Journal of Assisted Reproduction and Genetics

, Volume 29, Issue 10, pp 999–1011

Kisspeptins in human reproduction—future therapeutic potential

  • Kulvinder Kochar Kaur
  • Gautam Allahbadia
  • Mandeep Singh



Kisspeptins (Kps), were first found to regulate the hypothalamopituitary-gonadal axis (HPG) axis in 2003, when two groups-demonstrated that mutations of GPR54 causes idiopathic hypogonadotropic hypogonadism (IHH) characterized by delayed puberty. Objective of this review is to highlight both animal and human discoveries in KISS1/GPR54 system in last decade and extrapolate the therapeutic potential in humans from till date human studies.


A systematic review of international scientific literature by a search of PUBMED and the authors files was done for Kp in reproduction, metabolic control & signal transduction.



Patient(s): In human studies—normal subjects patients with HH, or HA.

Main outcome measures: Effects of Kp on puberty, brain sexual maturation, regulation of GnRH secretion, metabolic control of GnRH Neurons (N).


Kps/GPR54 are critical for brain sexual maturation, puberty and regulation of reproduction. Kps have been implicated in mediating signals to GnRH N—positive and negative feedback, metabolic input. Ability of Kp neurons to coordinate signals impinging on the HPG axis makes it one of most important regulators of reproductive axis since GnRH N’s lack many receptors, with Kp neurons serving as upstream modulators.


Kps have proven as pivotal regulators of the reproduction, with the ability to integrate signals from both internal and external sources. Knowledge about signaling mechanisms involved in Kp stimulation of GnRH and with human studies has made it possible that therapeutically available Kp agonists/antagonists may be used for treatment of delayed puberty/HH, Hypothalamic amenorrhea and in prevention of spread of malignant ovarian/gonadal malignancies along with uses in some eating disorders.


Kisspeptins KISS1 receptor Idiopathic hypogonadotropic hypogonadism Puberty initiation Sexual maturation control Negative feedback control Positive feedback control Metabolic control of reproduction 


  1. 1.
    Spergel DJ, Kruth U, Hanley DF, Sprengel R, Seeburg PH. GABA and glutamate activated channels in green fluorescent protein tagged gonadotropin releasing hormone neurons (GnRH) in transgenic mice. J Neurosci. 1999;19:2037–50.PubMedGoogle Scholar
  2. 2.
    Suter DJ, Song WJ, Sampson TL, Wuarin JP, Saunders JT, Dudek FE, Moenter SM. Genetic targeting of green fluorescent protein to gonadotropin releasing hormone neurons: characterization of whole cell electropysiological properties and morphology. Endocrinology. 2000;141:412–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR. Kiss1, a novel human malignant melanoma metastasis suppressor gene. J Natl Cancer Inst. 1996;88:P1731–7.CrossRefGoogle Scholar
  4. 4.
    West A, Vojta PJ, Welc DR, Weissman BE. Chromosome localization & genomic structure of the KiSS1 metastasis suppressor gene (KISS1). Genomics. 1998;54:145–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Clements MK, Mcdonald TP, Wang R, Xie G, O’Dowd BF, George SR, Austin CP, Liu Q. FMRFamide-related neuropeptides are agonists of the orphan G-protein coupled receptor GPR54. Biochem Biophys Res Commun. 2001;284:1189–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tydesley R, Suarez-Huerta N, Vandenput F, et al. The metastasis suppressor gene KiSS1 encodes kisspeptins, the natural ligands of the orphan G-protein coupled receptor GPR54. J Biol Chem. 2001;276:34631–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Aciemo Jr JS, Shagoury JK, Bo-Abbas Y, Kyoung W, Scwinof KM, Hendrick AG, et al. The GPR54-gene as a regulator of puberty. N Engl J Med. 2003;349:1614–27.PubMedCrossRefGoogle Scholar
  8. 8.
    de Roux N, Genin E, Carel JC, Matsuda F, Cus Sain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1 derived peptide receptor GPR54. Proc Natl Acad Sci U S A. 2003;100:10972–6.PubMedCrossRefGoogle Scholar
  9. 9.
    d’Anglemont de Tassigny X, Fagg LA, Dixon JP, Day K, Leitch HG, Hendrick AG, Zahhn D, Franceschini I, Caraty A, Carlton MB, Aparicio SA, Colledge WH. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci U S A. 2007;104:10714–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Gottsch ML, Clifton DK, Steiner RA. From KISS1 to kisspeptins: a historical perspective & suggested nomenclature. Peptides. 2009;30:4–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith JT, Dungan HM, Stoll EA, Gttsch ML, Braun RE, Eacker SM, Clifton DK, Steiner RA. Differential regulation of KiSS 1 mRNA expression by sex steroids in the brain of male mouse. Endocrinology. 2005;146:2976–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology. 2005;146:3686–92.PubMedCrossRefGoogle Scholar
  13. 13.
    Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism & projections to gonadotropin releasing hormone neurons. Endocrinology. 2006;147:5817–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Herbison AE. Estrogen positive feedback to gonadotropin releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the 3rd ventricle (RP3V). Brain Res Rev. 2008;57:P277–87.CrossRefGoogle Scholar
  15. 15.
    Lehman MN, Merkley CM, Coolen LM, Goodman RL. Anatomy of the kisspeptin neural network in mammals. Brain Res. 2010;1364:90–102.PubMedCrossRefGoogle Scholar
  16. 16.
    Clarkson J, d’Anglemont de Tassigny X, Colledge WH, Caraty A, Herbison AE. Distribution of kisspeptin neurons in the adult female mouse brain. J Neuroendocrinol. 2009;21:673–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Rometo AM, Krajewski AS, Smith JT, Lou Voytko M, Ranca NE. Hypertrophy & increased kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and ovarictomized monkeys. J Clin Endocrinol Metab. 2007;92:2744–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Hrabovszky E, Ciofi P, Vida B, Horvath MC, Keller E, Caraty A, Bloom SR, Ghatei MA, Dhillon WS, Liposits Z, Kallo I. The kisspeptin system of the human hypothalamus: sexual dimorphism & relationship with gonadotropic releasing hormone and neurokinin B neurons. Eur J Neurosci. 2010;31:1984–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Shahab M, Msatronardi C, Seminara SB, Croeley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci U S A. 2005;102:2129–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Smith JT, Shahab M, Pereira A, Paul KYF, Clarke IJ. Hypothalamic expression of KISS1 & gonadotropin inhibitory hormone genes during the menstrual cycle of a non human primate. Biol Reprod. 2010. doi:10.95/biolreprod.110.085407.
  21. 21.
    Ramaswamy S, Guuerriero KA, Gibbs RB, Plant TM. Structural interaction between kisspeptin & GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (Macaca Mulata) as revealed by double immunofluorescence and confocal microscopy. Endocrinology. 2008;149:4387–95.PubMedCrossRefGoogle Scholar
  22. 22.
    Ramaswamy S, Seminara SB, Ali B, Ciofi P, Amin NA, Plant TM. Neurokinin stimulates GnRH release in the male monkey (Macaca Mulata) and is colocalized with kisspeptin in the arcuate nucleus. Endocrinology. 2010;151:4494–503.PubMedCrossRefGoogle Scholar
  23. 23.
    Estrada KM, Clay CM, Pompolo S, Clay CM, Smith JT, Clarke IJ. Elevated KiSS1 expression in the arcuate nucleus prior to the cyclic preovulatory gonadotropin releasing hormone surge in the ewe suggests a stimulatory role for kisspeptin in oestrogen-positive feedback. J Neuroendocrinol. 2006;18:806–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Smith JT, Clay CM, Caraty A, Clarke IJ. Kiss 1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology. 2007;148:1150–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Smith JT, Rao A, Parreira A, Caraty A, Millar RP, Clarke IJ. Kisspeptin is present in ovine hypophyseal portal blood but does not increase during the preovulatory luteinizing hormone surge: evidence that gonadotropes are not direct targets of kisspeptin in vivo. Endocrinology. 2008;149:1951–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Smith JT, Li Q, Pereira A, Clarke IJ. Kisspeptin neurons in the ovine arcuate nucleus & preoptic area are involved in the preovulatory luteinizing hormone surge. Endocrinology. 2009;150:5530–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Cheng G, Coolen LM, Padmanabhan V, Goodman RL, Lehman MN. The kisspeptin/neurokinin B//Dynorphin (KNDy) cell population of the arcuate nucleus. Sex differences & effects of prenatal testosterone in sheep. Endocrinology. 2010;151:301–11.PubMedCrossRefGoogle Scholar
  28. 28.
    Franceschini I, Lomet D, Cateau M, Delsol G, Tillet Y, Caraty A. Kisspeptin immuynoreactive cells of the preoptic area and arcuate nucleus coexpress estrogen receptor α. Neurosci Lett. 2006;401:225–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Goodman RL, Leman MN, Smith JT, Coolen LM, de Oliveira CV, Jafarzadeshirazi MR, Pereira A, Iqbal J, Caraty A, Ciofi P, Clarke IJ. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin & neurokinin B. Endocrinology. 2007;148:5752–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshit K, Sugiura H, Ohtaki T, Matsumoto H, Uenoyama Y, Tsukamura H, Inoue K, Maeda KI. Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on lutinizing hormone release in female rats. J Reprod Dev. 2007;5:367–78.CrossRefGoogle Scholar
  31. 31.
    Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KISS1 mRNA in the male rat. Neuroendocrinology. 2004;80:264–72.PubMedCrossRefGoogle Scholar
  32. 32.
    Kauffman AS, Gottsch ML, Roa J, Byquist AC, Crown A, Clifdton DK, Hoffman GE, Steiner RA, Tena-Sempere M. Sexual differentiation of kiss1 gene expression in the brain of the rat. Endocrinology. 2007;148:1774–83.PubMedCrossRefGoogle Scholar
  33. 33.
