zimmer J, Sinn P, von Hagens C, Strowitzki T, et al. Variable expression of the fragile X mental retardation 1 (FMR1) gene in patients with premature ovarian failure syndrome is not dependent on number of (CGG)n triplets in exon 1. Hum Reprod [Internet]. 2011;26:1241–51.CrossRefGoogle Scholar
  82. 82.
    Schufreider A, McQueen DB, Lee SM, Allon R, Uhler ML, Davie J, et al. Diminished ovarian reserve is not observed in infertility patients with high normal CGG repeats on the fragile X mental retardation 1 (FMR1) gene. Hum Reprod [Internet]. 2015;30:2686–92.CrossRefGoogle Scholar
  83. 83.
    Sellier C, Freyermuth F, Tabet R, Tran T, He F, Ruffenach F, et al. Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome. Cell Rep [Internet]. 2013;3:869–80.CrossRefGoogle Scholar
  84. 84.
    Shamilova NN, Marchenko LA, Dolgushina NV, Zaletaev DV, Sukhikh GT. The role of genetic and autoimmune factors in premature ovarian failure. J Assist Reprod Genet [Internet]. 2013;30:617–22.CrossRefGoogle Scholar
  85. 85.
    Sherman SL. Premature ovarian failure in the fragile X syndrome. Am J Med Genet. 2000;97:189–94.PubMedCrossRefGoogle Scholar
  86. 86.
    Sherman S, Curnow EC, Easley CA, Jin P, Hukema RK, Tajada M, et al. Use of model systems to understand the etiology of fragile X associated primary ovarian insufficiency (FXPOI). J Neurodev Disord. 2014;6(1):26.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Sherman S, Pletcher BA, Driscoll DA. Fragile X syndrome: diagnostic and carrier testing. Genet Med [Internet]. 2005;7:584–7.CrossRefGoogle Scholar
  88. 88.
    Sills ES, Collins GS, Brady AC, Walsh DJ, Marron KD, Peck AC, et al. Bivariate analysis of basal serum anti-Müllerian hormone measurements and human blastocyst development after IVF. Reprod Biol Endocrinol [Internet]. 2011;9:153.CrossRefGoogle Scholar
  89. 89.
    Streuli I, Fraisse T, Ibecheole V, Moix I, Morris MA, de Ziegler D. Intermediate and premutation FMR1 alleles in women with occult primary ovarian insufficiency. Fertil Steril [Internet]. 2009;92:464–70.CrossRefGoogle Scholar
  90. 90.
    Sükür YE, Kıvançlı IB, Ozmen B. Ovarian aging and premature ovarian failure. J Turkish Ger Gynecol Assoc [Internet]. 2014;15:190–6.CrossRefGoogle Scholar
  91. 91.
    Sullivan AK, Marcus M, Epstein MP, Allen EG, Anido AE, Paquin JJ, et al. Association of FMR1 repeat size with ovarian dysfunction. Hum Reprod. 2005;20(2):402–12.PubMedCrossRefGoogle Scholar
  92. 92.
    Sybert VP, Mccauley E. Turner’s syndrome. 2004. p. 1227–38.Google Scholar
  93. 93.
    Tassone F, Iong KP, Tong T-H, Lo J, Gane LW, Berry-Kravis E, et al. FMR1 CGG allele size and prevalence ascertained through newborn screening in the United States. Genome Med [Internet]. 2012;4:100.CrossRefGoogle Scholar
  94. 94.
    Te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8:141–54.CrossRefGoogle Scholar
  95. 95.
    Toledano-Alhadef H, Basel-Vanagaite L, Magal N, Davidov B, Ehrlich S, Drasinover V, et al. Fragile-X carrier screening and the prevalence of premutation and full-mutation carriers in Israel. Am J Hum Genet. 2001;69(2):351–60. doi: 10.1086/321974.
  96. 96.
    Turner G, Robinson H, Laing S, Goddard A, van den Berk M, Sherman S, et al. Population screening for fragile X. Lancet [Internet]. 1992;339:1210–3.CrossRefGoogle Scholar
  97. 97.
    Tzeng CC, Tsai LP, Hwu WL, Lin SJ, Chao MC, Jong YJ, et al. Prevalence of the FMR1 mutation in Taiwan assessed by large-scale screening of newborn boys and analysis of DXS548-FRAXAC1 haplotype. Am J Med Genet. 2005;133(1):33–43.Google Scholar
  98. 98.
    Van Esch H. The fragile X premutation: new insights and clinical consequences. Eur J Med Genet [Internet]. 2006;49:1–8.CrossRefGoogle Scholar
  99. 99.
