Immunogenetic contributions to recurrent pregnancy loss

  • Frances Grimstad
  • Sacha Krieg


While sporadic pregnancy loss is common, occurring in 15 % of pregnancies, recurrent pregnancy loss (RPL) impacts approximately 5 % of couples. Though multiple causes are known (including structural, hormonal, infectious, autoimmune, and thrombophilic causes), after evaluation, roughly half of all cases remain unexplained. The idiopathic RPL cases pose a challenging therapeutic dilemma in addition to incurring much physical and emotional morbidity. Immunogenetic causes have been postulated to contribute to these cases of RPL. Natural Killer cell, T cell expression pattern changes in the endometrium have both been shown in patients with RPL. Human leukocyte antigen (HLA) and cytokine allelic variations have also been studied as etiologies for RPL. Some of the results have been promising, however the studies are small and have not yet put forth outcomes that would change our current diagnosis and management of RPL. Larger database studies are needed with stricter control criteria before reasonable conclusions can be drawn.


Immunogenetics Recurrent pregnancy loss T regulatory cell Human leukocyte antigens HY-Antibodies 


Compliance with ethical standards

Funding sources


Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Jivraj S et al. Obstetric and neonatal outcome in women with a history of recurrent miscarriage: a cohort study. Hum Reprod. 2001;16(1):102–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Fritz MA, Speroff L. Clinical gynecologic endocrinology and infertility. 8th ed. Philadelphia: Lippincott Williams and Wilkins; 2010.Google Scholar
  3. 3.
    Stephenson M, Kutteh W. Evaluation and management of recurrent early pregnancy loss. Clin Obstet Gynecol. 2007;50(1):132–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Stirrat GM. Recurrent miscarriage. II: clinical associations, causes, and management. Lancet. 1990;336(8717):728–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Berry CW et al. The Euro-Team Early Pregnancy (ETEP) protocol for recurrent miscarriage. Hum Reprod. 1995;10(6):1516–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Boklage CE. Survival probability of human conceptions from fertilization to term. Int J Fertil. 1990;35(2):75. 79–80, 81–94.PubMedGoogle Scholar
  7. 7.
    Wilcox AJ et al. Incidence of early loss of pregnancy. N Engl J Med. 1988;319(4):189–94.PubMedCrossRefGoogle Scholar
  8. 8.
    Branch DW, Gibson M, Silver RM. Clinical practice. Recurrent miscarriage. N Engl J Med. 2010;363(18):1740–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Practice Committee of American Society for Reproductive, M. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2013;99(1):63.CrossRefGoogle Scholar
  10. 10.
    Rull K, Nagirnaja L, Laan M. Genetics of recurrent miscarriage: challenges, current knowledge, future directions. Front Genet. 2012;3:34.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    American College of, O. and Gynecologists. ACOG practice bulletin. Management of recurrent pregnancy loss. Number 24, February 2001. (Replaces Technical Bulletin Number 212, September 1995). American College of Obstetricians and Gynecologists. Int J Gynaecol Obstet. 2002;78(2):179–90.CrossRefGoogle Scholar
  12. 12.
    Krieg S, Westphal L. Immune function and recurrent pregnancy loss. Semin Reprod Med. 2015;33(4):305–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Christiansen OB. Reproductive immunology. Mol Immunol. 2013;55(1):8–15.PubMedCrossRefGoogle Scholar
  14. 14.
    Miyakis S et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295–306.PubMedCrossRefGoogle Scholar
  15. 15.
    Reid SM et al. Interventions for clinical and subclinical hypothyroidism pre-pregnancy and during pregnancy. Cochrane Database Syst Rev. 2013;5:CD007752.PubMedGoogle Scholar
  16. 16.
    Petri M, Allbritton J. Fetal outcome of lupus pregnancy: a retrospective case–control study of the Hopkins Lupus Cohort. J Rheumatol. 1993;20(4):650–6.PubMedGoogle Scholar
  17. 17.
    Hardy CJ et al. Pregnancy outcome and family size in systemic lupus erythematosus: a case–control study. Rheumatology (Oxford). 1999;38(6):559–63.CrossRefGoogle Scholar
  18. 18.
