Journal of Assisted Reproduction and Genetics

, Volume 29, Issue 12, pp 1435–1442 | Cite as

1H NMR based profiling of spent culture media cannot predict success of implantation for day 3 human embryos

  • Paolo Rinaudo
  • Shehua Shen
  • Jia Hua
  • Su Qian
  • Uday Prabhu
  • Erwin Garcia
  • Marcelle Cedars
  • Dinesh Sukumaran
  • Thomas Szyperski
  • Chris Andrews
Technological Innovations

Abstract

Background

Identification of a non-invasive technique to assess embryo implantation potential in assisted reproduction would greatly increase success rates and lead more efficiently to single embryo transfer. Early studies suggested metabonomic analysis of spent culture media could improve embryo selection. The goal of this study is to assess if embryo implantation can be predicted based on proton nuclear magnetic resonance (1H NMR) profiles of spent embryo culture media from patients undergoing transfer of multiple embryos on cycle day 3.

Method

We conducted a retrospective study in an academic assisted reproduction technology (ART) program and analyzed the data in a university research center. Two hundred twenty-eight spent culture media samples originating from 108 patients were individually analyzed. Specifically, five distinct sets (1 to 5) of different types of spent media samples (volume ~14 μL) from embryos that resulted in clinical pregnancy (positive heart rate at 6 weeks gestation) (n 1 = 29; n 2 = 19; n 3 = 9; n 4 = 12; n 5 = 33; n total = 102) and from embryos that did not implant (n 1 = 28; n 2 = 29; n 3 = 18; n 4 = 15; n 5 = 36; n total = 126) were collected on day 3 of embryo growth. The media samples were profiled using 1H NMR spectroscopy, and the NMR profiles of sets 1 to 5 were subject to standard uni- and multi-variate data analyses in order to evaluate potential correlation of profiles with implantation success.

Results

For set 1 of the media samples, a borderline class separation of NMR profiles was obtained by use of principal component analysis (PCA) and logistic regression. This tentative class separation could not be repeated and validated in any of the other media sets 2 to 5.

Conclusions

Despite the rigorous technical approach, 1H NMR based profiling of spent culture media cannot predict success of implantation for day 3 human embryos.

Keywords

ART 1H NMR Metabonomics IVF Implantation success 

Supplementary material

10815_2012_9877_MOESM1_ESM.doc (285 kb)
Supplemental Figure 1 Carr-Purcell-Meiboom-Gill (CPMG) 1D 1H NMR spectrum recorded on an INOVA 600 spectrometer equipped with a PROTASIS micro-flow probe for a media specimen (G1.3 medium with HSA) of an embryo that implanted into the uterus. The CPMG procedure eliminates signals arising from biological macromolecules so that only the resonance lines of the low molecular weight metabolites are registered. Chemical shifts are relative to 2,2-Dimethyl-2-silapentane-5-sulfonic acid. The left upper corner insert represents an expansion of the boxed part of the spectrum. Selected resonance assignments of metabolites are indicated: Ala-Gln: Alanyl-Gutamine, Asp: Aspartate, Cit: Citrate, Glu: Glucose, Pro: Proline, Pyr: Pyruvate, Tau: Taurine. Some of the resonance lines of compounds that have thus far not been identified are located in the downfield spectral region between 6 and 9 ppm. (DOC 285 kb)

