Journal of Assisted Reproduction and Genetics

, Volume 30, Issue 3, pp 353–359 | Cite as

Oocyte maturation and in vitro hormone production in small antral follicles (SAFs) isolated from rhesus monkeys

  • Marina C. Peluffo
  • Jon D. Hennebold
  • Richard L. Stouffer
  • Mary B. Zelinski
Gamete Biology

Abstract

Purpose

The small antral follicles (SAFs) from the ovarian medulla can be a potential source of oocytes for infertility patients, but little is known about their ability to yield mature oocytes. This study evaluated the response of these SAFs to a stimulatory bolus of human corionic gonadotropin (hCG) in vitro.

Methods

Oocyte nuclear maturation and hormone production (estradiol [E2], progesterone [P4]), antimullerian hormone [AMH]) by individual intact SAFs (n = 91; >0.5 mm; n = 5 monkeys) was evaluated after 34 h of culture in the absence (control) or presence of hCG.

Results

Of the total cohort (n = 91), 49 % of SAFs contained degenerating oocytes. The percentage of healthy oocytes able to reinitiate meiosis to the metaphase I (MI) and MII was greater (p < 0.05) after hCG compared to controls. E2, P4 and AMH levels were higher (p < 0.05) in SAF cultures containing germinal vesicle (GV) oocytes compared to those with MII oocytes regardless of hCG exposure. SAF with MI oocytes produced more E2, but less (p < 0.05) P4 and AMH compared to SAFs containing GV oocytes (p < 0.05). Follicles ≥1 mm produced more (p < 0.05) E2, whereas follicle diameter did not correlate with P4 or AMH levels. Only P4 increased (p < 0.05) in response to hCG, regardless of follicle size or oocyte maturity. SAFs containing degenerating oocytes produced similar levels of E2, P4 and AMH compared to SAFs containing healthy oocytes.

Conclusions

These data indicate, for the first time, that oocytes within primate SAFs can reinitiate meiosis in vitro in the absence of hCG, but nuclear maturation is enhanced in SAFs cultured with hCG. Oocyte nuclear maturation within SAFs in is associated with decreased E2, P4 and AMH levels. Furthermore, hormone content within the culture media does not necessarily reflect oocyte quality.