    Smith JT, Acohido BV, Clifton DK, Steiner RA. Kiss1 neurons are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol. 2006;18:298–303.PubMedCrossRefGoogle Scholar
  34. 34.
    Takase K, UenoyamaY, Inoue N, Matsui H, Tamda S, Shimizu M, et al. Possible role of oestrogen in pubertal increase ofkiss1/kisspeptin expression in discrete hypothalamic areas of female rats. 2009;21:527–37.Google Scholar
  35. 35.
    Desroziers C, Mikkelsen J, Simonneaux V, Keller M, Tillet Y, Caraty A, Franchceschini I. Mapping of kisspeptin fibers in the brain of the pro-oestrus rat. J Neuroendocrinol. 2010. doi:10.1111/j.1365-2826.2010.02053.x. Accepted Article.
  36. 36.
    Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, Yamada S, Inoue K, Ohtaki T, Matsumoto H, Maeda K. Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge andestrus cyclity in female rats. Endocrinology. 2005;46:4431–6.CrossRefGoogle Scholar
  37. 37.
    Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohida BV, Crowley WF, Seminara S, Clifton DK, Steiner RA. A role for kisspeptins in the regulation of gonadotropin secretion in mouse. Endocrinology. 2004;145:4073–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Han SK, Gottsch ML, Lee KJ, Popa SM, Jukawich SK, Clifton DK, Steiner RA, Herbison AE. Activation of gonadotropin releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci. 2005;25:11349–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Ansel L, Bolbores M, Bentsen AH, Klosen P, Mikkelsen JD, Simonnea UX. Differential regulations of KISS1 by melatonin and gonadal hormones in male & female Syrian hamsters. J Biol Rhythms. 2010;25:81–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Grieves TJ, Mason AO, Scotti MAL, Levine J, Ketterson ED, Kriegsfeld LJ, Demas GE. Environmental control of kisspeptin: implications for sexual reproduction. Endocrinology. 2007;148:1158–66.CrossRefGoogle Scholar
  41. 41.
    Ohkura S, Takase K, Matsuyama S, Mogi K, Ichimaru T, Wakabayashi Y, Uenoyama Y, Mori Y, Steiner RA, Tsukamara H, Maeda KI, Okamura H. Gonadotropin releasing hormone pulse generator activity in the hypothalamus of the goat. J Neuroendocrinol. 2009;21:813–21.PubMedCrossRefGoogle Scholar
  42. 42.
    Wakabayashi Y, Nakada T, Murata K, Ohkura S, Mogi K, Steiner RA, Okamura H. Neurokinin B & dynorphin A in kisspeptin neurons of the arcuate nucleus participate in the generation of periodic oscillation of neural activity driving pulsatile gonadotropin releasing hormone secretion in the goat. J Neurosci. 2010;30:3124–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Decourt C, Tillet Y, Caraty A, Franceschini I, Briant C. Kisspeptin immunoreactivity neurons in the equine hypothalamus: interactions with GnRH neuronal system. J Chem Neuroanat. 2008;36:131–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Magee C, Foradori CD, Bruemmer JE, Arreguin-Arevalo JA, McCue PM, Handa RJ, Squires EL, Clay CM. Biological and anatomical evidence for kisspeptin regulation of the Hypothalamic-Pituitary-Gonadal axis of estrous horse mares. Endocrinology. 2009;150:2813–21.PubMedCrossRefGoogle Scholar
  45. 45.
    McCarthy MM. Estradiol and the developing brain. Physiol Rev. 2008;88:91–124.PubMedCrossRefGoogle Scholar
  46. 46.
    McCarthy MM, Arnold AA. Reframing sexual differentiation. 2011;14:677–83.Google Scholar
  47. 47.
    Homma T, Sakakibara M, YAmada S, Kinoshita M, Iwata K, Tomikawa I, Uenoyama Y, Kenazawa T, Matsui H, Takatsu Y, Ohtaki T, Matsumoto H, et al. Significance of neonatal testicular steroids to defeminize anteroventricular periventricular kisspeptin neurons & the GnRH/LH system in male rats. Biol Reprod. 2009;81:1216–25.PubMedCrossRefGoogle Scholar
  48. 48.
    Navarro VM, Sanchez-Garrido MA, Castellano JM, Roa J, Garcia-Galano D, Pineda R, Aquilar E, Pinila L, Tena-Sempere M. Persistent impairment of hypothalamic KISS1 system after exposure to oestrogenic compounds at critical periods of brain sex differentiation. Endocrinology. 2009;150:2359–67.PubMedCrossRefGoogle Scholar
  49. 49.
    Ijima N, Takumi K, Sawai N, Ozawa H. An immunohistochemical study on the expressional dynamics of kisspeptin neurons relevant to GnRH neurons using a newly developed anti-kisspeptin antibody. J Mol Neurosci. 2011;43:146–54.CrossRefGoogle Scholar
  50. 50.