    Van Kasteren YM, Hundscheid RDL, Smits APT, Cremers FPM, Van ZP, Braat DDM. Familial idiopathic premature ovarian failure: an overrated and underestimated genetic disease? Hum Reprod. 1999;14:2455–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Verkerk AJMH, Pieretti M, Sutcliffe JS, Fu Y-H, Kuhl DPA, Pizzuti A, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell [Internet]. 1991;65:905–14.CrossRefGoogle Scholar
  101. 101.
    Visser JA, Durlinger ALL, Peters IJJ, van den Heuvel ER, Rose UM, Kramer P, et al. Increased oocyte degeneration and follicular atresia during the estrous cycle in anti-Müllerian hormone null mice. Endocrinology [Internet]. 2007;148:2301–8.CrossRefGoogle Scholar
  102. 102.
    Voorhuis M, Onland-Moret NC, Fauser BCJM, Ploos van Amstel HK, van der Schouw YT, Broekmans FJ. The association of CGG repeats in the FMR1 gene and timing of natural menopause. Hum Reprod [Internet]. 2013;28:496–501.CrossRefGoogle Scholar
  103. 103.
    Voorhuis M, Onland-Moret NC, van der Schouw YT, Fauser BCJM, Broekmans FJ. Human studies on genetics of the age at natural menopause: a systematic review. Hum Reprod Update [Internet]. 2010;16:364–77.CrossRefGoogle Scholar
  104. 104.
    Weghofer A, Kim A, Barad DH, Gleicher N. The impact of androgen metabolism and FMR1 genotypes on pregnancy potential in women with dehydroepiandrosterone (DHEA) supplementation. Hum Reprod [Internet]. 2012;27:3287–93.CrossRefGoogle Scholar
  105. 105.
    Weghofer A, Tea MK, Barad DH, Kim A, Singer CF, Wagner K, et al. BRCA1/2 mutations appear embryo-lethal unless rescued by low (CGG n < 26) FMR1 sub-genotypes: explanation for the ‘BRCA paradox’? PLoS One. 2012;7:3–9.Google Scholar
  106. 106.
    Wiser A, Gonen O, Ghetler Y, Shavit T, Berkovitz A, Shulman A. Addition of dehydroepiandrosterone (DHEA) for poor-responder patients before and during IVF treatment improves the pregnancy rate: a randomized prospective study. Hum Reprod. 2010;25:2496–500.PubMedCrossRefGoogle Scholar
  107. 107.
    Wittenberger MD, Hagerman RJ, Sherman SL, McConkie-Rosell A, Welt CK, Rebar RW, et al. The FMR1 premutation and reproduction. Fertil Steril [Internet]. 2007;87:456–65. Elsevier.CrossRefGoogle Scholar
  108. 108.
    Xunclà M, Badenas C, Domínguez M, Rodríguez-Revenga L, Madrigal I, Jiménez L, et al. Fragile X syndrome prenatal diagnosis: parental attitudes and reproductive responses. Reprod Biomed Online. 2010;21(4):560–5.PubMedCrossRefGoogle Scholar
  109. 109.
    Yrigollen CM, Durbin-Johnson B, Gane L, Nelson DL, Hagerman R, Hagerman PJ, et al. AGG interruptions within the maternal FMR1 gene reduce the risk of offspring with fragile X syndrome. Genet Med [Internet]. 2012;14:729–36. American College of Medical Genetics and Genomics.CrossRefGoogle Scholar
  110. 110.
    Yrigollen CM, Martorell L, Durbin-Johnson B, Naudo M, Genoves J, Murgia A, et al. AGG interruptions and maternal age affect FMR1 CGG repeat allele stability during transmission. J Neurodev Disord [Internet]. 2014;6:24.Google Scholar
  111. 111.
    Yrigollen CM, Tassone F, Durbin-Johnson B, Tassone F. The role of AGG interruptions in the transcription of FMR1 premutation alleles. PLoS One [Internet]. 2011;6, e21728.CrossRefGoogle Scholar
  112. 112.
    Yu YS, Sui HS, Han ZB, Li W, Luo MJ, Tan JH. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors. Cell Res [Internet]. 2004;14:341–6.CrossRefGoogle Scholar
  113. 113.
    Zuñiga A, Juan J, Mila M, Guerrero A. Expansion of an intermediate allele of the FMR1 gene in only two generations. Clin Genet [Internet]. 2005;68:471–3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Sims ClinicDublin 14Ireland
  2. 2.Sims ClinicCorkIreland

Personalised recommendations