Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 32, Issue 2, pp 171–176 | Cite as

Freeze-all policy: is it time for that?

  • Matheus RoqueEmail author
Commentary

Abstract

Purpose

This publication will evaluate the available evidence in the literature comparing fresh embryo transfer (ET) and elective frozen-thawed embryo transfer (FET) regarding the possible interference of controlled ovarian stimulation (COS) in implantation and endometrial receptivity, IVF safety, and obstetric and perinatal outcomes.

Methods

We performed a review in the literature of the available evidence comparing fresh to elective FET (freeze-all policy).

Results

The improvements made in cryopreservation techniques have led to few or no detrimental effects to the embryo and have resulted in no consequences to the offspring when compared to fresh embryos; this has allowed reproductive practitioners to create the freeze-all policy (when all viable embryos are electively cryopreserved in the fresh cycle and transferred in a posterior cycle). There are increasing concerns about the adverse effects associated with COS over the endometrial and uterine environments, as well as with the safety of COS in pregnancies that have originated from fresh ET during in vitro fertilization (IVF) treatments. COS may contribute to modifications in the endometrium, which might be related to poorer outcomes when fresh ET is performed. It has been suggested that obstetric and perinatal outcomes in pregnancies resulting from fresh ET are poorer when compared with those that occur after FET. In cycles with fresh ET, there is still a risk of ovarian hyperstimulation syndrome (OHSS).

Conclusion

There is growing evidence in the literature suggesting better IVF outcomes, and decreased obstetric and perinatal morbidity when adopting the freeze-all policy instead of fresh ET.

Keywords

Freeze-all policy Fresh embryo transfer Frozen-thawed embryo transfer Cryopreservation 

References

  1. 1.
    Sutcliffe AG, Ludwig M. Outcome of assisted reproduction. Lancet. 2007;370(9584):351–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Siristatidis C, Sergentanis TN, Kanavidis P, Trivella M, Mavromatis I, Psaltopoulou T, et al. Controlled ovarian hyperstimulation for IVF: impact on ovarian, endometrial and cervical câncer – a systematic review and meta-analysis. Hum Reprod Update. 2013;19:105–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Roque M, Lattes K, Serra S, Solà I, Geber S, Carreras R, et al. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis. Fertil Steril. 2013;99:156–62.CrossRefPubMedGoogle Scholar
  4. 4.
    Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update. 2012;18:485–503.CrossRefPubMedGoogle Scholar
  5. 5.
    Pinborg A, Wennerholm UB, Romundstad LB, Loft A, Aittomaki K, Söderström-Anttila V, et al. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcomes? Systematic review and meta-analysis. Hum Reprod Update. 2013;19:87–104.CrossRefPubMedGoogle Scholar
  6. 6.
    Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2012;98:368–77.CrossRefPubMedGoogle Scholar
  7. 7.
    Nastri CO, Ferriani RA, Rocha IA, Martins WP. Ovarian hyperstimulation syndrome: pathophysiology and prevention. J Assist Reprod Genet. 2010;27:121–8.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Youssef MA, van Wely M, Hassan MA, Al-Inany HG, Mochtar M, Khattab S, et al. Can dopamine agonists reduce the incidence and severity of OHSS in IVF/ICSI treatment cycles? A systematic review and meta-analysis. Hum Reprod Update. 2010;16:459–66.CrossRefPubMedGoogle Scholar
  9. 9.
    Griesinger G, Schultz L, Bauer T, Broessner A, Frambach T, Kissler S. Ovarian hyperstimulation syndrome prevention by gonadotropin-releasing hormone agonist triggering of final oocyte maturation in a gonadotropin-releasing hormone antagonist protocol in combination with a ‘freeze-all’ strategy: a prospective multicentric study. Fertil Steril. 2011;95:2029–33.CrossRefPubMedGoogle Scholar
  10. 10.
    Cobo A, de los Santos MJ, Castellò D, Gámiz P, Campos P, Remohí J. Outcomes of vitrified early cleavage-stage and blastocyst-stage embryos in a cryopreservation program: evaluation of 3,150 warming cycles. Fertil Steril. 2012;98:1138–46.CrossRefPubMedGoogle Scholar
  11. 11.
    Herrero L, Matínez M, Garcia-Velasco JA. Current status of human oocyte and embryo cryopreservation. Curr Opin Obstet Gynecol. 2011;23:245–50.PubMedGoogle Scholar
  12. 12.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. High ongoing pregnancy rates after deferred transfer through bipronuclear oocyte cryopreservation and post-thaw extended culture. Fertil Steril. 2009;92:1594–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Diedrich K, Fauser BC, Devroey P, Griesinger G, Evian Annual Reproduction (EVAR) Workshop Group. The role of the endometrium and embryo in human implantation. Hum Reprod Update. 2007;13:365–77.CrossRefPubMedGoogle Scholar
  14. 14.
    Evans J, Hannan NJ, Edgell TA, Vollenhoven BJ, Lutjen PJ, Osianlis T et al. Fresh versus frozen embryo transfer: backing clinical decisions with scientific and clinical evidence. Hum Reprod. 2014.Google Scholar
  15. 15.
    Bhagwat SR, Chandrashekar DS, Kakar R, Davuluri S, Bajpai AK, Nayak S, et al. Endometrial receptivity: a revisit to functional genomics studies on human endometrium and creation of HGEx-ERdb. PLoS One. 2013;8:e58419.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Schubert C. World of reproductive biology. Biol Reprod. 2014;91:1. doi: 10.1095/biolreprod.114.121335.CrossRefGoogle Scholar
  17. 17.
    Horcajadas JA, Riesewijk A, Polman J, van Os R, Pellicer A, Mosselman S, et al. Effect of controlled ovarian hyperstimulation in IVF on endometrial gene expression profiles. Mol Hum Reprod. 2005;11:195–205.CrossRefPubMedGoogle Scholar
  18. 18.
    Labarta E, Martínez-Conejero JA, Alamá P, Horcajadas JA, Pellicer A, Simón C, et al. Endometrial receptivity is affected in women with high circulatin progesterone levels at the end of the follicular phase: a functional genomics analysis. Hum Reprod. 2011;26:1813–25.CrossRefPubMedGoogle Scholar
  19. 19.
    Van Vaerenbergh I, Fatemi HM, Blockeel C, Van Lommel L, In’t Veid P, Schuit F, et al. Progesterone rise on HCG day in GnRH antagonist/rFSH stimulated cycles affects endometrial gene expression. Reprod Biomed Online. 2011;22:263–71.CrossRefPubMedGoogle Scholar
  20. 20.
    Haouzi D, Assou S, Dechanet C, Anahory T, Dechaud H, De Vos J, et al. Controlled ovarian hyperstimulation for in vitro fertilization alters endometrial receptivity in humans: protocol effects. Biol Reprod. 2010;82:679–86.CrossRefPubMedGoogle Scholar
  21. 21.
    Bourgain C, Devroey P. The endometrium in stimulated cycles for IVF. Hum Reprod Update. 2003;9:515–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Devroey P, Bourgain C, Macklon NS, Fauser BC. Reproductive biology and IVF: ovarian stimulation and endometrial receptivity. Trends Endocrinol Metab. 2004;15:84–90.CrossRefPubMedGoogle Scholar