Keywords

Small antral follicle Oocyte maturation Rhesus monkey E2 P4 and AMH 

References

  1. 1.
    Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121(5):647–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Anckaert E, Smitz J, Schiettecatte J, Klein BM, Arce JC. The value of anti-Mullerian hormone measurement in the long GnRH agonist protocol: association with ovarian response and gonadotrophin-dose adjustments. Hum Reprod. 2012;27(6):1829–39.PubMedCrossRefGoogle Scholar
  3. 3.
    Combelles CM, Carabatsos MJ, Kumar TR, Matzuk MM, Albertini DF. Hormonal control of somatic cell oocyte interactions during ovarian follicle development. Mol Reprod Dev. 2004;69(3):347–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Comizzoli P, Pukazhenthi BS, Wildt DE. The competence of germinal vesicle oocytes is unrelated to nuclear chromatin configuration and strictly depends on cytoplasmic quantity and quality in the cat model. Hum Reprod. 2011;26(8):2165–77.PubMedCrossRefGoogle Scholar
  5. 5.
    Cortvrindt RG, Hu Y, Liu J, Smitz JE. Timed analysis of the nuclear maturation of oocytes in early preantral mouse follicle culture supplemented with recombinant gonadotropin. Fertil Steril. 1998;70(6):1114–25.PubMedCrossRefGoogle Scholar
  6. 6.
    dela Pena EC, Takahashi Y, Katagiri S, Atabay EC, Nagano M. Birth of pups after transfer of mouse embryos derived from vitrified preantral follicles. Reproduction. 2002;123(4):593–600.CrossRefGoogle Scholar
  7. 7.
    Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364(9443):1405–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, et al. Children born after autotransplantation of cryopreserved ovarian tissue. a review of 13 live births. Ann Med. 2011;43(6):437–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Duffy DM, Stouffer RL. Follicular administration of a cyclooxygenase inhibitor can prevent oocyte release without alteration of normal luteal function in rhesus monkeys. Hum Reprod. 2002;17(11):2825–31.PubMedCrossRefGoogle Scholar
  10. 10.
    Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122(6):829–38.PubMedCrossRefGoogle Scholar
  11. 11.
    Eppig JJ, O’Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod. 1996;54(1):197–207.PubMedCrossRefGoogle Scholar
  12. 12.
    Eppig JJ, Schroeder AC. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro. Biol Reprod. 1989;41(2):268–76.PubMedCrossRefGoogle Scholar
  13. 13.
    Hsueh AJ, Billig H, Tsafriri A. Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev. 1994;15(6):707–24.PubMedGoogle Scholar
  14. 14.
    Isachenko V, Lapidus I, Isachenko E, Krivokharchenko A, Kreienberg R, Woriedh M, et al. Human ovarian tissue vitrification versus conventional freezing: morphological, endocrinological, and molecular biological evaluation. Reproduction. 2009;138(2):319–27.PubMedCrossRefGoogle Scholar
  15. 15.
    Jeruss JS, Woodruff TK. Preservation of fertility in patients with cancer. N Engl J Med. 2009;360(9):902–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Koering MJ, Baehler EA, Goodman AL, Hodgen GD. Developing morphological asymmetry of ovarian follicular maturation in monkeys. Biol Reprod. 1982;27(4):989–97.PubMedCrossRefGoogle Scholar
  17. 17.
    Lin P, Rui R. Effects of follicular size and FSH on granulosa cell apoptosis and atresia in porcine antral follicles. Mol Reprod Dev. 2010;77(8):670–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu J, Van der Elst J, Van den Broecke R, Dhont M. Live offspring by in vitro fertilization of oocytes from cryopreserved primordial mouse follicles after sequential in vivo transplantation and in vitro maturation. Biol Reprod. 2001;64(1):171–8.PubMedCrossRefGoogle Scholar
  19. 19.
    McNatty KP, Hillier SG, van den Boogaard AM, Trimbos-Kemper TC, Reichert Jr LE, van Hall EV. Follicular development during the luteal phase of the human menstrual cycle. J Clin Endocrinol Metab. 1983;56(5):1022–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Meirow D, Ben Yehuda D, Prus D, Poliack A, Schenker JG, Rachmilewitz EA, et al. Ovarian tissue banking in patients with Hodgkin’s disease: is it safe? Fertil Steril. 1998;69(6):996–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y, et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med. 2005;353(3):318–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Pellatt L, Rice S, Dilaver N, Heshri A, Galea R, Brincat M, et al. Anti-Mullerian hormone reduces follicle sensitivity to follicle-stimulating hormone in human granulosa cells. Fertil Steril. 2011;96(5):1246–1251.Google Scholar
  23. 23.
    Peluffo MC, Barrett SL, Stouffer RL, Hennebold JD, Zelinski MB. Cumulus-oocyte complexes from small antral follicles during the early follicular phase of menstrual cycles in rhesus monkeys yield oocytes that reinitiate meiosis and fertilize in vitro. Biol Reprod. 2010;83(4):525–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Peluffo MC, Ting AY, Zamah AM, Conti M, Stouffer RL, Zelinski MB, et al. (2012) Amphiregulin promotes the maturation of oocytes isolated from the small antral follicles of the rhesus macaque. Hum Reprod.Google Scholar
  25. 25.
    Shaw J, Trounson A. Oncological implications in the replacement of ovarian tissue. Hum Reprod. 1997;12(3):403–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Sirard MA. Follicle environment and quality of in vitro matured oocytes. J Assist Reprod Genet. 2011;28(6):483–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Songsasen N, Woodruff TK, Wildt DE. In vitro growth and steroidogenesis of dog follicles are influenced by the physical and hormonal microenvironment. Reproduction. 2011;142(1):113–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Spears N, Boland NI, Murray AA, Gosden RG. Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile. Hum Reprod. 1994;9(3):527–32.PubMedGoogle Scholar
  29. 29.
    Ting AY, Yeoman RR, Lawson MS, Zelinski MB. In vitro development of secondary follicles from cryopreserved rhesus macaque ovarian tissue after slow-rate freeze or vitrification. Hum Reprod. 2011;26(9):2461–72.PubMedCrossRefGoogle Scholar
  30. 30.
    West-Farrell ER, Xu M, Gomberg MA, Chow YH, Woodruff TK, Shea LD. The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles. Biol Reprod. 2009;80(3):432–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Willis DS, Watson H, Mason HD, Galea R, Brincat M, Franks S. Premature response to luteinizing hormone of granulosa cells from anovulatory women with polycystic ovary syndrome: relevance to mechanism of anovulation. J Clin Endocrinol Metab. 1998;83(11):3984–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Wolf DP, Thomson JA, Zelinski-Wooten MB, Stouffer RL. In vitro fertilization-embryo transfer in nonhuman primates: the technique and its applications. Mol Reprod Dev. 1990;27(3):261–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Xu J, Lawson MS, Yeoman RR, Pau KY, Barrett SL, Zelinski MB, et al. Secondary follicle growth and oocyte maturation during encapsulated three-dimensional culture in rhesus monkeys: effects of gonadotrophins, oxygen and fetuin. Hum Reprod. 2011;26(5):1061–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Xu J, Yeoman RR, Lawson MS, Stouffer RL, Zelinski MB (2009) Dose-dependent effects of gonadotropin, oxygen, and fetuin on macaque follicle survival, growth, and maturation during encapsulated three-dimensional culture. Paper presented at the 42nd Annual Meeting of the Society for the Study of Reproduction, Pittsburgh, Pennsylvania.Google Scholar
  35. 35.
    Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, et al. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod. 2009;24(10):2531–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Xu M, West-Farrell ER, Stouffer RL, Shea LD, Woodruff TK, Zelinski MB. Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol Reprod. 2009;81(3):587–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marina C. Peluffo
    • 1
    • 2
  • Jon D. Hennebold
    • 2
    • 3
  • Richard L. Stouffer
    • 2
    • 3
  • Mary B. Zelinski
    • 2
  1. 1.Centro de Investigaciones Endocrinológicas (CEDIE-CONICET)Hospital de Niños Ricardo GutierrezCiudad Autónoma de Buenos AiresArgentina
  2. 2.Division of Reproductive and Developmental Sciences, Oregon National Primate Research CenterOregon Health & Science University West CampusBeavertonUSA
  3. 3.Department of Obstetrics and GynecologyOregon Health & Science UniversityPortlandUSA

Personalised recommendations