    Naganuma M et al. Conception and pregnancy outcome in women with inflammatory bowel disease: a multicentre study from Japan. J Crohns Colitis. 2011;5(4):317–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Stagnaro-Green A et al. Detection of at-risk pregnancy by means of highly sensitive assays for thyroid autoantibodies. JAMA. 1990;264(11):1422–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Imaizumi M et al. Pregnancy and murine thyroiditis: thyroglobulin immunization leads to fetal loss in specific allogeneic pregnancies. Endocrinology. 2001;142(2):823–9.PubMedGoogle Scholar
  21. 21.
    Imaizumi M et al. Non-MHC driven exacerbation of experimental thyroiditis in the postpartum period. Autoimmunity. 2001;34(2):95–105.PubMedCrossRefGoogle Scholar
  22. 22.
    Iijima T et al. Effects of autoantibodies on the course of pregnancy and fetal growth. Obstet Gynecol. 1997;90(3):364–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Christiansen OB et al. Multifactorial etiology of recurrent miscarriage and its scientific and clinical implications. Gynecol Obstet Investig. 2008;66(4):257–67.CrossRefGoogle Scholar
  24. 24.
    Ticconi C et al. Antinuclear autoantibodies in women with recurrent pregnancy loss. Am J Reprod Immunol. 2010;64(6):384–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Meroni PL et al. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat Rev Rheumatol. 2011;7(6):330–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Qureshi F et al. Anti-DNA antibodies cross-reacting with laminin inhibit trophoblast attachment and migration: implications for recurrent pregnancy loss in SLE patients. Am J Reprod Immunol. 2000;44(3):136–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Practice Committee of the American Society for Reproductive, M. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril. 2012;98(5):1103–11.CrossRefGoogle Scholar
  28. 28.
    Andersen AMN et al. Maternal age and fetal loss: population based register Linkage study. Br Med J. 2000;320(7251):1708–12.CrossRefGoogle Scholar
  29. 29.
    Kolte AM et al. A genome-wide scan in affected sibling pairs with idiopathic recurrent miscarriage suggests genetic linkage. Mol Hum Reprod. 2011;17(6):379–85.PubMedCrossRefGoogle Scholar
  30. 30.
    Marquard K et al. Etiology of recurrent pregnancy loss in women over the age of 35 years. Fertil Steril. 2010;94(4):1473–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Kosova G et al. Evolutionary forward genomics reveals novel insights into the genes and pathways dysregulated in recurrent early pregnancy loss. Hum Reprod. 2015;30(3):519–29.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Daher S et al. Genetic polymorphisms and recurrent spontaneous abortions: an overview of current knowledge. Am J Reprod Immunol. 2012;67(4):341–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Nelen WL et al. Hyperhomocysteinemia and recurrent early pregnancy loss: a meta-analysis. Fertil Steril. 2000;74(6):1196–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Haller-Kikkatalo K et al. Autoimmune activation toward embryo implantation is rare in immune-privileged human endometrium. Semin Reprod Med. 2014;32(5):376–84.PubMedCrossRefGoogle Scholar
  35. 35.
    Park DW, Yang KM. Hormonal regulation of uterine chemokines and immune cells. Clin Exp Reprod Med. 2011;38(4):179–85.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Laird SM et al. A review of immune cells and molecules in women with recurrent miscarriage. Hum Reprod Update. 2003;9(2):163–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Lessey BA, Young SL. Homeostasis imbalance in the endometrium of women with implantation defects: the role of estrogen and progesterone. Semin Reprod Med. 2014;32(5):365–75.PubMedCrossRefGoogle Scholar
  38. 38.
    Singh M, Chaudhry P, Asselin E. Bridging endometrial receptivity and implantation: network of hormones, cytokines, and growth factors. J Endocrinol. 2011;210(1):5–14.PubMedCrossRefGoogle Scholar
  39. 39.