    Semaan SJ, Murray EK, Poling MC, Damija S, Forger NG, Kauffman AS. BAX dependent and bax independent regulation of kiss 1 neuron development in mice. Endocrinology. 2010;151:5807–17.PubMedCrossRefGoogle Scholar
  51. 51.
    Krishnan S, Intlekofer KA, Aggison LK, Petersen SL. Central role of TRAF-interacting protein in a new model of brain sexual differentiation. Proc Natl Acad Sci U S A. 2009;106:16692–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Wright CL, Schwarz JS, Dean SL, Margarert M. Cellular mechanisms of estradiol-mediated sexual differentiation of the brain. Trends Endocrinol Metab. 2010;21:553–61.PubMedCrossRefGoogle Scholar
  53. 53.
    Nugent BM, McCarthy MM. Epigenetic underpinnings of developmental sex differences in the brain. Neuroendocrinology. 2011;93:150.PubMedCrossRefGoogle Scholar
  54. 54.
    Nimri R, Labenthal Y, Lazar L, Chevrier L, Phillip M, Bar M, Hernandez-Mora E, de Roux N, Yablonski GG. A novel loss of function mutation in GPR54/KISS1R leads to hypogonadotropic hypogonadismin a highly consanguineous family. J Clin Endocrinol Metab. 2011;96(3):E536–45.PubMedCrossRefGoogle Scholar
  55. 55.
    Topaloglu AK, Tello JA, Kotan LD, Ozbek MN, Yilmaz MB, Erdogan S, Gurbuz F, Terniz F, Millar RP, Yuksel B. Inactivating KISS1 mutations and hypogonadotropic hypogonadism. N Engl J Med. 2012;366:629–35.PubMedCrossRefGoogle Scholar
  56. 56.
    Pineda R, Garcia-Galiano D, Roseweir A, Romero M, Sanchez-Garrido M, Ruiz-Pino F, Morgan K, Pinila M, Millar RP, Tena Semoere M. Critical roles of kisspeptin in female puberty and preovulatory gonadotropin surges as revealed by a novel agonist. Endocrinology. 2010;151:722–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Navarro VM, Fernandez-Fernandez R, Castellano JM, Roa J, Mayen A, Barreiro ML, Gaytan F, Aguilar E, Pimilla L, Tena Sempere M. Advanced vaginal opening and precocious activation of the reproductive axis by kiss1 peptide, the endogenous ligand of GPR54. J Physiol. 2004;561:379–86.PubMedCrossRefGoogle Scholar
  58. 58.
    Navarro VM, Castellano JM, Fernandez-Fernandez R, Barreiro ML, Roa J, Sancez-Criado JE, Aguilar E, Diguiez C, Pnilla L, Tena Sempere M. Developmental and hormonal regulated mRNA expression of kiss1 & its primitive receptor, GPR54, in rat hypothalamus & potent LH releasing activity of KISS1 peptide. Endocrinology. 2004;145:4565–74.PubMedCrossRefGoogle Scholar
  59. 59.
    Mayer C, Acosea-Maerinez M, Dubois SL, Wolfe A, Radovick S, Boem U, Levine JE. Timing and completion of puberty in female mice depend on estrogen receptor α-signaling in kisspeptin neurons. Proc Natl Acad Sci U S A. 2010;107:22693–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Guerriero KA, Keen KL, Millar RP, Terasawa E. Developmental changes in GnRH release in response to kisspeptin agonist/antagonist in female rhesus monkey (Macacus Mulata): implications for puberty. Endocrinology. 2012;153:825–36.PubMedCrossRefGoogle Scholar
  61. 61.
    Roa J, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M. New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function. Front Neuroendocrinol. 2008;29:48–69.PubMedCrossRefGoogle Scholar
  62. 62.
    Oakley AE, Clifton DK, Steiner RA. Kisspeptin signaling in the brain. Endocr Rev. 2009;30:713–43.PubMedCrossRefGoogle Scholar
  63. 63.
    Roa J, Castellano JM, Navarro VM, Hadelsman DJ, Pinilla L, Tena-sempere M. Kisspeptins and the control of gonadotropin secretion in male and female rodents. Peptides. 2009;30:57–66.PubMedCrossRefGoogle Scholar
  64. 64.
    Pielecka-Fortuna J, Moenter SM. Kisspeptin increases gamma aminobutyric acidergic and glutamatergic transmission directly to gonadotropin releasing hormone neurons in an estradiol-dependent manner. Endocrinology. 2010;151:291–300.PubMedCrossRefGoogle Scholar
  65. 65.
    Smith JT, Coolen LM, Kriesfeld LJ, Sari IP, Jaafarzadeasirazi MR, Maltby M, Bateman K, Goodman RL, Tilbrook AJ, Ubuka T, Betley GE, Clarke U, Leman MN. Variation in kisspeptin & RFamide-related peptide (RFRP) expression and terminal connections to gonadotropic releasing hormone neurons in brain: a novel medium for seasonal breeding in the sheep. Endocrinology. 2008;149:5770–82.PubMedCrossRefGoogle Scholar
  66. 66.
    Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotani LD, Porter KM, Serin A, Mungan NO, Cook JR, Ozbek MN, Imamoglu S, Akalin NS, et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for neurokinin B in the central control of reproduction. Nat Genet. 2009;41:354–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Kokay IC, Petersen SL, Grattan DR. Idntification of prolactin sensitive GABA & kisspeptin neurons in the regions of rat hypothalamus involved in control of fertility. Endocrinology. 2011;152:526–35.PubMedCrossRefGoogle Scholar
  68. 68.
    Christian CA, Moenter SM. The neurobiology of preovulatory and estradiol-induced gonadotropin releasing hormone surges. Endocr Rev. 2010;31:544–77.PubMedCrossRefGoogle Scholar
  69. 69.
    Wintermantel TM, Campbell RE, Porteous R, Bock D, Grone HJ, Todman MG, Korach KS, Greiner E, Perez CA, Schutz G, Herbison AE. Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin releasing hormone neurons and fertility. Neuron. 2006;52:271–80.PubMedCrossRefGoogle Scholar
  70. 70.
    Clarkson J, d’Anglemont de Tassigny X, Moreno AS, Colledge WH, Herbison AE. Kisspeptin-GPR54 signalling is essential for preovulatory gonadotropin releasing hormone neuron activation and the luteinizing hormone surge. J Neurosci. 2008;28:8691–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Gottsch ML, Navarro VM, Zhao Z, Glidewell-Kenney C, Weiss J, Jameson JL, Clifton DK, Steiner RA. Regulation of Kiss1 & dynorphin gene expression in the murine brain by classical and nonclassical estrogen receptor pathways. J Neurosci. 2009;29:9390–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Caraty A, Smith JT, Lomet D, Ben Said S, Morrisey A, Cognie J, Dougton B, Baril G, Briant C, Clarke IJ. Kisspeptin synchronizes preovulatory surges in cyclic ewes & causes ovulation in seasonally acyclic ewes. Endocrinology. 2007;148:5258–67.PubMedCrossRefGoogle Scholar
  73. 73.
    Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin releasing hormone secretion by kisspeptin/dynorpin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci. 2009;29:11859–66.PubMedCrossRefGoogle Scholar
  74. 74.
    Rance NE, Krajewski SJ, Smith MA, Cholanian M, Dacks PA. Neurokinin B & the hypothalamic regulation of reproduction. Brain Res. 2010;1364:116–28.PubMedCrossRefGoogle Scholar
  75. 75.
    Liu X, Lee K, Herbison AE. Kisspeptin excites gonadotropic hormone neurons through a phospholipase C/calcium dependent pathway regulating multiple ion channels. J Neurosci. 2008;28:4423–34.CrossRefGoogle Scholar
  76. 76.
    Costano JP, Martinez-Fuentez AJ, Gutierrez-Pascual E, Vaudry H, Tena Sempere M, Malagon MM. Intracellular signaling pathways activated by kisspeptin through GPR54: do multiple signaling systems. Pathways activated by kisspeptin through throughGPR54: do multiple signaling systems underlie functional diversity? Peptides. 2009;30:10–5.CrossRefGoogle Scholar
  77. 77.
    Zhang C, Roepke TA, Kelly MJ, Ronnhhecleiv OK. Kisspeptin depolarizes gonadotropic hormone releasing hormone neurons through activation of TRPC-like cationic channels. J Neurosci. 2008;28:4423–34.PubMedCrossRefGoogle Scholar
  78. 78.
    Constantin S, Caligioni CS, Stojlikov S, Wray S. Kisspeptin 10 facilitates a plasma membrane-driven calcium oscillator in gonadotropin releasing hormone-1 neurons. Endocrinology. 2009;150:1400–12.PubMedCrossRefGoogle Scholar
  79. 79.
    Pampillo M, Camuso N, Taylor JE, Serezewski JM, Ahow MR, Zajak M, Millar RP, Bhattacharya M, Babwah AV. Regulation of GPR54 signaling by GRK2 & β arrestin. Mol Endocrinol. 2009;23:2060–74.PubMedCrossRefGoogle Scholar
  80. 80.
    Lehman MN, Coolen LM, Goodman RL. Minireview: Kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central role in the central role in the control of gonadotropin releasing hormone secretion. Endocrinology. 2010;151:3479–89.PubMedCrossRefGoogle Scholar
  81. 81.
    Corander MP, Challis BG, Thompson EL, Jovanovic Z, Loraine Tung YC, O’Rahilly S, Dhillo WS, et al. The effects of neurokinin B upon gonadotropin release in male rodents. J Neuroendocrinol. 2010;22:181–2.PubMedCrossRefGoogle Scholar
  82. 82.
    Regoli D, Nguyen QT, Jukic D. Neurokinin receptors subtypes characterized by biological assays. Life Sci. 1994;54:2035–947.PubMedCrossRefGoogle Scholar
  83. 83.
