Journal of Assisted Reproduction and Genetics

, Volume 29, Issue 9, pp 985–995 | Cite as

Applicability of adult techniques for ovarian preservation to childhood cancer patients

  • Laura Detti
  • Daniel C. Martin
  • Lucy J. Williams
Fertility Preservation

Abstract

Purpose

To appraise the feasibility of current adult medical and surgical techniques for ovarian preservation in pre-pubertal and adolescent girls with cancer.

Methods

Literature search using PubMed and SCOPUS up to February 2012. In addition, the reference lists of selected studies and all identified systematic and narrative reviews were scanned for relevant references. Inclusion criteria were ovarian preservation and cancer. Exclusion criteria were non-English publications, letters, personal communications, and ovarian preservation for conditions other than cancer.

Results

Data from the selected publications was interpreted and discussed in the relevant sections. Cryopreservation of ovarian tissue followed by autologous transplant represents the only surgical option available for pre-pubertal girls and adolescents who cannot delay the start of chemotherapy. Few studies report on pre-pubertal and adolescent girls undergoing ovarian preservation surgeries with good harvesting, and no follow-up has been conveyed, to date. Outcomes of ovarian function after ovarian suppression with GnRH-analogs in adults have been controversial and no reports are available for pre-pubertal girls.

Conclusions

Autologous transplantation of cryopreserved ovarian cortex probably represents the best option for preservation of fertility and hormonal function in childhood cancer females; however, future research needs to address the safety of this technique, especially in patients with blood-borne cancers. Ovarian suppression with GnRH-analogs at the time of chemotherapy treatment has not proven to be superior to non-suppression for fertility preservation purposes in adults. Not enough evidence is presently available in childhood cancer patients.

Keywords

Ovarian preservation Fertility Transplant Cryopreservation Freezing Vitrification Pre-pubertal Adolescents 

Notes

Acknowledgments

The study was funded with a departmental grant from the University of Tennessee Health Science Center, Memphis, Tennessee.