    Lockwood CJ et al. The role of decidualization in regulating endometrial hemostasis during the menstrual cycle, gestation, and in pathological states. Semin Thromb Hemost. 2007;33(1):111–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Ruiz-Alonso M, Blesa D, Simon C. The genomics of the human endometrium. Biochim Biophys Acta. 2012;1822(12):1931–42.PubMedCrossRefGoogle Scholar
  41. 41.
    Beydoun H, Saftlas AF. Association of human leucocyte antigen sharing with recurrent spontaneous abortions. Tissue Antigens. 2005;65(2):123–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Bansal AS. Joining the immunological dots in recurrent miscarriage. Am J Reprod Immunol. 2010;64(5):307–15.PubMedGoogle Scholar
  43. 43.
    Blaschitz A, Hutter H, Dohr G. HLA class I protein expression in the human placenta. Early Pregnancy. 2001;5(1):67–9.PubMedGoogle Scholar
  44. 44.
    Teles A, Zenclussen AC. How cells of the immune system prepare the endometrium for implantation. Semin Reprod Med. 2014;32(5):358–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Seshadri S, Sunkara SK. Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update. 2014;20(3):429–38.PubMedCrossRefGoogle Scholar
  46. 46.
    Park DW et al. Peripheral blood NK cells reflect changes in decidual NK cells in women with recurrent miscarriages. Am J Reprod Immunol. 2010;63(2):173–80.PubMedCrossRefGoogle Scholar
  47. 47.
    Thum MY et al. An increase in the absolute count of CD56dimCD16 + CD69+ NK cells in the peripheral blood is associated with a poorer IVF treatment and pregnancy outcome. Hum Reprod. 2004;19(10):2395–400.PubMedCrossRefGoogle Scholar
  48. 48.
    Polgar K, Hill JA. Identification of the white blood cell populations responsible for Th1 immunity to trophoblast and the timing of the response in women with recurrent pregnancy loss. Gynecol Obstet Investig. 2002;53(1):59–64.CrossRefGoogle Scholar
  49. 49.
    Wilkens J et al. Uterine NK cells regulate endometrial bleeding in women and are suppressed by the progesterone receptor modulator asoprisnil. J Immunol. 2013;191(5):2226–35.PubMedCrossRefGoogle Scholar
  50. 50.
    King A, Loke YW, Chaouat G. NK cells and reproduction. Immunol Today. 1997;18(2):64–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Boyton RJ, Altmann DM. Natural killer cells, killer immunoglobulin-like receptors and human leucocyte antigen class I in disease. Clin Exp Immunol. 2007;149(1):1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hiby SE et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest. 2010;120(11):4102–10.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Faridi RM, Agrawal S. Killer immunoglobulin-like receptors (KIRs) and HLA-C allorecognition patterns implicative of dominant activation of natural killer cells contribute to recurrent miscarriages. Hum Reprod. 2011;26(2):491–7.PubMedCrossRefGoogle Scholar
  54. 54.
    King K et al. Detailed analysis of peripheral blood natural killer (NK) cells in women with recurrent miscarriage. Hum Reprod. 2010;25(1):52–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Kodama T et al. Characteristic changes of large granular lymphocytes that strongly express CD56 in endometrium during the menstrual cycle and early pregnancy. Hum Reprod. 1998;13(4):1036–43.PubMedCrossRefGoogle Scholar
  56. 56.
    Fukui K et al. Leukocyte function-associated antigen-1 expression on decidual natural killer cells in patients with early pregnancy loss. Mol Hum Reprod. 1999;5(11):1083–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Woidacki K et al. Mast cells rescue implantation defects caused by c-kit deficiency. Cell Death Dis. 2013;4:e462.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Woidacki K, Jensen F, Zenclussen AC. Mast cells as novel mediators of reproductive processes. Front Immunol. 2013;4:29.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Eidukaite A, Tamosiunas V. Endometrial and peritoneal macrophages: expression of activation and adhesion molecules. Am J Reprod Immunol. 2004;52(2):113–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Tachi C, Tachi S. Macrophages and implantation. Ann N Y Acad Sci. 1986;476:158–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Miller L, Hunt JS. Sex steroid hormones and macrophage function. Life Sci. 1996;59(1):1–14.PubMedCrossRefGoogle Scholar
  62. 62.