    Siuciak JA, McCarthy SA, Martin AN, Chapin DS, Stock J, Nadeau DM, Kntesaria S, Brice-Pritt D, Mclean S. Distribution of the neurokinin 3 receptor (NK3R) in mice, leads to cognitive defects. Psycopharmacology (Berl). 2007;194:185–95.CrossRefGoogle Scholar
  84. 84.
    Navarro VM, Castellano JM, Mckonkey SM, Pineda R, Ruiz-pino F, Pinilla L, Clifton DK, Tena Sempere M, Steiner RA. Interactions between kisspeptin & neurokinin B in the control of GnRH secretion in the female rat. Am J Physiol Endocrinol Metab. 2011;300:E202–10.PubMedCrossRefGoogle Scholar
  85. 85.
    d’Anglemont de Tassigny X, Colledge WH. The role of kisspeptin signaling in reproduction. Physiology. 2010;25:207–17.PubMedCrossRefGoogle Scholar
  86. 86.
    True C, Kirigiti TM, Ciofi M, Grove KL, Smith MS. Characterization of arcuate nucleus kisspeptin/neurokinin B neuronal projections & regulation during lactation in the rat. J Neuroendocrinol. 2011;23:52–64.PubMedCrossRefGoogle Scholar
  87. 87.
    Fernandez-Fernandez R, Martini AC, Navarro VM, Castellano JM, Dieguez C, Aguolar E, Pinila L, Tena Sempere M. Novel signals for the integration of energy balance and reproduction. Mol Cell Endocrinol. 2006;254–255:127–32.PubMedCrossRefGoogle Scholar
  88. 88.
    Tena-Sempere M. Ghrelin as a pleiotropic modulator of gonadal function & reproduction. Nat Clin Pract Endocrinol Metab. 2008;4:666–74.PubMedCrossRefGoogle Scholar
  89. 89.
    Quennell j, Mulligan AC, Tups A, Liu X, Phipps SJ, Kemp CJ, Hewrebison AE, Grattan DR, Anderson GM. Leptin indirectly regulates gonadotropin releasing hormone neuronal function. Endocrinology. 2009;150:2805–12.PubMedCrossRefGoogle Scholar
  90. 90.
    Sexton WJ, Jarow JP. Effect of diabetes mellitus upon male reproductive function. Urology. 1997;49:508–13.PubMedCrossRefGoogle Scholar
  91. 91.
    Wade GN, Jones JE. Neuroendocrinology of nutritional infertility. Am J Physiol Integr Comp Physiol. 2004;287:R1277–96.CrossRefGoogle Scholar
  92. 92.
    Luque RM, Kineman RD, Tena Sempere M. Regulation of hypothalamic expression of Kiss1 & GPR54 genes by multiple factors: analysis using mouse models & cell lines. Endocrinology. 2007;148:4601–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Castellano JM, Navarro VM, Fenandez-Fernandez R, Nogueiras R, Tovar S, Roa J, Vasquez MJ, Vigo E, Casaneuva FF, Aquilar R, Pinilla L, Dieguez C, Tena-Sempere M. Changes in hypothalamin kiss1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology. 2005;146:3917–25.PubMedCrossRefGoogle Scholar
  94. 94.
    Wahab F, Ullah F, Chan YM, Seminara SB, Shahab M. Decrease in hypothalamic kiss1 & kiss1r expression: a potential mechanism for fasting induced suppression of HPG axis in the adult male rhesus monkey (Macacus Malata). Horm Metab Res. 2011;43:81–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Roa J, Garcia-Galiano D, Varela L, Sanchez-Gerido MA, Pineda R, Catellano JM, Ruiz-Pino F, Romero M, Aquila R, Lopez M, Gaytan F, Dieguez C, et al. The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic kiss1 system. Endocrinology. 2009;150:5016–26.PubMedCrossRefGoogle Scholar
  96. 96.
    Roa J, Tena Sempere M. Energy balance and puberty onset: emerging role of central mTOR signaling. Trends Endocrinol Metab. 2010;21:519–28.PubMedCrossRefGoogle Scholar
  97. 97.
    Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seerly RJ. Hypothalamic mTOR signaling regulates food intake. Science. 2006;312:927–30.PubMedCrossRefGoogle Scholar
  98. 98.
    Altarejos JY, Goebel N, Conkright MD, Inoue H, Xi X, Arias CM, Sawchenko PE, Montminy M. The CREB coactivator TORC1 is required for energy balance & fertility. Nat Med. 2008;14(10):1112–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Yamada S, Uenoyama Y, Kinoshita M, Iwata T, Takase K, Matsui H, Adachi S, Inoue K, Maeda KI, Ksukamura H. Inhibition of metastin (kisspeptin-54) GPR54 signaling in the arcuate nucleus-median eminence region during lactation in rats. Endocrinology. 2007;148:2226–32.PubMedCrossRefGoogle Scholar
  100. 100.
    Castellano JM, Navarro VM, Fernandez-Fernandez R, Roa J, Vigo E, Pineda R, Dieguez C, Aguilar E, Pinilla L, Tena sempere M. Expression of hypothalamic kiss1 system a rescue of defective gonadotropic responses by kisspeptin in streptozotocin-induced diabetic male rats. Diabetes. 2006;55:260202610.CrossRefGoogle Scholar
  101. 101.
