Journal of Assisted Reproduction and Genetics

, Volume 31, Issue 3, pp 313–321 | Cite as

Intracellular glutathione content, developmental competence and expression of apoptosis-related genes associated with G6PDH-activity in goat oocyte

  • Amir Hossein Abazari-Kia
  • Abdollah Mohammadi-Sangcheshmeh
  • Maryam Dehghani-Mohammadabadi
  • Fatemeh Jamshidi-Adegani
  • Arash Veshkini
  • Mahdi Zhandi
  • Mehmet Ulas Cinar
  • Mohammad SalehiEmail author
Gamete Biology



To associate glucose-6-phosphate dehydrogenase (G6PDH) activity in goat oocytes with intracellular glutathione (GSH) content, meiotic competence, developmental potential, and relative abundance of Bax and Bcl-2 genes transcripts.


Goat oocytes were exposed to brilliant cresyl blue (BCB) staining test and categorized into BCB+ (blue-cytoplasm), and BCB (colorless-cytoplasm) groups. A group of oocytes were not exposed to BCB test and was considered as a control group. After maturation in vitro, a group of oocytes were used for determination of nuclear status and intracellular GSH content while another group was subjected to parthenogenetic activation followed by in vitro embryo culture.


We found that BCB+ oocytes not only yielded higher rate of maturation, but also showed an increased level of intracellular GSH content than BCB and control oocytes. Furthermore, BCB+ oocytes produced more blastocysts than BCB and control oocytes. Our data revealed that the expression of anti-apoptotic (Bcl-2) and pro-apoptotic (Bax) genes were interacted with G6PDH-activity in mature oocyte, their surrounding cumulus cells, and blastocyst-stage embryos.


The results of this study demonstrate that selection of goat oocytes based on G6PDH-activity through the BCB test improves their developmental competence, increases intracellular GSH content, and affects the expression of the apoptosis-related genes.


BCB Goat oocyte Glutathione Apoptosis-related gene Development 



This work was supported by Stem Cell Technology Research Center (Tehran, Iran). The authors thank the members of their teams for their technical expertise and support.


