Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 31, Issue 1, pp 109–114 | Cite as

Long-term treatment of hydrogen-rich saline abates testicular oxidative stress induced by nicotine in mice

  • Shu Li
  • DanDan Lu
  • Yaling Zhang
  • Yi Zhang
Gonadal physiology and disease

Abstract

Purpose

The present study was designed to test the hypothesis that long-term treatment with hydrogen-rich saline abated testicular oxidative stress induced by nicotine in mice.

Methods

The effects of hydrogen-rich saline (6 ml/kg, i.p.), vitamin C (60 mg/kg, i.p.) and vitamin E (100 mg/kg, i.p.) on reproductive system and testicular oxidative levels in nicotine-treated (4.5 mg/kg, s.b.) mice were investigated.

Results

It was found that vitamin C and vitamin E attenuated serum oxidative level, but did not lower testicular oxidative levels in mice subjected to chronic nicotine treatment, and did not improve the male reproductive damage and apoptosis induced by nicotine. Different from normal antioxidants, vitamin C and vitamin E, hydrogen-rich saline abated oxidative stress in testis, and protected against nicotine-induced male reproductive damages.

Conclusion

Our results first demonstrated that long-term treatment with hydrogen-rich saline attenuated testicular oxidative level and improved male reproductive function in nicotine-treated mice.

Keywords

Hydrogen-rich saline Vitamin C Vitamin E Male reproductive system Oxidative stress Apoptosis 

References

  1. 1.
    Takenawa J, Kaneko Y, Okumura K, Nakayama H, Fujita J, Yoshida O. Urinary excretion of mutagens and covalent DNA damage induced in the bladder and kidney after passive smoking in rats. Urol Res. 1994;22:93–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Sofikitis N, Miyagawa I, Dimitriadis D, Zavos P, Sikka S, Hellstrom W. Effects of smoking on testicular function, semen quality and sperm fertilizing capacity. J Urol. 1995;154:1030–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Kavitharaj NK, Vijayammal PL. Nicotine administration induced changes in the gonadal functions in male rats. Pharmacology. 1999;58:2–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Yamamoto Y, Isoyama E, Sofikitis N, Miyagawa I. Effects of smoking on testicular function and fertilizing potential in rats. Urol Res. 1998;26:45–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Aydos K, Guven MC, Can B, Ergun A. Nicotine toxicity to the ultrastructure of the testis in rats. BJU Int. 2001;88:622–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Stillman RJ, Rosenberg MJ, Sachs BP. Smoking and reproduction. Fertil Steril. 1986;46:545–9.PubMedGoogle Scholar
  7. 7.
    Pacifici R, Altieri I, Gandini L, Lenzi A, Pichini S, Rosa M, et al. Nicotine, cotinine, and trans-3-hydroxycotinine levels in seminal plasma of smokers: effects on sperm parameters. Ther Drug Monit. 1993;15:358–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Yeh J, Barbieri RL, Friedman AJ. Nicotine and cotinine inhibit rat testis androgen biosynthesis in vitro. J Steroid Biochem. 1989;33:627–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Jana K, Samanta PK, De DK. Nicotine diminishes testicular gametogenesis, steroidogenesis, and steroidogenic acute regulatory protein expression in adult albino rats: possible influence on pituitary gonadotropins and alteration of testicular antioxidant status. Toxicol Sci. 2010;116:647–59.PubMedCrossRefGoogle Scholar
  10. 10.
    Reddy S, Londonkar R, Reddy S, Patil SB. Testicular changes due to graded doses of nicotine in albino mice. Indian J Physiol Pharmacol. 1998;42:276–80.PubMedGoogle Scholar
  11. 11.
    Erat M, Ciftci M, Gumustekin K, Gul M. Effects of nicotine and vitamin E on glutathione reductase activity in some rat tissues in vivo and in vitro. Eur J Pharmacol. 2007;554:92–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13:688–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Cai J, Kang Z, Liu WW, Luo X, Qiang S, Zhang JH, et al. Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neurosci Lett. 2008;441:167–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Buchholz BM, Kaczorowski DJ, Sugimoto R, Yang R, Wang Y, Billiar TR, et al. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant. 2008;8:2015–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun. 2007;361:670–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, et al. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun. 2008;373:30–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Sun Q, Kang Z, Cai J, Liu W, Liu Y, Zhang JH, et al. Hydrogenrich saline protects myocardium against ischemia/reperfusion injury in rats. Exp Biol Med. 2009;234:1212–9.CrossRefGoogle Scholar
  18. 18.
    Lyras L, Evans PJ, Shaw PJ, Ince PG, Halliwell B. Oxidative damage and motor neurone disease difficulties in the measurement of protein carbonyls in human brain tissue. Free Radic Res. 1996;24:397–406.PubMedCrossRefGoogle Scholar
  19. 19.
    Guemouri L, Lecomte E, Herbeth B, Pirollet P, Paille F, Siest G, et al. Blood activities of antioxidant enzymes in alcoholics before and after withdrawal. J Stud Alcohol. 1993;54:626–9.PubMedGoogle Scholar
  20. 20.
    Jenkins RR, Goldfarb A. Introduction: oxidant stress, aging, and exercise. Med Sci Sports Exerc. 1993;25:210–2.PubMedGoogle Scholar
  21. 21.
    Leanderson P, Tagesson C. Cigarette smoke-induced DNA damage in cultured human lung cells: role of hydroxyl radicals and endonuclease activation. Chem Biol Interact. 1992;81:197–208.PubMedCrossRefGoogle Scholar
  22. 22.
    Wetscher GJ, Bagchi M, Bagchi D, Perdikis G, Hinder PR, Glaser K, et al. Free radical production in nicotine treated pancreatic tissue. Free Radic Biol Med. 1995;18:877–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Anandatheerthavarada HK, Williams JF, Wecker L. The chronic administration of nicotine induces cytochrome P450 in rat brain. J Neurochem. 1993;60:1941–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Ashakumary L, Vijayammal PL. Lipid peroxidation in nicotine treated rats. J Ecotoxicol Environ Monit. 1991;1:283–90.Google Scholar
  25. 25.
    Bhagwat SV, Vijayasarathy C, Raza H, Mullick J, Avadhani NG. Preferential effects of nicotine and 4-(N-methyl-N-nitrosamine)-1-(3- pyridyl)-1-butanone on mitochondrial glutathione S-transferase A4-4 induction and increased oxidative stress in the rat brain. Biochem Pharmacol. 1998;56:831–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci. 1993;686:12–27.PubMedCrossRefGoogle Scholar
  27. 27.
    Maher P, Salgado KF, Zivin JA, Lapchak PA. A novel approach to screening for new neuroprotective compounds for the treatment of stroke. Brain Res. 2007;1173:117–25.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PharmacyNavy General HospitalBeijingPeople’s Republic of China
  2. 2.Beijing Institute of Radiation MedicineBeijingPeople’s Republic of China

Personalised recommendations