    Castellano JM, Navarro VM, Roa J, Pineda R, Sanchez-Garrido MA, Garcia-Galiano D, Vigo E, Dieguez C, Aguilar E, Pinilla L, Tena Sempere M. Alterations in hypothalamic kiss1 system in experimental diabetes: early changes & functional consequences. Endocrinology. 2009;150:784–94.PubMedCrossRefGoogle Scholar
  102. 102.
    Wu M, Dumaiska I, Marazawa E, van den POLA, Alreja M. Melanin concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proc Natl Acad Sci U S A. 2009;106:17217–22.PubMedCrossRefGoogle Scholar
  103. 103.
    Dhillo WS, Chaudhari OB, Patterson M, Thompson EL, Murphy KG, Badman N, Mcgowan BM, Amber V, Patel S, Gatei MA, et al. Kisspeptin 54 stimulates the hypothalamic-pituitary-gonadal axis in human males. J Clin Endocrinol Metab. 2005;90:6609–15.PubMedCrossRefGoogle Scholar
  104. 104.
    Dhillo WS, Chaudhary OB, Thompson EL, Murphy KG, Patterson M, Ramacandran R, Nijer JK, Amber V, Kokkinos A, Donaldson M, et al. Kisspeptin 54 stimulates gonadotropin release most potently during the preovulatory phase of the menstrual cycle in women. J Clin Endocrinol Metab. 2007;92:3958–66.PubMedCrossRefGoogle Scholar
  105. 105.
    George JT, Veldhius JD, Roseweir AK, Newton CL, Fasccenda E, Millar RP, Anderson RA. Kisspeptin 10 is a potent stimulator of LH & increase pulse frequencty in men. J Clin Endocrinol Metab. 2011;96:E1228–36.PubMedCrossRefGoogle Scholar
  106. 106.
    Mikkelsen JD, Bansen AH, Ansel L, Simonneaux V, Juul A. Comparison of the effects of peripherally administered kisspeptins. Regul Pept. 2009;152:95–100.PubMedCrossRefGoogle Scholar
  107. 107.
    Curtis AE, Cooke j, Baxter JE, Parkinson JR, Btaveiljic A, Ghatei MA, Bloom SR, Murpy KG. A kisspeptin 10 analogue with greater in vivo bioactivity than kisspeptin 10. Am J Physiol Endocrinol Metab. 2010;298:E296–303.PubMedCrossRefGoogle Scholar
  108. 108.
    Millar RP, Roseweir AK, Tello j, Anderson RA, George JT, Morgan K, Pawson AJ. Kisspeptin antagonists: unraveling the role of kisspeptin in reproductive physiology. Brain Res. 2010;1364:81–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Roseweir AK, Kauffman AS, Smith JT, Guerriero KA, Morgan K, Pielecka-Fortuna J, Pineda R, Gottsch ML, Tena Sempere M, Moenter SM, Terasawa E, Clarke IJ, Steiner RA, Millar RP. Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J Neurosci. 2009;29:3920–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Jayasena CN, Nijher GM, Comninos AN, Abbara A, Jansuszewski A, Vaal M, Sriskandarajah L, Murphy FG, Fargsd AG, Ghatei MA, Bloom SR, Dhillon W. The effect of Kisspeptin 10 on reproductive hormone show sexual dimorphism in humans. J Clin Endocrinol Metab. 2011;96:E1963–72.PubMedCrossRefGoogle Scholar
  111. 111.
    Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, Szekeres PG, Sarau HM, Chambers JK, Murdock P, et al. AXOR12, a novel human G protein coupled receptor, activated by the peptide KISS1. J Biol Chem. 2001;276:28969–75.PubMedCrossRefGoogle Scholar
  112. 112.
    Nijher GM, Baxter JE, Chaudhari OB, Murphy KG, Ramachandran R, Fowler A, Chinthapalli K, Patterson M, Jayasena CN, Williamson C, Kumar S, Ghatei MA, Bloom SR, Dhillo WS. Identification of the hormone kisspeptin in amniotic fluid. Clin Chem. 2010;56:1029–30.PubMedCrossRefGoogle Scholar
  113. 113.
    Bilban M, Ghaffari-Tabrizo N, Hintermann E, Buer S, Molzer S, Zoratti C, Malli A, Sharabi A, Hiden U, Graier W, et al. Kisspeptin 10, a KiSS1/metastin-derived deca peptide, is a physiological invasion inhibitor of primary human trophoblast. J Cell Sci. 2004;117:1319–28.PubMedCrossRefGoogle Scholar
  114. 114.