    Houser BL et al. Two unique human decidual macrophage populations. J Immunol. 2011;186(4):2633–42.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lin YJ et al. Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model. Endocrinology. 2006;147(3):1278–86.PubMedCrossRefGoogle Scholar
  64. 64.
    Strzemienski PJ, Dyer RM, Kenney RM. Effect of estradiol and progesterone on antistaphylococcal activity of neutrophils from ovariectomized mares. Am J Vet Res. 1987;48(11):1638–41.PubMedGoogle Scholar
  65. 65.
    Strzemienski PJ et al. Bactericidal activity of peripheral blood neutrophils during the oestrous cycle and early pregnancy in the mare. J Reprod Fertil. 1987;80(1):289–93.PubMedCrossRefGoogle Scholar
  66. 66.
    Wiesenfeld HC et al. Association between elevated neutrophil defensin levels and endometritis. J Infect Dis. 2002;186(6):792–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Amsalem H et al. Identification of a novel neutrophil population: proangiogenic granulocytes in second-trimester human decidua. J Immunol. 2014;193(6):3070–9.PubMedCrossRefGoogle Scholar
  68. 68.
    La Rocca C et al. The immunology of pregnancy: regulatory T cells control maternal immune tolerance toward the fetus. Immunol Lett. 2014;162(1 Pt A):41–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Wurfel W. Treatment with granulocyte colony-stimulating factor in patients with repetitive implantation failures and/or recurrent spontaneous abortions. J Reprod Immunol. 2015;108:123–35.PubMedCrossRefGoogle Scholar
  70. 70.
    Rahmati M et al. Granulocyte-colony stimulating factor related pathways tested on an endometrial ex-vivo model. PLoS One. 2014;9(9):e102286.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Jasper MJ, Tremellen KP, Robertson SA. Primary unexplained infertility is associated with reduced expression of the T-regulatory cell transcription factor Foxp3 in endometrial tissue. Mol Hum Reprod. 2006;12(5):301–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Calleja-Agius J, Jauniaux E, Muttukrishna S. Placental villous expression of TNFalpha and IL-10 and effect of oxygen tension in euploid early pregnancy failure. Am J Reprod Immunol. 2012;67(6):515–25.PubMedCrossRefGoogle Scholar
  73. 73.
    Choudhury SR, Knapp LA. Human reproductive failure I: immunological factors. Hum Reprod Update. 2001;7(2):113–34.PubMedCrossRefGoogle Scholar
  74. 74.
    Mueller-Eckhardt G et al. Immunogenetic and serological investigations in nonpregnant and in pregnant women with a history of recurrent spontaneous abortions. German RSA/IVIG Study Group. J Reprod Immunol. 1994;27(2):95–109.PubMedCrossRefGoogle Scholar
  75. 75.
    Kruse C et al. Low serum level of mannan-binding lectin is a determinant for pregnancy outcome in women with recurrent spontaneous abortion. Am J Obstet Gynecol. 2002;187(5):1313–20.PubMedCrossRefGoogle Scholar
  76. 76.
    Wang WJ et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J Reprod Immunol. 2010;84(2):164–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Bombell S, McGuire W. Cytokine polymorphisms in women with recurrent pregnancy loss: meta-analysis. Aust N Z J Obstet Gynaecol. 2008;48(2):147–54.PubMedCrossRefGoogle Scholar
  78. 78.
    Choudhury SR, Knapp LA. Human reproductive failure II: immunogenetic and interacting factors. Hum Reprod Update. 2001;7(2):135–60.PubMedCrossRefGoogle Scholar
  79. 79.
    Calleja-Agius J et al. Investigation of systemic inflammatory response in first trimester pregnancy failure. Hum Reprod. 2012;27(2):349–57.PubMedCrossRefGoogle Scholar
  80. 80.
    Arruvito L et al. IL-6 trans-signaling and the frequency of CD4 + FOXP3+ cells in women with reproductive failure. J Reprod Immunol. 2009;82(2):158–65.PubMedCrossRefGoogle Scholar
  81. 81.