References

  1. 1.
    2009 Guidelines on number of embryos transferred. Fertil Steril. 92 1518–9.Google Scholar
  2. 2.
    Adler W, Brenning A, Patapov S, Schmid M, Lausen B. Ensemble classification of paired data. Comput Stat Data Anal. 2011;55:1933–41.CrossRefGoogle Scholar
  3. 3.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological). 1995;57:289–300.Google Scholar
  4. 4.
    Blake DA, Farquhar CM, Johnson N, Proctor M. Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev. 2007;CD002118.Google Scholar
  5. 5.
    Conaghan J, Hardy K, Handyside AH, Winston RM, Leese HJ. Selection criteria for human embryo transfer: a comparison of pyruvate uptake and morphology. J Assist Reprod Genet. 1993;10:21–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Frattarelli JL, Leondires MP, McKeeby JL, Miller BT, Segars JH. Blastocyst transfer decreases multiple pregnancy rates in in vitro fertilization cycles: a randomized controlled trial. Fertil Steril. 2003;79:228–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Garcia E, Andrews C, Hua J, Kim HL, Sukumaran DK, Szyperski T, Odunsi K. Diagnosis of early stage ovarian cancer by 1H NMR metabonomics of serum explored by use of a microflow NMR probe. J Proteome Res. 2011;10:1765–71.PubMedCrossRefGoogle Scholar
  8. 8.
    Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril. 2001;76:1175–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Gardner DK, Wale PL, Collins R, Lane M. Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum Reprod. 2011;26:1981–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Grady R, Alavi N, Vale R, Khandwala M, McDonald SD. Elective single embryo transfer and perinatal outcomes: a systematic review and meta-analysis. Fertil Steril. 2012;97:324–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Hardarson T, Ahlstrom A, Rogberg L, Botros L, Hillensjo T, Westlander G, Sakkas D, Wikland M. Non-invasive metabolomic profiling of Day 2 and 5 embryo culture medium: a prospective randomized trial. Hum Reprod. 2012;27:89–96.PubMedCrossRefGoogle Scholar
  12. 12.
    Janvier A, Spelke B, Barrington KJ. The epidemic of multiple gestations and neonatal intensive care unit use: the cost of irresponsibility. J Pediatr. 2011;159:409–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Kallen B, Finnstrom O, Lindam A, Nilsson E, Nygren KG, Olausson PO. Blastocyst versus cleavage stage transfer in in vitro fertilization: differences in neonatal outcome? Fertil Steril. 2010;94:1680–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Kawachiya S, Bodri D, Shimada N, Kato K, Takehara Y, Kato O. Blastocyst culture is associated with an elevated incidence of monozygotic twinning after single embryo transfer. Fertil Steril. 2011;95:2140–2.PubMedCrossRefGoogle Scholar
  15. 15.
    Lindon JC, Nicholson JK, Holmes E. The Handbook of metabonomics and metabolomics. Amsterdam: Elsevier; 2007.Google Scholar
  16. 16.
    Mastenbroek S, van der Veen F, Aflatoonian A, Shapiro B, Bossuyt P, Repping S. Embryo selection in IVF. Hum Reprod. 2011;26:964–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Nel-Themaat L, Nagy ZP. A review of the promises and pitfalls of oocyte and embryo metabolomics. Placenta. 2011;32 Suppl 3:S257–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Pudakalakatti SM, Uppangala S, D’Souza F, Kalthur G, Kumar P, Adiga SK, Atreya HS. NMR studies of preimplantation embryo metabolism in human assisted reproductive techniques: a new biomarker for assessment of embryo implantation potential. NMR Biomed. 2012Google Scholar
  19. 19.
    Racowsky C, Vernon M, Mayer J, Ball GD, Behr B, Pomeroy KO, Wininger D, Gibbons W, Conaghan J, Stern JE. Standardization of grading embryo morphology. Fertil Steril. 2010;94:1152–3.PubMedCrossRefGoogle Scholar
  20. 20.
    Reh A, Fino E, Krey L, Berkeley A, Noyes N, Grifo J. Optimizing embryo selection with day 5 transfer. Fertil Steril. 2010;93:609–15.PubMedCrossRefGoogle Scholar