  1. 1.
    Mermillod P, Dalbies-Tran R, Uzbekova S, Thelie A, Traverso JM, Perreau C, et al. Factors affecting oocyte quality: who is driving the follicle? Reprod Domest Anim. 2008;43 Suppl 2:393–400. doi: 10.1111/j.1439-0531.2008.01190.x.PubMedCrossRefGoogle Scholar
  2. 2.
    Sirard MA. Follicle environment and quality of in vitro matured oocytes. J Assist Reprod Genet. 2011;28(6):483–8. doi: 10.1007/s10815-011-9554-4.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wang Q, Sun QY. Evaluation of oocyte quality: morphological, cellular and molecular predictors. Reprod Fertil Dev. 2007;19(1):1–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Beall S, Brenner C, Segars J. Oocyte maturation failure: a syndrome of bad eggs. Fertil Steril. 2010;94(7):2507–13.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Molinari E, Evangelista F, Racca C, Cagnazzo C, Revelli A. Polarized light microscopy-detectable structures of human oocytes and embryos are related to the likelihood of conception in IVF. J Assist Reprod Genet. 2012;29(10):1117–22. doi: 10.1007/s10815-012-9840-9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Nel-Themaat L, Nagy ZP. A review of the promises and pitfalls of oocyte and embryo metabolomics. Placenta. 2011;32 Suppl 3:S257–63. doi: 10.1016/j.placenta.2011.05.011.PubMedCrossRefGoogle Scholar
  7. 7.
    Ruvolo G, Fattouh RR, Bosco L, Brucculeri AM, Cittadini E. New molecular markers for the evaluation of gamete quality. J Assist Reprod Genet. 2013;30(2):207–12. doi: 10.1007/s10815-013-9943-y.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Alm H, Torner H, Lohrke B, Viergutz T, Ghoneim IM, Kanitz W. Bovine blastocyst development rate in vitro is influenced by selection of oocytes by brillant cresyl blue staining before IVM as indicator for glucose-6-phosphate dehydrogenase activity. Theriogenology. 2005;63(8):2194–205. doi: 10.1016/j.theriogenology.2004.09.050.PubMedCrossRefGoogle Scholar
  9. 9.
    Bhojwani S, Alm H, Torner H, Kanitz W, Poehland R. Selection of developmentally competent oocytes through brilliant cresyl blue stain enhances blastocyst development rate after bovine nuclear transfer. Theriogenology. 2007;67(2):341–5. doi: 10.1016/j.theriogenology.2006.08.006.PubMedCrossRefGoogle Scholar
  10. 10.
    Pujol M, Lopez-Bejar M, Paramio MT. Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test. Theriogenology. 2004;61(4):735–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Roca J, Martinez E, Vazquez JM, Lucas X. Selection of immature pig oocytes for homologous in vitro penetration assays with the brilliant cresyl blue test. Reprod Fertil Dev. 1998;10(6):479–85.PubMedCrossRefGoogle Scholar
  12. 12.
    Rodriguez-Gonzalez E, Lopez-Bejar M, Velilla E, Paramio MT. Selection of prepubertal goat oocytes using the brilliant cresyl blue test. Theriogenology. 2002;57(5):1397–409.PubMedCrossRefGoogle Scholar
  13. 13.
    Koester M, Mohammadi-Sangcheshmeh A, Montag M, Rings F, Schimming T, Tesfaye D, et al. Evaluation of bovine zona pellucida characteristics in polarized light as a prognostic marker for embryonic developmental potential. Reproduction. 2011;141(6):779–87. doi: 10.1530/REP-10-0471.PubMedCrossRefGoogle Scholar
  14. 14.
    Mohammadi-Sangcheshmeh A, Held E, Ghanem N, Rings F, Salilew-Wondim D, Tesfaye D, et al. G6PDH-activity in equine oocytes correlates with morphology, expression of candidate genes for viability, and preimplantative in vitro development. Theriogenology. 2011;76(7):1215–26. doi: 10.1016/j.theriogenology.2011.05.025.PubMedCrossRefGoogle Scholar
  15. 15.
    Mohammadi-Sangcheshmeh A, Held E, Rings F, Ghanem N, Salilew-Wondim D, Tesfaye D, et al. Developmental competence of equine oocytes: impacts of zona pellucida birefringence and maternally derived transcript expression. Reprod Fertil Dev. 2013. doi: 10.1071/RD12303.PubMedGoogle Scholar
  16. 16.