    Tsai AF et al. Transmission disequilibrium of maternally-inherited CTLA-4 microsatellite alleles in idiopathic recurrent miscarriage. J Reprod Immunol. 1998;40(2):147–57.PubMedCrossRefGoogle Scholar
  82. 82.
    Wang WJ et al. Regulation of the expression of Th17 cells and regulatory T cells by IL-27 in patients with unexplained early recurrent miscarriage. J Reprod Immunol. 2013;99(1–2):39–45.PubMedCrossRefGoogle Scholar
  83. 83.
    Bansal AS, Bajardeen B, Thum MY. The basis and value of currently used immunomodulatory therapies in recurrent miscarriage. J Reprod Immunol. 2012;93(1):41–51.PubMedCrossRefGoogle Scholar
  84. 84.
    Szereday L et al. Commitment of decidual haematopoietic progenitor cells in first trimester pregnancy. Am J Reprod Immunol. 2012;67(1):9–16.PubMedCrossRefGoogle Scholar
  85. 85.
    Saifi B et al. Th17 cells and related cytokines in unexplained recurrent spontaneous miscarriage at the implantation window. Reprod Biomed Online. 2014;29(4):481–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Bansal RR et al. IL-21 enhances the potential of human gammadelta T cells to provide B-cell help. Eur J Immunol. 2012;42(1):110–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Alijotas-Reig J, Llurba E, Gris JM. Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells. Placenta. 2014;35(4):241–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Jin LP et al. The CD4 + CD25 bright regulatory T cells and CTLA-4 expression in peripheral and decidual lymphocytes are down-regulated in human miscarriage. Clin Immunol. 2009;133(3):402–10.PubMedCrossRefGoogle Scholar
  89. 89.
    Saito S et al. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63(6):601–10.PubMedCrossRefGoogle Scholar
  90. 90.
    Kwak-Kim JY et al. Increased T helper 1 cytokine responses by circulating T cells are present in women with recurrent pregnancy losses and in infertile women with multiple implantation failures after IVF. Hum Reprod. 2003;18(4):767–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Chaouat G. The Th1/Th2 paradigm: still important in pregnancy? Semin Immunopathol. 2007;29(2):95–113.PubMedCrossRefGoogle Scholar
  92. 92.
    Szekeres-Bartho J et al. The role of gamma/delta T cells in the feto-maternal relationship. Semin Immunol. 2001;13(4):229–33.PubMedCrossRefGoogle Scholar
  93. 93.
    Mincheva-Nilsson L. Pregnancy and gamma/delta T cells: taking on the hard questions. Reprod Biol Endocrinol. 2003;1:120.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Moghraby JS et al. HLA sharing among couples appears unrelated to idiopathic recurrent fetal loss in Saudi Arabia. Hum Reprod. 2010;25(8):1900–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Christiansen OB et al. Association of maternal HLA haplotypes with recurrent spontaneous abortions. Tissue Antigens. 1989;34(3):190–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Kolte AM et al. Study of the structure and impact of human leukocyte antigen (HLA)-G-A, HLA-G-B, and HLA-G-DRB1 haplotypes in families with recurrent miscarriage. Hum Immunol. 2010;71(5):482–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Ober C et al. Variation in the HLA-G promoter region influences miscarriage rates. Am J Hum Genet. 2003;72(6):1425–35.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Cecati M et al. HLA-G and pregnancy adverse outcomes. Med Hypotheses. 2011;76(6):782–4.PubMedCrossRefGoogle Scholar
  99. 99.
    Hviid TV et al. Association between human leukocyte antigen-G genotype and success of in vitro fertilization and pregnancy outcome. Tissue Antigens. 2004;64(1):66–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Moffett A, Hiby SE, Sharkey AM. The role of the maternal immune system in the regulation of human birthweight. Philos Trans R Soc Lond B Biol Sci. 2015;370(1663):20140071.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Nielsen HS et al. The presence of HLA-antibodies in recurrent miscarriage patients is associated with a reduced chance of a live birth. J Reprod Immunol. 2010;87(1–2):67–73.PubMedCrossRefGoogle Scholar
  102. 102.