    Janneau JL, Maldonado-Estrada J, Tachdjian G, Miran I, Motte N, Saulnier P, Sabourin JC, Cote JF, Simon B, Frydman R, et al. Transcriptional expression of genes involved in cell invasion & migration by normal & tumoral trophoblast cells. J Clin Endocrinol Metab. 2002;87:5336–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Dhillo WS, Savage P, Murphy KG, Chaudary OB, Patterson M, Nijher JM, Foggo VM, Dancey JS, Mitcell H, Seckl MJ, et al. Plasma kisspeptins is reased in patients with gestational tropoblastic neoplasia & falls during treatment. Am J Physiol Endocrinol Metab. 2006;2191:E878–84.CrossRefGoogle Scholar
  116. 116.
    Pallais JC, Bo-Abbas Y, Pitteloud N, Crowley Jr WF, Seminara SB. Neuroendocrine,gonadal,placental,and obstetric phenotypes in patients with IHH and mutations in the G-protein coupled receptor,GPR54. Mol Cell Endocrinol. 2006;254–255:70–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Jayasena CN, Nijher GM, Chaudary OB, Murphy KG, Ranger A, Lim A, Patel D, Mehta A, Todd C, Ramachandran R, et al. Subcutaneous injection of kisspeptin 54 acutely stimulates gonadotropin secretion in women with hypothalamic amenorrhoea, but chronic administration causes tachyphylaxis. J Clin Endicrinol Metab. 2009;94:4315–23.CrossRefGoogle Scholar
  118. 118.
    Jaysena CN, Nijher GMK, Abbara A, Murphy KG, Lim A, Patel DA, et al. Twice weekly administration of kisspeptin54 for eight weeks stimulates reproductive hormone release in women with hypothalamic amenorrhoea. Endo 2010 Meeting, San Diego CA USA.Google Scholar
  119. 119.
    Young J, George JT, Tello JA, Francou B, Bouligard J, Guirochan Mantel A, et al. Kisspeptin restores pulsatile LH secretion on patients with Neurokinin B signaling deficiencies, physiological, pathophysiological & therapeutic implications. Neuroendocrinology. 2012 Epub ahead of public.Google Scholar
  120. 120.
    Chan YM, Butler JP, Pinnell NE, Pralong FP, Crowley Jr FP, Chan KK, Seminara SB. Kisspeptin resets the hypothalamic GnRH clock in men. J Clin Endocrinol Metab. 2011;96:E908–15.PubMedCrossRefGoogle Scholar
  121. 121.
    George JT, Millar RP, Anderson RA. Hypothesis: Kisspeptin mediates male hypogonadism in obesity & type 2 diabetes. Neuroendocrinology. 2010;91:302–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Teerds KJ, de Rooij DG, Keijer J. Functional relationships between obesity andmale reproduction: from human to animal models. Hum Reprod Update. 2011;17(5):667–83.PubMedCrossRefGoogle Scholar
  123. 123.
    Hursting SD, Lashinger LM, Wheatley KW, Rogers CJ, Colbert LH, Nunez NP, Perkins SN. Reducing weight of cancer: mechanistic targets for breaking the obesity–carcinogenesis link. Best Pract Res Clin Endocrinol Metab. 2008;22:659–69.PubMedCrossRefGoogle Scholar
  124. 124.
    Kaczmarek I, Groetzner J, Adamidis I, Landwehr P, Mueller M, Vogeser M, Gerstorfer M, Uberfuhr P, Meiser B, Reichart B. Sirolimus impairs gonadal function in heart transplant recipients. Am J Transplant. 2004;4:1084–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Chiang GG, Abraham RT. Targeting the Mtor signaling network in cancer. Trends Mol Med. 2007;13433–442.Google Scholar
  126. 126.
    Tsang CK, Qi H, Liu LF, Zheng XF. Targeting mammalian target of rapamycin (Mtor) for health & disease. Drug Discov Today. 2007;12:112–24.PubMedCrossRefGoogle Scholar
  127. 127.
    Martin DE, Hall MN. TOR, a central controller of cell growth. Cell. 2000;103:253–62.CrossRefGoogle Scholar
  128. 128.
    Teles MG, Silveira LF, Tusset C, Latronico AC. New genetic factors implicated in human GnRH dependent precocious puberty: the role of kisspeptin system. Mol Cell Endocrinol. 2011;346(1–2):84–9012.PubMedCrossRefGoogle Scholar
  129. 129.
    Jayasena CN, Dhillo WS. Kisspeptin offers a novel therapeutic target in reproduction. Curr Opin Investig Drugs. 2009;10:311–8.PubMedGoogle Scholar
  130. 130.
    Makri A, Msaouel P, Petraki C, Milingos D, Protopapas A, Liapi A, Antsaklis A, Magkou C, Koutsilieris M. KISS1/KISS1R expression in eutopic andectopic endometrium in women suffering from endometriosis. In Vivo. 2012;26:119–27.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kulvinder Kochar Kaur
    • 1
  • Gautam Allahbadia
    • 2
  • Mandeep Singh
    • 3
  1. 1.Dr Kulvinder Kaur Centre for Human ReproductionJalandharIndia
  2. 2.Rotunda-A Centre for Human reproductionMumbaiIndia
  3. 3.Swami Satyanand HospitalJalandharIndia

Personalised recommendations