Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 31, Issue 4, pp 463–469 | Cite as

Improvement of mouse embryo quality by myo-inositol supplementation of IVF media

  • Sandra Colazingari
  • Maria Teresa Fiorenza
  • Gianfranco Carlomagno
  • Robert Najjar
  • Arturo Bevilacqua
Embryo Biology

Abstract

Objective

Myo-inositol (myoIns) has a positive role in mammalian development and human reproduction. Since experiments on farming species suggest a similar role in preimplantation development, we evaluated the hypothesis that the inclusion of myoIns in human embryo culture media would produce an increase in embryo quality in IVF cycles, using the mouse embryo assay.

Methods

To determine the effect of myoIns on completion of preimplantation development in vitro, one-cell embryos of the inbred C57BL/6N mouse strain were produced by ICSI, cultured in human fertilization media in the presence of myoIns (myoIns+) or in its absence (myoIns–) and evaluated morphologically. Daily progression through cleavage stages, blastocyst production and expansion and blastomere number at 96 hours post fertilization were assessed.

Results

Compared to myoIns– embryos, myoIns+ embryos displayed a faster cleavage rate and by the end of preimplantation development, the majority of myoIns+ blastocysts was expanded and formed by a higher number of blastomeres.

Conclusion

The presence of myoIns resulted in both an increase in proliferation activity and developmental rate of in vitro cultured early mouse embryos, representing a substantial improvement of culture conditions. These data may identify myoIns as an important supplement for human embryo preimplantation culture.

Keywords

In vitro fertilization Preimplantation embryo culture Myo-inositol Embryo quality Mouse 

Notes

Acknowledgments

This work was financially supported by “Ateneo” grants to AB.

We thank Lo.Li. Pharma for kindly providing Andrositol®LAB. We are also grateful to Dr. Robert P. Erickson for critically reading of the manuscript.

References

  1. 1.
    Bavister BD. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update. 1995;1:91–148.PubMedCrossRefGoogle Scholar
  2. 2.
    Beemster P, Groenen P, Steegers-Theunissen R. Involvement of inositol in reproduction. Nutr Rev. 2002;60(3):80–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Berridge MJ. Inositol trisphosphate and calcium oscillations. Adv Second Messenger Phosphoprotein Res. 1992;26:211–23.PubMedGoogle Scholar
  4. 4.
    Chiu TT, Rogers MS, Briton-Jones C, Haines C. Effects of myo-inositol on the in-vitro maturation and subsequent development of mouse oocytes. Hum Reprod. 2003;18(2):408–16.PubMedCrossRefGoogle Scholar
  5. 5.
    Chiu TT, Tam PP. A correlation of the outcome of clinical in vitro fertilization with the inositol content and embryotrophic properties of human serum. J Assist Reprod Genet. 1992;9(6):524–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Ciotta L, Stracquadanio M, Pagano I, Carbonaro A, Palumbo M, Gulino F. Effects of Myo-Inositol supplementation on oocyte’s quality in PCOS patients: a double blind trial. Eur Rev Med Pharmacol Sci. 2011;15(4):509–14.PubMedGoogle Scholar
  7. 7.
    Colazingari S, Treglia M, Najjar R, Bevilacqua A. The combined therapy myo-inositol plus D-chiro-inositol, rather than D-chiro-inositol, is able to improve IVF outcomes: results from a randomized controlled trial. Arch Gynecol Obstet. 2013;288(6):1405–11.PubMedCrossRefGoogle Scholar
  8. 8.
    Croze ML, Vella RE, Pillon NJ, Soula HA, Hadji L, Guichardant M, et al. Chronic treatment with myo-inositol reduces white adipose tissue accretion and improves insulin sensitivity in female mice. J Nutr Biochem. 2013;24(2):457–66.PubMedCrossRefGoogle Scholar
  9. 9.
    D’Anna R, Di Benedetto V, Rizzo P, Raffone E, Interdonato ML, Corrado F, et al. Myo-inositol may prevent gestational diabetes in PCOS women. Gynecol Endocrinol. 2012;28(6):440–2.PubMedCrossRefGoogle Scholar
  10. 10.
    D’Anna R, Scilipoti A, Giordano D, Caruso C, Cannata ML, Interdonato ML, et al. Myo-Inositol supplementation and onset of gestational diabetes mellitus in pregnant women with a family history of type 2 diabetes: a prospective, randomized, placebo-controlled study. Diabetes Care. 2013;36(4):854–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Downes CP, Macphee CH. Myo-inositol metabolites as cellular signals. Eur J Biochem. 1990;193(1):1–18.PubMedCrossRefGoogle Scholar
  12. 12.
    Ertzeid G, Storeng R. The impact of ovarian stimulation on implantation and fetal development in mice. Hum Reprod. 2001;16(2):221–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Fiorenza MT, Bevilacqua A, Canterini S, Torcia S, Pontecorvi M, Mangia F. Early transcriptional activation of the hsp70.1 gene by osmotic stress in one-cell embryos of the mouse. Biol Reprod. 2004;70:1606–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Fiorenza MT, Torcia S, Canterini S, Bevilacqua A, Narducci MG, Ragone G, et al. TCL1 promotes blastomere proliferation through nuclear transfer, but not direct phosphorylation, of AKT/PKB in early mouse embryos. Cell Death Differ. 2008;15:420–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Fujiwara T, Nakada K, Shirakawa H, Miyazaki S. Development of inositol trisphosphate-induced calcium release mechanism during maturation of hamster oocytes. Dev Biol. 1993;156(1):69–79.PubMedCrossRefGoogle Scholar
  16. 16.
    Gardner DK, Reed L, Linck D, Sheehan C, Lane M. Quality control in human in vitro fertilization. Semin Reprod Med. 2005;4:319–24.CrossRefGoogle Scholar
  17. 17.
    Greene NDE, Copp AJ. Inositol prevents folate resistant neural tube defects in the mouse. Nat Med. 1997;3:60–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Harlow GM, Quinn P. Development of preimplantation mouse embryos in vivo and in vitro. Aust J Biol Sci. 1982;35(2):187–93.PubMedGoogle Scholar
  19. 19.
    Higgins BD, Kane MT. Inositol transport in mouse oocytes and preimplantation embryos: effects of mouse strain, embryo stage, sodium and the hexose transport inhibitor, phloridzin. Reproduction. 2003;125:111–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology. 1999;52(4):683–700.PubMedCrossRefGoogle Scholar
  21. 21.
    Howlett SK, Bolton VN. Sequence and regulation of morphological and molecular events during the first cell cycle of mouse embryogenesis. J Embryol Exp Morpholog. 1985;87:175–206.Google Scholar
  22. 22.
    Kane MT, Norris M, Harrison RAP. Uptake and incorporation of inositol by preimplantation mouse embryos. J Reprod Fertil. 1992;96:617–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Kaneko T, Ohno R. Improvement in the development of oocytes from C57BL/6 mice after sperm injection. J Am Assoc Lab Anim Sci. 2011;50(1):33–6.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Kelly SJ, Mulnard JG, Graham CF. Cell division and cell allocation in early mouse development. J Embryol Exp Morpholog. 1978;48:37–51.Google Scholar
  25. 25.
    Khosla S, Dean W, Reik W, Feil R. Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum Reprod Update. 2001;7:419–27.PubMedCrossRefGoogle Scholar
  26. 26.
    Kimura Y, Yanagimachi R. Intracytoplasmic sperm injection in the mouse. Biol Reprod. 1995;52:709–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Klippel A, Kavanaugh WM, Pot D, Williams LT. A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol. 1997;17:338–44.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Kuretake S, Kimura Y, Hoshi K, Yanagimachi R. Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol Reprod. 1996;55:789–95.PubMedCrossRefGoogle Scholar
  29. 29.
    Kwon HM, Yamauchi A, Uchida S, Preston AS, Garcia-Perez A, Burg MB, et al. Cloning of the cDNA for a Na+/myo-inositol cotransporter, a hypertonicity stress protein. JBC. 1992;267:6297–301.Google Scholar
  30. 30.
    Lane M, Gardner DK. Embryo culture medium: which is the best? Best Pract Res Clin Obstet Gynaecol. 2007;21(1):83–100.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee MJ, Lee RK, Lin MH, Hwu YM. Cleavage speed and implantation potential of early-cleavage embryos in IVF or ICSI cycles. J Assist Reprod Genet. 2012;29(8):745–50.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Lim JJ, Eum JH, Lee JE, Kim ES, Chung HM, Yoon TK, et al. Stem cell factor/c-Kit signaling in in vitro cultures supports early mouse embryonic development by accelerating proliferation via a mechanism involving Akt-downstream genes. J Assist Reprod Genet. 2010;27(11):619–27.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Lim KT, Jang G, Ko KH, Lee WW, Park HJ, Kim JJ, et al. Improved in vitro bovine embryo development and increased efficiency in producing viable calves using defined media. Theriogenology. 2007;67(2):293–302.PubMedCrossRefGoogle Scholar
  34. 34.
    Lisi F, Carfagna P, Oliva MM, Rago R, Lisi R, Poverini R, et al. Pretreatment with myo-inositol in non polycystic ovary syndrome patients undergoing multiple follicular stimulation for IVF: a pilot study. Reprod Biol Endocrinol. 2012;10:52.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Maeda Y, Kinoshita T. Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res. 2011;50(4):411–24.PubMedCrossRefGoogle Scholar
  36. 36.
    McEvoy TG. Manipulation of domestic animal embryos and implications for development. Reprod Domest Anim. 2003;38:268–75.PubMedCrossRefGoogle Scholar
  37. 37.
    McKiernan SH, Bavister BD. Gonadotrophin stimulation of donor females decreases post-implantation viability of cultured one-cell hamster embryos. Hum Reprod. 1998;13(3):724–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Mehlmann LM, Kline D. Regulation of intracellular calcium in the mouse egg: calcium release in response to sperm or inositol trisphosphate is enhanced after meiotic maturation. Biol Reprod. 1994;51(6):1088–98.PubMedCrossRefGoogle Scholar
  39. 39.
    Molls M, Zamboglou N, Streffer C. A comparison of the cell kinetics of pre-implantation mouse embryos from two different mouse strains. Cell Tissue Kinet. 1983;16(3):277–83.PubMedGoogle Scholar
  40. 40.
    Narducci MG, Fiorenza MT, Kang S-M, Bevilacqua A, Remotti D, Di Giacomo M, et al. TCL1 participates in early embryonic development and is overexpressed in human seminomas. Proc Natl Acad Sci U S A. 2002;99:11712–7.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Pal L, Jindal S, Witt BR, Santoro N. Less is more ‥‥ Increased gonadotropin use for ovarian stimulation adversely influences clinical pregnancy and live birth following IVF. Fertil Steril. 2008;89(6):1694–701.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Papaleo E, Unfer V, Baillargeon JP, Fusi F, Occhi F, De Santis L. Myo-inositol may improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial. Fertil Steril. 2009;91(5):1750–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Pesty A, Avazeri N, Lefèvre B. Nuclear calcium release by InsP3-receptor channels plays a role in meiosis reinitiation in the mouse oocyte. Cell Calcium. 1998;24(4):239–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Punt-van der Zalm JP, Hendriks JC, Westphal JR, Kremer JA, Teerenstra S, Wetzels AM. Toxicity testing of human assisted reproduction devices using the mouse embryo assay. Reprod Biomed Online. 2009;4:529–35.CrossRefGoogle Scholar
  45. 45.
    Quirk Jr JG, Bleasdale JE. Myo-Inositol homeostasis in the human fetus. Obstet Gynecol. 1983;62(1):41–4.PubMedGoogle Scholar
  46. 46.
    Strange K, Morrison R, Heilig CW, DiPietro S, Gullans SR. Upregulation of inositol transport mediates inositol accumulation in hyperosmolar brain cells. Am J Physiol. 1991;260(4 Pt 1):C784–90.PubMedGoogle Scholar
  47. 47.
    Taniguchi F, Harada T, Nara M, Deura I, Mitsunari M, Terakawa N. Coculture with a human granulosa cell line enhanced the development of murine preimplantation embryos via SCF/c-kit system. J Assist Reprod Genet. 2004;21:223–8.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Unfer V, Carlomagno G, Rizzo P, Raffone E, Roseff S. Myo-inositol rather than D-chiro-inositol is able to improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial. Eur Rev Med Pharmacol Sci. 2011;15(4):452–7.PubMedGoogle Scholar
  49. 49.
    Van der Auwera I, D’Hooghe T. Superovulation of female mice delays embryonic and fetal development. Hum Reprod. 2001;16(6):1237–43.PubMedCrossRefGoogle Scholar
  50. 50.
    Walker SK, Hartwick KM, Seamark RF. The production of unusually large offspring following embryo manipulation: concepts and challenges. Theriogenology. 1996;45:111–20.CrossRefGoogle Scholar
  51. 51.
    Warner SM, Conlon FV, Kane MT. Inositol transport in preimplantation rabbit embryos: effects of embryo stage, sodium, osmolality and metabolic inhibitors. Reproduction. 2003;125(4):479–93. Erratum in: Reproduction 2005; 129(1): 128.PubMedCrossRefGoogle Scholar
  52. 52.
    Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500(7464):593–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sandra Colazingari
    • 1
    • 2
  • Maria Teresa Fiorenza
    • 1
    • 2
  • Gianfranco Carlomagno
    • 3
  • Robert Najjar
    • 4
  • Arturo Bevilacqua
    • 1
    • 2
  1. 1.Department of Psychology, Section of NeuroscienceSapienza University of RomeRomeItaly
  2. 2.“Centro di Ricerca in Neurobiologia Daniel Bovet” (CRiN)RomeItaly
  3. 3.Medical DepartmentLo.Li. PharmaRomeItaly
  4. 4.“Leda” Obstetrics and Gynecology CenterRomeItaly

Personalised recommendations