    Hiby SE et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med. 2004;200(8):957–65.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Meuleman T et al. HLA associations and HLA sharing in recurrent miscarriage: a systematic review and meta-analysis. Hum Immunol. 2015;76(5):362–73.PubMedCrossRefGoogle Scholar
  104. 104.
    Kanai T et al. Polymorphism of human leukocyte antigen-E gene in the Japanese population with or without recurrent abortion. Am J Reprod Immunol. 2001;45(3):168–73.PubMedCrossRefGoogle Scholar
  105. 105.
    Mosaad YM et al. Association between HLA-E *0101 homozygosity and recurrent miscarriage in Egyptian women. Scand J Immunol. 2011;74(2):205–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Steffensen R et al. HLA-E polymorphism in patients with recurrent spontaneous abortion. Tissue Antigens. 1998;52(6):569–72.PubMedCrossRefGoogle Scholar
  107. 107.
    Takakuwa K et al. Possible susceptibility of the HLA-DPB1*0402 and HLA-DPB1*04 alleles to unexplained recurrent abortion: analysis by means of polymerase chain reaction-restricted fragment length polymorphism method. Am J Reprod Immunol. 1999;42(4):233–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Aruna M et al. Novel alleles of HLA-DQ and -DR loci show association with recurrent miscarriages among South Indian women. Hum Reprod. 2011;26(4):765–74.PubMedCrossRefGoogle Scholar
  109. 109.
    Steck T et al. HLA-DQA1 and HLA-DQB1 haplotypes in aborted fetuses and couples with recurrent spontaneous abortion. J Reprod Immunol. 1995;29(2):95–104.PubMedCrossRefGoogle Scholar
  110. 110.
    Christiansen OB et al. Association between HLA-DR1 and -DR3 antigens and unexplained repeated miscarriage. Hum Reprod Update. 1999;5(3):249–55.PubMedCrossRefGoogle Scholar
  111. 111.
    Miklos DB et al. Antibody responses to H-Y minor histocompatibility antigens correlate with chronic graft-versus-host disease and disease remission. Blood. 2005;105(7):2973–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Christiansen OB, Steffensen R, Nielsen HS. The impact of anti-HY responses on outcome in current and subsequent pregnancies of patients with recurrent pregnancy losses. J Reprod Immunol. 2010;85(1):9–14.PubMedCrossRefGoogle Scholar
  113. 113.
    Nielsen HS et al. Association of HY-restricting HLA class II alleles with pregnancy outcome in patients with recurrent miscarriage subsequent to a firstborn boy. Hum Mol Genet. 2009;18(9):1684–91.PubMedCrossRefGoogle Scholar
  114. 114.
    Saini V et al. Cytokines in recurrent pregnancy loss. Clin Chim Acta. 2011;412(9–10):702–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Choi YK, Kwak-Kim J. Cytokine gene polymorphisms in recurrent spontaneous abortions: a comprehensive review. Am J Reprod Immunol. 2008;60(2):91–110.PubMedCrossRefGoogle Scholar
  116. 116.
    Traina E et al. Polymorphisms in VEGF, progesterone receptor and IL-1 receptor genes in women with recurrent spontaneous abortion. J Reprod Immunol. 2011;88(1):53–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Kamali-Sarvestani E et al. Cytokine gene polymorphisms and susceptibility to recurrent pregnancy loss in Iranian women. J Reprod Immunol. 2005;65(2):171–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Saijo Y et al. Interleukin-4 gene polymorphism is not involved in the risk of recurrent pregnancy loss. Am J Reprod Immunol. 2004;52(2):143–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Daher S et al. Associations between cytokine gene polymorphisms and recurrent pregnancy loss. J Reprod Immunol. 2003;58(1):69–77.PubMedCrossRefGoogle Scholar
  120. 120.
    Prigoshin N et al. Cytokine gene polymorphisms in recurrent pregnancy loss of unknown cause. Am J Reprod Immunol. 2004;52(1):36–41.PubMedCrossRefGoogle Scholar
  121. 121.