  21. 21.
    Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol. 2009;7:40.PubMedCrossRefGoogle Scholar
  22. 22.
    Rijnders PM, Jansen CA. The predictive value of day 3 embryo morphology regarding blastocyst formation, pregnancy and implantation rate after day 5 transfer following in-vitro fertilization or intracytoplasmic sperm injection. Hum Reprod. 1998;13:2869–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Rosen MP, Zamah AM, Shen S, Dobson AT, McCulloch CE, Rinaudo PF, Lamb JD, Cedars MI. The effect of follicular fluid hormones on oocyte recovery after ovarian stimulation: FSH level predicts oocyte recovery. Reprod Biol Endocrinol. 2009;7:35.PubMedCrossRefGoogle Scholar
  24. 24.
    Schervish M. A review of multivariate analysis. Stat Sci. 1987;2:396–413.CrossRefGoogle Scholar
  25. 25.
    Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns DH. Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril. 2008;90:77–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Seli E, Botros L, Sakkas D, Burns DH. Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2008;90:2183–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Seli E, Bruce C, Botros L, Henson M, Roos P, Judge K, Hardarson T, Ahlstrom A, Harrison P, Henman M, Go K, Acevedo N, Siques J, Tucker M, Sakkas D. Receiver operating characteristic (ROC) analysis of day 5 morphology grading and metabolomic Viability Score on predicting implantation outcome. J Assist Reprod Genet. 2011;28:137–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH. Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2007;88:1350–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Sukumaran DK, Garcia E, Hua J, Tabaczynski W, Odunsi K, Andrews C, Szyperski T. Standard operating procedure for metabonomics studies of blood serum and plasma samples using a 1H-NMR micro-flow probe. Magn Reson Chem. 2009;47 Suppl 1:S81–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Varmuza K, Filzmoser P. Introduction to multivariate statistical analysis in chemometrics. Boca Raton: CRC Press; 2009.CrossRefGoogle Scholar
  31. 31.
    Vergouw CG, Botros LL, Judge K, Henson M, Roos P, Hanna Kostelijk E, Schats R, Twisk JW, Hompes PG, Sakkas D, Lambalk CB. Non-invasive viability assessment of day-4 frozen-thawed human embryos using near infrared spectroscopy. Reprod Biomed Online. 2011;23:769–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Vergouw CG, Botros LL, Roos P, Lens JW, Schats R, Hompes PG, Burns DH, Lambalk CB. Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection. Hum Reprod. 2008;23:1499–504.PubMedCrossRefGoogle Scholar
  33. 33.
    Vergouw CG, Kieslinger DC, Kostelijk EH, Hompes PG, Schats R & Lambalk CB. Metabolomic profiling of culture media by near infrared spectroscopy as an adjunct to morphology for selection of a single day 3 embryo to transfer in Ivf: a double blind randomised trial. In American Society of Reproductive Medicine O:7, 2011.Google Scholar
  34. 34.
    Wright VC, Chang J, Jeng G, Macaluso M. Assisted reproductive technology surveillance–United States, 2005. MMWR Surveill Summ. 2008;57:1–23.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Paolo Rinaudo
    • 1
  • Shehua Shen
    • 1
    • 4
  • Jia Hua
    • 2
    • 5
  • Su Qian
    • 3
  • Uday Prabhu
    • 2
    • 6
  • Erwin Garcia
    • 2
    • 7
  • Marcelle Cedars
    • 1
  • Dinesh Sukumaran
    • 2
  • Thomas Szyperski
    • 2
  • Chris Andrews
    • 3
  1. 1.Department of OB GYN and Reproductive SciencesUniversity of CaliforniaSan FranciscoUSA
  2. 2.Departments of Chemistry and BiostatisticsState University of New York at BuffaloBuffaloUSA
  3. 3.Departments of BiostatisticsState University of New York at BuffaloBuffaloUSA
  4. 4.Department of Clinical Research and DevelopmentAuxogyn. Inc.Menlo ParkUSA
  5. 5.Fresenius KabiGrand IslandUSA
  6. 6.Bruker IndiaMumbaiIndia
  7. 7.LipoScience Inc.RaleighUSA

Personalised recommendations