  23. 23.
    Kolibianakis E, Bourgain C, Albano C, Osmanagaoglu K, Smitz J, Van Steirteghem A, et al. Effect of ovarian stimulation with recombinant follicle-stimulating hormone, gonadotropin releasing hormone antagonists, and human chorionic gonadotropin on endometrial maturation on the day of oocyte pick-up. Fertil Steril. 2002;78:1025–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Groothuis PG, Dassen HHNM, Romano A, Punyadeera C. Estrogen and the endometrium: lessons learned from gene expression profiling in rodents and human. Hum Reprod Update. 2007;13:405–17.CrossRefPubMedGoogle Scholar
  25. 25.
    Nikas G, Develioglu OH, Toner JP, Jones Jr HW. Endometrial pinopodes indicate a shift in the window of receptivity in IVF cycles. Hum Reprod. 1999;14:787–92.CrossRefPubMedGoogle Scholar
  26. 26.
    Venetis CA, Kolibianakis EM, Papanikolaou E, Bontis J, Devroey P, Tarlatzis BC. Is progesterone elevation on the day of human chorionic gonadotrophin administration associated with the probability of pregnancy in in vitro fertilization? A systematic review and meta-analysis. Hum Reprod Update. 2007;13:343–55.CrossRefPubMedGoogle Scholar
  27. 27.
    Kiliçdag EB, Haydardedeoglu B, Cok T, Hacivelioglu SO, Bagis T. Premature progesterone elevation impairs implantation and live birth rates in GnRH-agonist IVF/ICSI cycles. Arch Gynecol Obstet. 2010;281:747–52.CrossRefPubMedGoogle Scholar
  28. 28.
    Huang R, Fang C, Xu S, Yi Y, Liang X. Premature progesterone rise negatively correlated with birth rate in IVF cycles with GnRH agonist: an analysis of 2,566 cycles. Fertil Steril. 2012;98:664–70.CrossRefPubMedGoogle Scholar
  29. 29.
    Barnhart KT. Introduction: are we ready to eliminate the transfer of fresh embryos in in vitro fertilization? Fertil Steril. 2014;102:1–2.CrossRefPubMedGoogle Scholar
  30. 30.
    Melo MA, Meseguer M, Garrido N, Bosch E, Pellicer A, Remohi J. The significance of premature luteinization in an oocyte-donation programme. Hum Reprod. 2006;21:1503–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Check JH, Wilson C, Choe JK, Amui J, Brasile D. Evidence that high serum progesterone (P) levels on day of human chorionic gonadotropin (hCG) injection have no adverse effect on the embryo itself as determined by pregnancy outcome following embryo transfer using donated eggs. Clin Exp Obstet Gynecol. 2010;37:179–80.PubMedGoogle Scholar
  32. 32.
    Richter KS, Shipley SK, McVearry I, Tucker MJ, Widra EA. Cryopreserved embryo transfers suggest that endometrial receptivity may contribute to reduced success rates of later developing embryos. Fertil Steril. 2006;86:862–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Fanchin R, Righini C, Olivennes F, Taylor S, de Ziegler D, Frydman R. Uterine contractions at the time of embryo transfer alter pregnancy rates after in-vitro fertilization. Hum Reprod. 1998;13:1968–74.CrossRefPubMedGoogle Scholar
  34. 34.
    Fanchin R, Ayoubi JM, Olivennes F, Righini C, de Ziegler D, Frydman R. Hormonal influence on the uterine contractility during ovarian stimulation. Hum Reprod. 2000;15 Suppl 1:90–100.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhu L, Li Y, Xu A. Influence of controlled ovarian hyperstimulation on uterine peristalsis in infertile women. Hum Reprod. 2012;27:2684–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Moraloglu O, Tonguc E, Var T, Zeyrek T, Batioglu S. Treatment with oxytocin antagonists before embryo transfer may increase implantation rates after IVF. Reprod Biomed Online. 2010;21:338–43.CrossRefPubMedGoogle Scholar
  37. 37.
    Fanchin R, Ayoubi JM, Righini C, Olivennes F, Schönauer LM, Frydman R. Uterine contractility decreases at the time of blastocyst transfers. Hum Reprod. 2001;16:1115–9.CrossRefPubMedGoogle Scholar
  38. 38.
    de Mouzon J, Goossens V, Bhattacharya S, Castilla JA, Ferraretti AP, Korsak V, et al. Assisted reproductive technology in Europe, 2007: results generated from European registers by ESHRE. Hum Reprod. 2012;27:954–66.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Humaidan P, Quartarolo J, Papanikolaou EG. Preventing ovarian hyperstimulation syndrome: guidance for the clinician. Fertil Steril. 2010;94:389–400.CrossRefPubMedGoogle Scholar
  40. 40.
    Gómez R, Soares SR, Busso C, Garcia-Velasco JA, Simón C, Pellicer A. Physiology and pathology of ovarian hyperstimulation syndrome. Semin Reprod Med. 2010;28:448–57.CrossRefPubMedGoogle Scholar
  41. 41.
    Aboulghar M. Symposium: update on prediction and management of OHSS. Prevention of OHSS. Reprod Biomed Online. 2009;19:33–42.CrossRefPubMedGoogle Scholar
  42. 42.
    Devroey P, Polyzos NP, Blockeel C. An OHSS-Free Clinic by segmentation of IVF treatment. Hum Reprod. 2011;26:2593–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Kol S, Humaidan P. GnRH agonist triggering: recent developments. Reprod Biomed Online. 2013;26:226–30.CrossRefPubMedGoogle Scholar
  44. 44.
    Fatemi HM, Popovic-Todorovic B, Humaidan P, Kol S, Banker M, Devroey P, et al. Severe ovarian hyperstimulation syndrome after gonadotropin-releasing hormone (GnRH) agonist trigger and “freeze-all” approach in GnRH antagonist protocol. Fertil Steril. 2014;101:1008–11.CrossRefPubMedGoogle Scholar
  45. 45.
    Ling LP, Phoon JW, Lau MS, Chan JK, Viardot-Foucault V, Tan TY, et al. GnRH agonist trigger and ovarian hyperstimulation syndrome: rellok at ‘freeze-all strategy’. Reprod Biomed Online. 2014. doi: 10.1016/j.rbmo.2014.05.012.PubMedGoogle Scholar
  46. 46.
    Kuwayama M, Vatja G, Kato O, Leibo SP. Highly efficient vitrification methid for cryopreservation of human oocytes. Reprod Biomed Online. 2005;11:300–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Nagy ZP, Chang CC, Shapiro DB, Bernal DP, Kort HI, Vatja G. The efficacy and safety of human oocyte vitrification. Semin Reprod Med. 2009;27:450–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Cobo A, Meseguer M, Remohí J, Pellicer A. Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod. 2010;25:2239–46.CrossRefPubMedGoogle Scholar
  49. 49.
    Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983;305:707–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Bedoschi G, Oktay K. Current approach to fertility preservation by embryo cryopreservation. Fertil Steril. 2013;99:1496–502.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Loutradi KE, Kolibianakis EM, Venetis CA, Papanikolaou EG, Pados G, Bontis I, et al. Cryopreservation of human embryos by vitrification or slow freezing: a systematic review and meta-analysis. Fertil Steril. 2008;90:186–93.CrossRefPubMedGoogle Scholar
  52. 52.
    AbdelHafez FF, Desai N, Abou-Setta AM, Falcone T, Goldfarb J. Slow freezing, vitrification and ultra-rapid freezing of human embryos: a systematic review and meta-analysis. Reprod Biomed Online. 2010;20:209–22.CrossRefPubMedGoogle Scholar
  53. 53.
    Ishihara O, Araki R, Kuwahara A, Itakura A, Saito H, Adamson GD. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril. 2014;101:128–33.CrossRefPubMedGoogle Scholar
  54. 54.
    Liu SY, Teng B, Fu J, Li X, Zheng Y, Sun XX. Obstetric and neonatal outcomes after transfer of vitrified early cleavage embryos. Hum Reprod. 2013;28:2093–100.CrossRefPubMedGoogle Scholar
  55. 55.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Clinical rationale for cryopreservation of entire embryo cohorts in lieu of fresh transfer. Fertil Steril. 2014;102:3–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Aflatoonian A, Oskouian H, Ahmadi S, Oskouian L. Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles? A randomized controlled trial. J Assist Reprod Genet. 2010;27:357–63.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011;96:344–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders. Fertil Steril. 2011;96:516–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all can be a superior therapy to another fresh cycle in patients with prior fresh blastocyst implantation failure. Reprod Biomed Online. 2014;29:286–90. doi: 10.1016/j.rbmo.2014.04.009.CrossRefPubMedGoogle Scholar
  60. 60.
    Shapiro BS, Daneshmand ST, De Leon L, Garner FC, Aguirre M, Hudson C. Frozen-thawed embryo transfer is associated with significantly reduced incidence of ectopic pregnancy. Fertil Steril. 2012;98:1490–4.CrossRefPubMedGoogle Scholar
  61. 61.
    Wennerholm UB, Henningsen AK, Romundstad LB, Bergh C, Pinborg A, Skjaerven R, et al. Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group. Hum Reprod. 2013;28:2545–53.CrossRefPubMedGoogle Scholar
  62. 62.
    Pelkonen S, Hartikainen AL, Ritvanen A, Koivunen R, Martikainen H, Gissler M, et al. Major congenital anomalies in children born after frozen thawed embryo transfer: a cohort study 1995–2006. Hum Reprod. 2014;29.Google Scholar
  63. 63.
    Pinborg A, Henningsen AA, Loft A, Malchau SS, Forman J, Andersen AN. Large baby syndrome in singletons born after frozen embryo transfer (FET): is it due to maternal factors or the cryotechnique? Hum Reprod. 2014;29:618–27.CrossRefPubMedGoogle Scholar
  64. 64.
    Scott Jr RT, Franasiak JM, Forman EJ. Comprehensive chromosome screening with synchronous blastocyst transfer: time for a paradigm shift. Fertil Steril. 2014;102:660–1.CrossRefPubMedGoogle Scholar
  65. 65.
    Forman EJ, Hong KH, Ferry KM, Tao X, Taylor D, Levy B, et al. In vitro fertilization with single euploid blastocyst transfer: a randomized controlled trial. Fertil Steril. 2013;100:100–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Hill D, Surrey M, Danzer H, Ghadir S, Chang W, Barritt J. Significant improvement in pregnancy rates following frozen embryo transfers when combined with microarray-comparative genomic hybridization (aCGH). Fertil Steril. 2013;3:S108–9.CrossRefGoogle Scholar
  67. 67.
    Rubio C, Rodrigo L, Mir P, Mateu E, Peinado V, Milán M, et al. Use of array comparative genomic hybridization (array-CGH) for embryo assessment: clinical results. Fertil Steril. 2013;99:1044–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.ORIGEN – Center for Reproductive MedicineRio de JaneiroBrazil

Personalised recommendations