    Diehl S, Rincon M. The two faces of IL-6 on Th1/Th2 differentiation. Mol Immunol. 2002;39(9):531–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Koumantaki Y et al. Detection of interleukin-6, interleukin-8, and interleukin-11 in plasma from women with spontaneous abortion. Eur J Obstet Gynecol Reprod Biol. 2001;98(1):66–71.PubMedCrossRefGoogle Scholar
  123. 123.
    Krieg SA et al. Global alteration in gene expression profiles of deciduas from women with idiopathic recurrent pregnancy loss. Mol Hum Reprod. 2012;18(9):442–50.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Kalu E et al. Serial estimation of Th1:th2 cytokines profile in women undergoing in-vitro fertilization-embryo transfer. Am J Reprod Immunol. 2008;59(3):206–11.PubMedCrossRefGoogle Scholar
  125. 125.
    Kilpatrick DC, Bevan BH, Liston WA. Association between mannan binding protein deficiency and recurrent miscarriage. Hum Reprod. 1995;10(9):2501–5.PubMedCrossRefGoogle Scholar
  126. 126.
    Jauniaux E et al. Evidence-based guidelines for the investigation and medical treatment of recurrent miscarriage. Hum Reprod. 2006;21(9):2216–22.PubMedCrossRefGoogle Scholar
  127. 127.
    Dao Nguyen X, Robinson DS. Fluticasone propionate increases CD4CD25 T regulatory cell suppression of allergen-stimulated CD4CD25 T cells by an IL-10-dependent mechanism. J Allergy Clin Immunol. 2004;114(2):296–301.PubMedCrossRefGoogle Scholar
  128. 128.
    Peek EJ et al. Interleukin-10-secreting “regulatory” T cells induced by glucocorticoids and beta2-agonists. Am J Respir Cell Mol Biol. 2005;33(1):105–11.PubMedCrossRefGoogle Scholar
  129. 129.
    Quenby S et al. Prednisolone reduces preconceptual endometrial natural killer cells in women with recurrent miscarriage. Fertil Steril. 2005;84(4):980–4.PubMedCrossRefGoogle Scholar
  130. 130.
    Whitley KA, Ural SH. Treatment modalities in recurrent miscarriages without diagnosis. Semin Reprod Med. 2014;32(4):319–22.PubMedCrossRefGoogle Scholar
  131. 131.
    Ober C et al. Mononuclear-cell immunisation in prevention of recurrent miscarriages: a randomised trial. Lancet. 1999;354(9176):365–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Scott JR. Immunotherapy for recurrent miscarriage. Cochrane Database Syst Rev. 2003;1:CD000112.PubMedGoogle Scholar
  133. 133.
    Worldwide collaborative observational study and meta-analysis on allogenic leukocyte immunotherapy for recurrent spontaneous abortion. Recurrent Miscarriage Immunotherapy Trialists Group. Am J Reprod Immunol, 1994. 32(2): p. 55–72.Google Scholar
  134. 134.
    Porter TF, Scott JR. Alloimmune causes of recurrent pregnancy loss. Semin Reprod Med. 2000;18(4):393–400.PubMedCrossRefGoogle Scholar
  135. 135.
    Christiansen OB et al. Intravenous immunoglobulin treatment for secondary recurrent miscarriage: a randomised, double-blind, placebo-controlled trial. BJOG. 2015;122(4):500–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Heilmann L, Schorsch M, Hahn T. CD3-CD56 + CD16+ natural killer cells and improvement of pregnancy outcome in IVF/ICSI failure after additional IVIG-treatment. Am J Reprod Immunol. 2010;63(3):263–5.PubMedCrossRefGoogle Scholar
  137. 137.
    van den Heuvel MJ et al. Decline in number of elevated blood CD3(+) CD56(+) NKT cells in response to intravenous immunoglobulin treatment correlates with successful pregnancy. Am J Reprod Immunol. 2007;58(5):447–59.PubMedCrossRefGoogle Scholar
  138. 138.
    Moffett A, Regan L, Braude P. Natural killer cells, miscarriage, and infertility. BMJ. 2004;329(7477):1283–5.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyUniversity of KansasKansas CityUSA
  2. 2.Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and GynecologyOregon Health Sciences UniversityPortlandUSA

Personalised recommendations