References

  1. 1.
    American Cancer Society. Cancer Facts and Figures 2011. Atlanta, GA: American Cancer Society. Accessed January 30, 2012, from http://www.cancer.org/Cancer/CancerinChildren/DetailedGuide/cancer-in-children-key-statistics
  2. 2.
    Green DM, Sklar CA, Boice Jr JD, Mulvihill JJ, Whitton JA, Stovall M, et al. Ovarian failure and reproductive outcomes after childhood cancer treatment: results from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27:2374–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Chemaitilly W, Mertens AC, Mitby P, Whitton J, Stovall M, Yasui Y, et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab. 2006;91:1723–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Oktem O, Oktay K. A novel ovarian xenografting model to characterize the impact of chemotherapy agents on human primordial follicle reserve. Cancer Res. 2007;67:10159–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Wallace WH, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Reprod. 2003;18:117–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Critchley HO, Wallace WH. Impact of cancer treatment on uterine function. J Natl Cancer Inst Monogr. 2005;34:64–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Jeruss JS, Woodruff TK. Preservation of fertility in patients with cancer. N Engl J Med. 2009;360:902–11.PubMedCrossRefGoogle Scholar
  8. 8.
    Schover LR. Rates of postcancer parenthood. J Clin Oncol. 2009;27:321–2.PubMedCrossRefGoogle Scholar
  9. 9.
    Zuckerman S. The number of oocytes in the mature ovary. Recent Prog Horm Res. 1951;6:63–108.Google Scholar
  10. 10.
    Bukovsky A, Caudle MR, Svetlikova M, Upadhyaya NB. Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod Biol Endocrinol. 2004;2:20.PubMedCrossRefGoogle Scholar
  11. 11.
    Del Mastro L, Catzeddu T, Venturini M. Infertility and pregnancy after breast cancer: current knowledge and future perspectives. Cancer Treat Rev. 2006;32:417–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Bath LE, Tydeman G, Critchley HO, Anderson RA, Baird DT, Wallace WH. Spontaneous conception in a young woman who had ovarian cortical tissue cryopreserved before chemotherapy and radiotherapy for a Ewing's sarcoma of the pelvis: case report. Hum Reprod. 2004;19:2569–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Nelson LM, Covington SN, Rebar RW. An update: spontaneous premature ovarian failure is not an early menopause. Fertil Steril. 2005;83:1327–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Rosen A, Rodriguez-Wallberg KA, Rosenzweig L. Psychosocial distress in young cancer survivors. Seminars in Oncology Nursing. 2009;25:268–77.PubMedCrossRefGoogle Scholar
  15. 15.
    Skinner R, Wallace WH, Levitt GA. Long-term follow-up of people who have survived cancer during childhood; UK Children’s Cancer Study Group Late Effects Group. Lancet Oncol. 2006;7:489–98.PubMedCrossRefGoogle Scholar
  16. 16.
    Byrne J, Fears TR, Steinhorn SC, et al. Marriage and divorce after childhood and adolescent cancer. JAMA. 1989;262:2693–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Blumenfeld Z, Avivi I, Ritter M, Rowe JM. Preservation of fertility and ovarian function and minimizing chemotherapy-induced gonadotoxicity in young women. J Soc Gynecol Investig. 1999;6:229–39.PubMedCrossRefGoogle Scholar
  18. 18.
    Blumenfeld Z. How to preserve fertility in young women exposed to chemotherapy? The role of GnRH agonist cotreatment in addition to cryopreservation of embrya, oocytes, or ovaries. The Oncologist. 2007;12:1044–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Meirow D, Assad G, Dor J, Rabinovici J. The GnRH antagonist cetrorelix reduces cyclophosphamide-induced ovarian follicular destruction in mice. Human Reproduction. 2004;19:1294–9.PubMedCrossRefGoogle Scholar
  20. 20.
    McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21:200–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Oktay K, Briggs DA, Gosden RG. Ontogeny of FSH receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab. 1997;82:3748–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Oktay K, Newton H, Mullan J, Gosden RG. Development of human primordial follicles to antral stages in SCID/hpg mice stimulated with follicle stimulating hormone. Hum Reprod. 1998;13:1133–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Recchia F, Sica G, De Filippis S, Saggio G, Rosselli M, Rea S. Goserelin as ovarian protection in the adjuvant treatment of premenopausal breast cancer: a phase II pilot study. Anticancer Drugs. 2002;13:417–24.PubMedCrossRefGoogle Scholar
  24. 24.
    Badawy A, Elnashar A, El-Ashry M, Shahat M. Gonadotropin-releasing hormone agonists for prevention of chemotherapy-induced ovarian damage: prospective randomized study. Fertil Steril. 2009;91:694–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Sverrisdottir A, Nystedt M, Johansson H, Fornander T. Adjuvant goserelin and ovarian preservation in chemotherapy treated patients with early breast cancer: results from a randomized trial. Breast Cancer Res Treat. 2009;117:561–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Gerber B, von Minckwitz G, Stehle H, Reimer T, Felberbaum R, Maass N, et al. German Breast Group Investigators. Effect of luteinizing hormone-releasing hormone agonist on ovarian function after modern adjuvant breast cancer chemotherapy: the GBG 37 ZORO study. J Clin Oncol. 2011;29:2334–41.PubMedCrossRefGoogle Scholar
  27. 27.
    Behringer K, Wildt L, Mueller H, Mattle V, Ganitis P, van den Hoonaard B, et al. German Hodgkin Study Group. No protection of the ovarian follicle pool with the use of GnRH-analogues or oral contraceptives in young women treated with escalated BEACOPP for advanced-stage Hodgkin lymphoma. Final results of a phase II trial from the German Hodgkin Study Group. Ann Oncol. 2010;21:2052–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Ismail-Khan R, Minton S, Cox C, Sims I, Lacevic M, Gross-King M, et al. Preservation of ovarian function in young women treated with neoadjuvant chemotherapy for breast cancer: a randomized trial using the GnRH agonist (triptorelin) during chemotherapy [abstract]. J Clin Oncol. 2008;26:15S.Google Scholar
  29. 29.
    Del Mastro L, Boni L, Michelotti A, Gamucci T, Olmeo N, Gori S, et al. Effect of the gonadotropin-releasing hormone analogue triptorelin on the occurrence of chemotherapy-induced early menopause in premenopausal women with breast cancer: a randomized trial. JAMA. 2011;306:269–76.PubMedCrossRefGoogle Scholar
  30. 30.
    Munster PN, Moore AP, Ismail-Khan R, Cox CE, Lacevic M, Gross-King M, et al. Randomized trial using gonadotropin-releasing hormone agonist triptorelin for the preservation of ovarian function during (neo)adjuvant chemotherapy for breast cancer. J Clin Oncol. 2012;30:533–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Pereyra Pacheco B, Méndez Ribas JM, Milone G, Fernández I, Kvicala R, et al. Use of GnRH analogs for functional protection of the ovary and preservation of fertility during cancer treatment in adolescents: a preliminary report. Gynecol Oncol. 2001;81:391–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Browne HN, Moon KS, Mumford SL, Schisterman EF, DeCherney AH, Segars JH, et al. Is anti-Müllerian hormone a marker of acute cyclophosphamide-induced ovarian follicular destruction in mice pretreated with cetrorelix? Fertil Steril. 2011;96:180–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Whitehead J, Toledo MG, Stern CJ. A pilot study to assess the use of the gonadotrophin antagonist cetrorelix in preserving ovarian function during chemotherapy. Aust N Z J Obstet Gynaecol. 2011;51:452–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Xu J, Bernuci MP, Lawson MS, Yeoman RR, Fisher TE, Zelinski MB, et al. Survival, growth, and maturation of secondary follicles from prepubertal, young, and older adult rhesus monkeys during encapsulated three-dimensional culture: effects of gonadotropins and insulin. Reproduction. 2010;140:685–97.PubMedCrossRefGoogle Scholar
  35. 35.
    Hilders CG, Baranski AG, Peters L, Ramkhelawan A, Trimbos JB. Successful human ovarian autotransplantation to the upper arm. Cancer. 2004;101:2771–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Leporrier M, von Theobald P, Roffe JL, Muller G. A new technique to protect ovarian function before pelvic irradiation. Cancer. 1987;60:2201–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Mhatre P, Mhatre J, Magotra R. Ovarian transplant: a new frontier. Transplant Proc. 2005;37:1396–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Silber SJ, Lenahan KM, Levine DJ, Pineda JA, Gorman KS, Friez MJ, et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. N Engl J Med. 2005;353:58–63.PubMedCrossRefGoogle Scholar
  39. 39.
    Kodama Y, Sameshima H, Ikenoue T, Ikeda T, Kawagoe Y. Successful fresh whole ovarian autotransplantation without vascular anastomosis. Fertil Steril. 2010;94:2330.e11-2.PubMedCrossRefGoogle Scholar
  40. 40.
    Laufer MR, Upton J, Schuster SR, Grier H, Emans SJ, Diller L. Ovarian tissue autologous transplantation to the upper extremity for girls receiving abdominal/pelvic radiation: 20-year follow-up of reproductive endocrine function. J Pediatr Adolesc Gynecol. 2010;23:107–10.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang X, Chen H, Yin H, et al. Fertility after intact ovary transplantation. Nature. 2002;415:385.PubMedCrossRefGoogle Scholar
  42. 42.
    Chen C, Chen S, Chang F, et al. Autologous heterotopic transplantation of intact rabbit ovary after cryopreservation. Hum Reprod. 2005;20:i149–50.CrossRefGoogle Scholar
  43. 43.
    Bedaiwy MA, Jeremias E, Gurunluoglu R, Hussein MR, Siemianow M, Biscotti C, et al. Restoration of ovarian function after autotransplantation of intact frozen-thawed sheep ovaries with microvascular anastomosis. Fertil Steril. 2003;79:594–602.PubMedCrossRefGoogle Scholar
  44. 44.
    Esfandiari N, Falcone T, Bedaiwy MA, Agarwal A, Jeremias E, Sharma RK. Autologous transplantation of cryopreserved ovary induces the generation of antiovary antibodies in sheep. Fertil Steril. 2003;80:1062–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Dolmans MM, Marinescu C, Saussoy P, Van Langendonckt A, Amorim C, Donnez J. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood. 2010;116:2908–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Gook DA, Edgar DH, Stern C. Effect of cooling rate and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1,2-propanediol. Hum Reprod. 1999;14:2061–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Qu J, Godin PA, Nisolle M, Donnez J. Distribution and epidermal growth factor receptor expression of primordial follicles in human ovarian tissue before and after cryopreservation. Hum Reprod. 2000;15:302–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Schmidt KL, Byskov AG, Nyboe Andersen A, Müller J, Yding Andersen C. Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries. Hum Reprod. 2003;18:1158–64.PubMedCrossRefGoogle Scholar
  49. 49.
    Van den Broecke R, Liu J, Handyside A, Van der Elst JC, Krausz T, Dhont M, et al. Follicular growth in fresh and cryopreserved human ovarian cortical grafts transplanted to immunodeficient mice. Eur J Obstet Gynecol Reprod Biol. 2001;97:193–201.PubMedCrossRefGoogle Scholar
  50. 50.
    Keros V, Xella S, Hultenby K, Pettersson K, Sheikhi M, Volpe A, et al. Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod. 2009;24:1670–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Silber S, Kagawa N, Kuwayama M, Gosden R. Duration of fertility after fresh and frozen ovary transplantation. Fertil Steril. 2010;94:2191–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Gosden R. Cryopreservation: a cold look at technology for fertility preservation. Fertil Steril. 2011;96:264–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R. Low temperature storage and grafting of human ovarian tissue. Hum Reprod. 1996;11:1487–91.PubMedCrossRefGoogle Scholar
  54. 54.
    Oktay K, Newton H, Gosden RG. Transplantation of cryopreserved human ovarian tissue results in follicle growth initiation in SCID mice. Fertil Steril. 2000;73:599–603.PubMedCrossRefGoogle Scholar
  55. 55.
    Anderson RA, Wallace WH, Baird DT. Ovarian cryopreservation for fertility preservation: indications and outcomes. Reproduction. 2008;136:681–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Feigin E, Abir R, Fisch B, Kravarusic D, Steinberg R, Nitke S, et al. Laparoscopic ovarian tissue preservation in young patients at risk for ovarian failure as a result of chemotherapy/irradiation for primary malignancy. J Pediatr Surg. 2007;42:862–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Jadoul P, Dolmans MM, Donnez J. Fertility preservation in girls during childhood: is it feasible, efficient and safe and to whom should it be proposed? Hum Reprod Update. 2010;16:617–30.PubMedCrossRefGoogle Scholar
  58. 58.
    Oktay K, Oktem O. Fertility preservation medicine: a new field in the care of young cancer survivors. Pediatr Blood Cancer. 2009;53:267–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Poirot CJ, Martelli H, Genestie C, Golmard JL, Valteau-Couanet D, Helardot P, et al. Feasibility of ovarian tissue cryopreservation for prepubertal females with cancer. Pediatr Blood Cancer. 2007;49:74–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Revel A, Revel-Vilk S, Aizenman E, Porat-Katz A, Safran A, Ben-Meir A, et al. At what age can human oocytes be obtained? Fertil Steril. 2009;92:458–63.PubMedCrossRefGoogle Scholar
  61. 61.
    Poirot C, Abirached F, Prades M, Coussieu C, Bernaudin F, Piver P. Induction of puberty by autograft of cryopreserved ovarian tissue. Lancet. 2012;379(9815):588.PubMedCrossRefGoogle Scholar
  62. 62.
    Donnez J, Dolmans MM. Cryopreservation and transplantation of ovarian tissue. Clin Obstet Gynecol. 2010;53:787–96.PubMedCrossRefGoogle Scholar
  63. 63.
    Oktay K, Buyuk E, Veeck L, Zaninovic N, Xu K, Takeuchi T, et al. Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;363:837–40.PubMedCrossRefGoogle Scholar
  64. 64.
    Oktay K, Türkçüoğlu I, Rodriguez-Wallberg KA. Four spontaneous pregnancies and three live births following subcutaneous transplantation of frozen banked ovarian tissue: what is the explanation? Fertil Steril. 2011;95:804.e7-10.PubMedCrossRefGoogle Scholar
  65. 65.
    Notarianni E. Reinterpretation of evidence advanced for neo-oogenesis in mammals, in terms of a finite oocyte reserve. J Ovarian Res. 2011;4:1–20.PubMedCrossRefGoogle Scholar
  66. 66.
    Donnez J, Jadoul P, Squifflet J, Van Langendonckt A, Donnez O, Van Eyck AS, et al. Ovarian tissue cryopreservation and transplantation in cancer patients. Best Pract Res Clin Obstet Gynaecol. 2010;24:87–100.PubMedCrossRefGoogle Scholar
  67. 67.
    Stern CJ, Toledo MG, Hale LG, Gook DA, Edgar DH. The first Australian experience of heterotopic grafting of cryopreserved ovarian tissue: evidence of establishment of normal ovarian function. Aust N Z J Obstet Gynaecol. 2011;51:268–75.PubMedCrossRefGoogle Scholar
  68. 68.
    Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364:1405–10.PubMedCrossRefGoogle Scholar
  69. 69.
    Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y, et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med. 2005;353:318–21.PubMedCrossRefGoogle Scholar
  70. 70.
    Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Fertility preservation: successful transplantation of cryopreserved ovarian tissue in a young patient previously treated for Hodgkin’s disease. Oncologist. 2007;12:1437–42.PubMedCrossRefGoogle Scholar
  71. 71.
    Andersen CY, Rosendahl M, Byskov AG, Loft A, Ottosen C, Dueholm M, et al. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod. 2008;23:2266–72.PubMedCrossRefGoogle Scholar
  72. 72.
    Sanchez-Serrano M, Crespo J, Mirabet V, Cobo AC, Escriba MJ, Simon C, et al. Twins born after transplantation of human ovarian cortical tissue and oocyte vitrification. Fertil Steril. 2010;93:268.e11–3.PubMedCrossRefGoogle Scholar
  73. 73.
    Schmidt KT, Rosendahl M, Ernst E, Loft A, Andersen AN, Dueholm M, et al. Autotransplantation of cryopreserved ovarian tissue in 12 women with chemotherapy-induced premature ovarian failure: the Danish experience. Fertil Steril. 2011;95:695–701.PubMedCrossRefGoogle Scholar
  74. 74.
    Rosendahl M, Schmidt KT, Ernst E, Rasmussen PE, Loft A, Byskov AG, et al. Cryopreservation of ovarian tissue for a decade in Denmark: a view of the technique. Reprod Biomed Online. 2011;22:162–71.PubMedCrossRefGoogle Scholar
  75. 75.
    Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, et al. Children born after autotransplantation of cryopreserved ovarian tissue. a review of 13 live births. Ann Med. 2011;43:437–50.PubMedCrossRefGoogle Scholar
  76. 76.
    Kagawa N, Silber S, Kuwayama M. Successful vitrification of bovine and human ovarian tissue. Reprod Biomed Online. 2009;18:568–77.PubMedCrossRefGoogle Scholar
  77. 77.
    Oktay K, Karlikaya G. Ovarian function after transplantation of frozen, banked, autologous ovarian tissue. New Engl J Med. 2000;342:1919.PubMedCrossRefGoogle Scholar
  78. 78.
    Maltaris T, Beckmann MW, Binder H, Mueller A, Hoffmann I, Koelbl H, et al. The effect of a GnRH agonist on cryopreserved human ovarian grafts in severe combined immunodeficient mice. Reproduction. 2007;133:503–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Schubert B, Canis M, Darcha C, Artonne C, Smitz J, Grizard G. Follicular growth and estradiol follow-up after subcutaneous xenografting of fresh and cryopreserved human ovarian tissue. Fertil Steril. 2008;89:1787–94.PubMedCrossRefGoogle Scholar
  80. 80.
    Liu J, Van der Elst J, Van den Broecke R, Dhont M. Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum Reprod. 2002;17:605–11.PubMedCrossRefGoogle Scholar
  81. 81.
    Gook DA, Edgar DH. Cryopreservation of the human female gamete: current and future issues. Hum Reprod. 1999;14:2938–40.PubMedCrossRefGoogle Scholar
  82. 82.
    Meirow D, Dor J, Kaufman B, Shrim A, Rabinovici J, Schiff E, et al. Cortical fibrosis and blood-vessels damage in human ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod. 2007;22:1626–33.PubMedCrossRefGoogle Scholar
  83. 83.
    Van Eyck AS, Bouzin C, Feron O, Romeu L, Van Langendonckt A, Donnez J, et al. Both host and graft vessels contribute to revascularization of xenografted human ovarian tissue in a murine model. Fertil Steril. 2010;93:1676–85.PubMedCrossRefGoogle Scholar
  84. 84.
    Gook DA, McCully BA, Edgar DH, McBain JC. Development of antral follicles in human cryopreserved ovarian tissue following xenografting. Hum Reprod. 2001;16:417–22.PubMedCrossRefGoogle Scholar
  85. 85.
    Richardson SJ, Nelson JF. Follicular depletion during the menopausal transition. Ann N Y Acad Sci. 1990;592:13–20.PubMedCrossRefGoogle Scholar
  86. 86.
    Flaws JA, Abbud R, Mann RJ, Nilson JH, Hirshfield AN. Chronically elevated luteinizing hormone depletes primordial follicles in the mouse ovary. Biol Reprod. 1997;57:1233–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Oktem O, Oktay K. The role of extracellular matrix and activin-A in invitro growth and survival of murine preantral follicles. Reprod Scien. 2007;14:358–66.CrossRefGoogle Scholar
  88. 88.
    Soleimani R, Heytens E, Oktay K. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS One. 2011;6:e19475.PubMedCrossRefGoogle Scholar
  89. 89.
    Abir R, Fisch B, Jessel S, Felz C, Ben-Haroush A, Orvieto R. Improving posttransplantation survival of human ovarian tissue by treating the host and graft. Fertil Steril. 2011;95:1205–10.PubMedCrossRefGoogle Scholar
  90. 90.
    Moomjy M, Rosenwaks Z. Ovarian tissue cryopreservation: the time is now. Transplantation or in vitro maturation: the time awaits. Fertil Steril. 1998;69:999–1000.PubMedCrossRefGoogle Scholar
  91. 91.
    Kim SS, Radford J, Harris M, et al. Ovarian tissue harvested from lymphoma patients to preserve fertility may be safe for autotransplantation. Hum Reprod. 2001;16:2056–60.PubMedCrossRefGoogle Scholar
  92. 92.
    Shaw JM, Bowles S, Koopman P, Wood EC, Trounson AO. Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod. 1996;11:1668–73.PubMedCrossRefGoogle Scholar
  93. 93.
    Gosden RG, Rutherford AJ, Norfolk DR. Ovarian banking for cancer patients: transmission of malignant cells in ovarian grafts. Hum Reprod. 1997;12:403–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Rosendahl M, Andersen MT, Ralfkiær E, Kjeldsen L, Andersen MK, Andersen CY. Evidence of residual disease in cryopreserved ovarian cortex from female patients with leukemia. Fertil Steril. 2010;94:2186–90.PubMedCrossRefGoogle Scholar
  95. 95.
    Kaufman MH, McBride MA, Delmonico FL. First report of UNOS transplant tumor registry: donors with a history of cancer. Transplantation. 2000;70:1747–51.CrossRefGoogle Scholar
  96. 96.
    Kaufman MH. Transplant tumor registry: donor related malignancies. Transplantation. 2002;74:358–62.CrossRefGoogle Scholar
  97. 97.
    Meirow D, Hardan I, Dor J, Fridman E, Elizar S, Ra’anani H, et al. Searching for evidence of disease and malignant cell contamination in ovarian tissue stored from hematologic cancer patients. Hum Reprod. 2008;23:1007–13.PubMedCrossRefGoogle Scholar
  98. 98.
    Radford JA, Lieberman BA, Brison DR, Smith ARB, Critchlow JD, Russell SA, et al. Orthotopic reimplantation of cryopreserved ovarian cortical strips after high-dose chemotherapy for Hodgkins lymphoma. Lancet. 2001;357:1172–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Dolmans MM, Yuan Yuan W, Camboni A, Torre A, Van Langendonckt A, Martinez-Madrid B, et al. Development of antral follicles after xenografting of isolated small human preantral follicles. Reprod BioMed Online. 2008;16:705–11.PubMedCrossRefGoogle Scholar
  100. 100.
    Telfer EE, McLaughlin M. In vitro development of ovarian follicles. Semin Reprod Med. 2011;29:15–23.PubMedCrossRefGoogle Scholar
  101. 101.
    Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, et al. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod. 2009;24:2531–40.PubMedCrossRefGoogle Scholar
  102. 102.
    Smitz JE, Thompson JG, Gilchrist RB. The promise of in vitro maturation in assisted reproduction and fertility preservation. Semin Reprod Med. 2011;29:24–37.PubMedCrossRefGoogle Scholar
  103. 103.
    Schröder CP, Timmer-Bosscha H, Wijchman JG, de Leij LF, Hollema H, Heineman MJ, et al. An in vitro model for purging of tumour cells from ovarian tissue. Hum Reprod. 2004;19:1069–75.PubMedCrossRefGoogle Scholar
  104. 104.
    Chen C. Pregnancy after human oocyte cryopreservation. Lancet. 1986;1:884–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online. 2009;18:769–76.PubMedCrossRefGoogle Scholar
  106. 106.
    Boiso I, Marti LM, Santalo LJ, Ponsa M, Barri PN, Veiga A. A confocal microscopy analysis of the spindle and chromosome configurations of human oocytes cryopreserved at the germinal vesicle and metaphase II stage. Hum Reprod. 2002;17:1885–91.PubMedCrossRefGoogle Scholar
  107. 107.
    Soderstrom-Anttila V, Salokorpi T, Pihlaja M, Serenius-Sirve S, Suikkari AM. Obstetric and perinatal outcome and preliminary results of development of children born after in vitro maturation of oocytes. Hum Reprod. 2006;21:1508–13.PubMedCrossRefGoogle Scholar
  108. 108.
    Grifo JA, Noyes N. Delivery rate using cryopreserved oocytes is comparable to conventional in vitro fertilization using fresh oocytes: potential fertility preservation for female cancer patients. Fertil Steril. 2010;93:391–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Cobo A, Meseguer M, Remohí J, Pellicer A. Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod. 2010;25:2239–46.PubMedCrossRefGoogle Scholar
  110. 110.
    Cobo A, Diaz C. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril. 2011;96:277–85.PubMedCrossRefGoogle Scholar
  111. 111.
    Baerwald AR, Adams GP, Pierson RA. A new model for ovarian follicular development during the human menstrual cycle. Fertil Steril. 2003;80:116–22.PubMedCrossRefGoogle Scholar
  112. 112.
    Von Wolff M, Thaler CJ, Frambach T, Zeeb C, Lawrenz B, Popovici RM, et al. Ovarian stimulation to cryopreserve fertilized oocytes in cancer patients can be started in the luteal phase. Fertil Steril. 2009;92:1360–5.CrossRefGoogle Scholar
  113. 113.
    Sönmezer M, Türkçüoğlu I, Coşkun U, Oktay K. Random-start controlled ovarian hyperstimulation for emergency fertility preservation in letrozole cycles. Fertil Steril. 2011;95:2125.e9-11.PubMedCrossRefGoogle Scholar
  114. 114.
    Nayak SR, Wakim AN. Random-start gonadotropin-releasing hormone (GnRH) antagonist-treated cycles with GnRH agonist trigger for fertility preservation. Fertil Steril. 2011;96:e51–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Maman E, Meirow D, Brengauz M, Raanani H, Dor J, Hourvitz A. Luteal phase oocyte retrieval and in vitro maturation is an optional procedure for urgent fertility preservation. Fertil Steril. 2011;95:64–7.PubMedCrossRefGoogle Scholar
  116. 116.
    American Academy of Pediatrics. Committee on bioethics. Informed consent, parental permission, and assent in pediatric practice. Pediatrics. 1995;95:314–7.Google Scholar
  117. 117.
    Kuther TL. Medical decision-making and minors: issues of consent and assent. Adolescence. 2003;38:343–58.PubMedGoogle Scholar
  118. 118.
    Noyes N, Knopman JM, Melzer K, Fino ME, Friedman B, Westphal LM. Oocyte cryopreservation as a fertility preservation measure for cancer patients. Reprod Biomed Online. 2011;23:323–33.PubMedCrossRefGoogle Scholar
  119. 119.
    45 CFR 46 Federal Policy for the Protection of Human Subjects: US Department of Health & Human Services, 2005: http://ohsr.od.nih.gov/guidelines/45cfr46.html#46.405. Accessed January 30, 2012
  120. 120.
    Sanders J, Hawley J, Levy W, Gooley T, Buckner CD, Deeg HJ, et al. Pregnancies following high-dose Cyclophosphamide with or without high-dose Busulfan or total body irradiation and bone marrow transplantation. Blood. 1996;87:3045–52.PubMedGoogle Scholar
  121. 121.
    Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 2001;7:534–43.Google Scholar
  122. 122.
    Oktem O, Oktay K. Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer. 2007;110:2222–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Lee SJ, Schover LR, Partridge AH, Patrizio P, Wallace WH, Hogerty K, et al. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. American Society of Clinical Oncology. J Clin Oncol. 2006;24:2917–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Laura Detti
    • 1
  • Daniel C. Martin
    • 1
  • Lucy J. Williams
    • 1
  1. 1.Department of Obstetrics and GynecologyUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations