Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing

  • Xiangjin Kang
  • Wenyin He
  • Yuling Huang
  • Qian Yu
  • Yaoyong Chen
  • Xingcheng Gao
  • Xiaofang Sun
  • Yong Fan
Technological Innovations

Abstract

Purpose

As a powerful technology for genome engineering, the CRISPR/Cas system has been successfully applied to modify the genomes of various species. The purpose of this study was to evaluate the technology and establish principles for the introduction of precise genetic modifications in early human embryos.

Methods

3PN zygotes were injected with Cas9 messenger RNA (mRNA) (100 ng/μl) and guide RNA (gRNA) (50 ng/μl). For oligo-injections, donor oligo-1 (99 bp) or oligo-2 (99 bp) (100 ng/μl) or dsDonor (1 kb) was mixed with Cas9 mRNA (100 ng/μl) and gRNA (50 ng/μl) and injected into the embryos.

Results

By co-injecting Cas9 mRNA, gRNAs, and donor DNA, we successfully introduced the naturally occurring CCR5Δ32 allele into early human 3PN embryos. In the embryos containing the engineered CCR5Δ32 allele, however, the other alleles at the same locus could not be fully controlled because they either remained wild type or contained indel mutations.

Conclusions

This work has implications for the development of therapeutic treatments of genetic disorders, and it demonstrates that significant technical issues remain to be addressed. We advocate preventing any application of genome editing on the human germline until after a rigorous and thorough evaluation and discussion are undertaken by the global research and ethics communities.

Keywords

CRISPR/Cas9 Genetic modification CCR5 Human 3PN embryos 

Supplementary material

10815_2016_710_MOESM1_ESM.pdf (177 kb)
Table S1Oligonucleotides used for making in vitro transcription template, CCR5 genotyping and as HDR-mediated repair template. (PDF 177 kb)
10815_2016_710_MOESM2_ESM.pdf (27 kb)
Table S2Off-target analysis for CRISPR-Cas9–mediated targeting in human 3PN zygotes. (PDF 27 kb)
10815_2016_710_Fig3_ESM.gif (192 kb)
Fig S1

The sequences of the CCR5 gene in human 3PN embryos carrying CRISPR/Cas9-induced gene modifications (GIF 192 kb)

10815_2016_710_MOESM3_ESM.tif (449 kb)
High Resolution Image (TIF 449 kb)

References

  1. 1.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.CrossRefPubMedGoogle Scholar
  2. 2.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.CrossRefPubMedGoogle Scholar
  3. 3.
    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46.CrossRefPubMedGoogle Scholar
  4. 4.
    Bogdanove AJ, Voytas DF. TAL effectors: customizable proteins for DNA targeting. Science. 2011;333(6051):1843–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910–8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 2013;13(6):659–62.CrossRefPubMedGoogle Scholar
  9. 9.
    Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345(6201):1184–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156(4):836–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell. 2014;14:323–8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6(5):363–72.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu P, Chen S, Li X, Qin L, Huang K, Wang L et al. Low immunogenicity of neural progenitor cells differentiated from induced pluripotent stem cells derived from less immunogenic somatic cells. PLoS One. 8(7):e69617.Google Scholar
  14. 14.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 339(6121):819–23.Google Scholar
  15. 15.
    Kola I, Trounson A, Dawson G, Rogers P. Tripronuclear human oocytes: altered cleavage patterns and subsequent karyotypic analysis of embryos. Biol Reprod. 1987;37(2):395–401.CrossRefPubMedGoogle Scholar
  16. 16.
    Feenan K, Herbert M. Can “abnormally” fertilized zygotes give rise to viable embryos? Hum Fertil. 2006;9(3):157–69.CrossRefGoogle Scholar
  17. 17.
    Balakier H. Tripronuclear human zygotes: the first cell cycle and subsequent development. Hum Reprod. 1993;8(11):1892–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Martinson JJ, Chapman NH, Rees DC, Liu YT, Clegg JB. Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet. 1997;16(1):100–3.CrossRefPubMedGoogle Scholar
  19. 19.
    Marmor M, Sheppard HW, Donnell D, Bozeman S, Celum C, Buchbinder S, et al. Homozygous and heterozygous CCR5-Delta32 genotypes are associated with resistance to HIV infection. J Acquir Immune Defic Syndr. 2001;27(5):472–81.CrossRefPubMedGoogle Scholar
  20. 20.
    Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382(6593):722–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28(8):839–47.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li L, Krymskaya L, Wang J, Henley J, Rao A, Cao LF, et al. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther : J Am Soc Gene Ther. 2013;21(6):1259–69.CrossRefGoogle Scholar
  23. 23.
    Didigu CA, Wilen CB, Wang J, Duong J, Secreto AJ, Danet-Desnoyers GA, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood. 2014;123(1):61–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yao Y, Nashun B, Zhou T, Qin L, Qin L, Zhao S, et al. Generation of CD34+ cells from CCR5-disrupted human embryonic and induced pluripotent stem cells. Hum Gene Ther. 2012;23(2):238–42.CrossRefPubMedGoogle Scholar
  25. 25.
    Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A. 2014;111(26):9591–6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ramalingam S, London V, Kandavelou K, Cebotaru L, Guggino W, Civin C, et al. Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases. Stem Cells Dev. 2013;22(4):595–610.CrossRefPubMedGoogle Scholar
  27. 27.
    Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, et al. Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. 2011;29(8):695–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31:827–32.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hong SG, Winkler T, Wu C, Guo V, Pittaluga S, Nicolae A et al. Path to the clinic: assessment of iPSC-based cell therapies in vivo in a nonhuman primate model. Cell Rep. 7(4):1298–309.Google Scholar
  30. 30.
    Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol. 2015;33(2):179–86.CrossRefPubMedGoogle Scholar
  31. 31.
    Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33(2):187–97.CrossRefPubMedGoogle Scholar
  32. 32.
    Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods. 2015;12(3):237–43.CrossRefPubMedGoogle Scholar
  33. 33.
    Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014;32(6):569–76.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3):279–84.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34(2):184–91.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yu C, Liu Y, Ma T, Liu K, Xu S, Zhang Y, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. 2015;16(2):142–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 2015;25(1):67–79.CrossRefPubMedGoogle Scholar
  39. 39.
    Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, et al. Biotechnology: a prudent path forward for genomic engineering and germline gene modification. Science. 2015;348(6230):36–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiangjin Kang
    • 1
  • Wenyin He
    • 1
  • Yuling Huang
    • 1
  • Qian Yu
    • 1
  • Yaoyong Chen
    • 1
  • Xingcheng Gao
    • 1
  • Xiaofang Sun
    • 1
  • Yong Fan
    • 1
  1. 1.Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina

Personalised recommendations