    Mohammadi-Sangcheshmeh A, Soleimani M, Deldar H, Salehi M, Soudi S, Hashemi SM, et al. Prediction of oocyte developmental competence in ovine using glucose-6-phosphate dehydrogenase (G6PDH) activity determined at retrieval time. J Assist Reprod Genet. 2012;29(2):153–8. doi: 10.1007/s10815-011-9625-6.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Cetica P, Pintos L, Dalvit G, Beconi M. Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction. 2002;124(5):675–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Ghanem N, Holker M, Rings F, Jennen D, Tholen E, Sirard MA, et al. Alterations in transcript abundance of bovine oocytes recovered at growth and dominance phases of the first follicular wave. BMC Dev Biol. 2007;7:90. doi: 10.1186/1471-213X-7-90.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Furnus CC, de Matos DG, Picco S, Garcia PP, Inda AM, Mattioli G, et al. Metabolic requirements associated with GSH synthesis during in vitro maturation of cattle oocytes. Anim Reprod Sci. 2008;109(1–4):88–99. doi: 10.1016/j.anireprosci.2007.12.003.PubMedCrossRefGoogle Scholar
  20. 20.
    Luberda Z. The role of glutathione in mammalian gametes. Reprod Biol. 2005;5(1):5–17.PubMedGoogle Scholar
  21. 21.
    Nabenishi H, Ohta H, Nishimoto T, Morita T, Ashizawa K, Tsuzuki Y. The effects of cysteine addition during in vitro maturation on the developmental competence, ROS, GSH and apoptosis level of bovine oocytes exposed to heat stress. Zygote. 2012;20(3):249–59. doi: 10.1017/S0967199411000220.PubMedCrossRefGoogle Scholar
  22. 22.
    Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta. 2003;333(1):19–39.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim MK, Hossein MS, Oh HJ, Fibrianto HY, Jang G, Kim HJ, et al. Glutathione content of in vivo and in vitro matured canine oocytes collected from different reproductive stages. J Vet Med Sci Jpn Soc Vet Sci. 2007;69(6):627–32.CrossRefGoogle Scholar
  24. 24.
    Zhou P, Wu YG, Li Q, Lan GC, Wang G, Gao D, et al. The interactions between cysteamine, cystine and cumulus cells increase the intracellular glutathione level and developmental capacity of goat cumulus-denuded oocytes. Reproduction. 2008;135(5):605–11. doi: 10.1530/REP-08-0003.PubMedCrossRefGoogle Scholar
  25. 25.
    Thompson JG, Gardner DK, Pugh PA, McMillan WH, Tervit HR. Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biol Reprod. 1995;53(6):1385–91.PubMedCrossRefGoogle Scholar
  26. 26.
    You BR, Park WH. The effects of antimycin A on endothelial cells in cell death, reactive oxygen species and GSH levels. Toxicol in Vitro. 2010;24(4):1111–8. doi: 10.1016/j.tiv.2010.03.009.PubMedCrossRefGoogle Scholar
  27. 27.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262.PubMedCrossRefGoogle Scholar
  28. 28.
    Catala MG, Izquierdo D, Rodriguez-Prado M, Hammami S, Paramio MT. Effect of oocyte quality on blastocyst development after in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) in a sheep model. Fertil Steril. 2012;97(4):1004–8. doi: 10.1016/j.fertnstert.2011.12.043.PubMedCrossRefGoogle Scholar
  29. 29.
    Catala MG, Izquierdo D, Uzbekova S, Morato R, Roura M, Romaguera R, et al. Brilliant Cresyl Blue stain selects largest oocytes with highest mitochondrial activity, maturation-promoting factor activity and embryo developmental competence in prepubertal sheep. Reproduction. 2011;142(4):517–27. doi: 10.1530/REP-10-0528.PubMedCrossRefGoogle Scholar
  30. 30.
    Manjunatha BM, Gupta PS, Devaraj M, Ravindra JP, Nandi S. Selection of developmentally competent buffalo oocytes by brilliant cresyl blue staining before IVM. Theriogenology. 2007;68(9):1299–304. doi: 10.1016/j.theriogenology.2007.08.031.PubMedCrossRefGoogle Scholar
  31. 31.
    Silva DS, Rodriguez P, Galuppo A, Arruda NS, Rodrigues JL. Selection of bovine oocytes by brilliant cresyl blue staining: effect on meiosis progression, organelle distribution and embryo development. Zygote. 2013;21(3):250–5. doi: 10.1017/S0967199411000487.PubMedCrossRefGoogle Scholar
  32. 32.
    El Shourbagy SH, Spikings EC, Freitas M, St John JC. Mitochondria directly influence fertilisation outcome in the pig. Reproduction. 2006;131(2):233–45. doi: 10.1530/rep.1.00551.PubMedCrossRefGoogle Scholar
  33. 33.
    Mota GB, Batista RI, Serapiao RV, Boite MC, Viana JH, Torres CA, et al. Developmental competence and expression of the MATER and ZAR1 genes in immature bovine oocytes selected by brilliant cresyl blue. Zygote. 2010;18(3):209–16. doi: 10.1017/S0967199409990219.PubMedCrossRefGoogle Scholar
  34. 34.
    Opiela J, Katska-Ksiazkiewicz L, Lipinski D, Slomski R, Bzowska M, Rynska B. Interactions among activity of glucose-6-phosphate dehydrogenase in immature oocytes, expression of apoptosis-related genes Bcl-2 and Bax, and developmental competence following IVP in cattle. Theriogenology. 2008;69(5):546–55. doi: 10.1016/j.theriogenology.2007.11.001.PubMedCrossRefGoogle Scholar
  35. 35.
    Opiela J, Lipinski D, Slomski R, Katska-Ksiazkiewicz L. Transcript expression of mitochondria related genes is correlated with bovine oocyte selection by BCB test. Anim Reprod Sci. 2010;118(2–4):188–93. doi: 10.1016/j.anireprosci.2009.07.007.PubMedCrossRefGoogle Scholar
  36. 36.
    Opiela J, Katska-Ksiazkiewicz L. The utility of Brilliant Cresyl Blue (BCB) staining of mammalian oocytes used for in vitro embryo production (IVP). Reprod Biol. 2013;13(3):177–83. doi: 10.1016/j.repbio.2013.07.004.PubMedCrossRefGoogle Scholar
  37. 37.
    Egerszegi I, Alm H, Ratky J, Heleil B, Brussow KP, Torner H. Meiotic progression, mitochondrial features and fertilisation characteristics of porcine oocytes with different G6PDH activities. Reprod Fertil Dev. 2010;22(5):830–8. doi: 10.1071/RD09140.PubMedCrossRefGoogle Scholar
  38. 38.
    Ericsson SA, Boice ML, Funahashi H, Day BN. Assessment of porcine oocytes using brilliant cresyl blue. Theriogenology. 1993;39(1):214.CrossRefGoogle Scholar
  39. 39.
    Wu YG, Liu Y, Zhou P, Lan GC, Han D, Miao DQ, et al. Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: a study using the mouse model. Cell Res. 2007;17(8):722–31. doi: 10.1038/cr.2007.66.PubMedCrossRefGoogle Scholar
  40. 40.
    Bettegowda A, Lee KB, Smith GW. Cytoplasmic and nuclear determinants of the maternal-to-embryonic transition. Reprod Fertil Dev. 2008;20(1):45–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006;65(1):126–36. doi: 10.1016/j.theriogenology.2005.09.020.PubMedCrossRefGoogle Scholar
  42. 42.
    Krisher RL. The effect of oocyte quality on development. J Anim Sci. 2004;82(E-Suppl):E14–23.PubMedGoogle Scholar
  43. 43.
    Warner CM, Cao W, Exley GE, McElhinny AS, Alikani M, Cohen J, et al. Genetic regulation of egg and embryo survival. Hum Reprod. 1998;13 Suppl 3:178–90. discussion 91-6.PubMedCrossRefGoogle Scholar
  44. 44.
    Boumela I, Assou S, Aouacheria A, Haouzi D, Dechaud H, De Vos J, et al. Involvement of BCL2 family members in the regulation of human oocyte and early embryo survival and death: gene expression and beyond. Reproduction. 2011;141(5):549–61. doi: 10.1530/REP-10-0504.PubMedCrossRefGoogle Scholar
  45. 45.
    Janowski D, Salilew-Wondim D, Torner H, Tesfaye D, Ghanem N, Tomek W, et al. Incidence of apoptosis and transcript abundance in bovine follicular cells is associated with the quality of the enclosed oocyte. Theriogenology. 2012;78(3):656–69 e1–5. doi: 10.1016/j.theriogenology.2012.03.012.PubMedCrossRefGoogle Scholar
  46. 46.
    Li HJ, Liu DJ, Cang M, Wang LM, Jin MZ, Ma YZ, et al. Early apoptosis is associated with improved developmental potential in bovine oocytes. Anim Reprod Sci. 2009;114(1–3):89–98. doi: 10.1016/j.anireprosci.2008.09.018.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Amir Hossein Abazari-Kia
    • 1
  • Abdollah Mohammadi-Sangcheshmeh
    • 2
  • Maryam Dehghani-Mohammadabadi
    • 1
  • Fatemeh Jamshidi-Adegani
    • 1
  • Arash Veshkini
    • 2
  • Mahdi Zhandi
    • 3
  • Mehmet Ulas Cinar
    • 4
  • Mohammad Salehi
    • 5
    Email author
  1. 1.Department of Transgenic Animal ScienceStem Cell Technology Research CenterTehranIran
  2. 2.Department of Animal and Poultry Science, College of AburaihanUniversity of TehranPakdashtIran
  3. 3.Department of Animal Science, College of Agriculture and Natural ResourcesUniversity of TehranKarajIran
  4. 4.Department of Animal Science, Faculty of AgricultureErciyes UniversityKayseriTurkey
  5. 5.Department of Biotechnology, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations