Journal of Assisted Reproduction and Genetics

, Volume 29, Issue 8, pp 759–764 | Cite as

Influence of microsurgical varicocelectomy on human sperm mitochondrial DNA copy number: a pilot study

  • Maria San Gabriel
  • Sam W. Chan
  • Naif Alhathal
  • Junjian Z. Chen
  • Armand ZiniEmail author
Gamete Biology



There is good evidence to show that varicocele repair can improve conventional sperm parameters, as well as, sperm DNA integrity, in infertile men with a clinical varicocele.


To examine the effect of varicocelectomy on sperm quality, specifically, sperm nuclear chromatin integrity and sperm mitochondrial DNA (mtDNA) copy number.

Design, Setting, and Participants

A prospective study done between March 2007 and January 2008. We evaluated a consecutive series of infertile men (n = 14) presenting to Ovo clinic with one year or more history of infertility, a clinically palpable varicocele and poor motility (<25 % rapid progressive and <50 % progressive).

Surgical Procedure

Microsurgical sub-inguinal varicocelectomy.

Outcome Measurements and Statistical Analysis

Conventional sperm parameters, sperm mtDNA copy number (by real time PCR) and sperm chromatin structure assay (SCSA) parameters (%DFI,% HDS) before and 4 months after microsurgical varicocelectomy.

Results and Limitations

Sperm concentration and SCSA parameters (%DFI and %HDS) improved significantly after surgery (P < 0.05). Sperm mitochondrial DNA copy number decreased significantly after surgery (27 ± 30 to 9 ± 6 copies per sperm, respectively, P = 0.032). There was a significant negative correlation between mitochondrial DNA copy number and sperm motility (r = − 0.71, P = 0.002).


These findings support the concept that correction of a varicocele can improve spermatogenesis and sperm function, as mitochondrial DNA copy number has been suggested to reflect the efficiency of spermatogenesis and has been inversely related to sperm motility.


Sperm DNA mitochondrial DNA sperm motility male infertility varicocele 


  1. 1.
    Lewis SE, Agbaje I, Alvarez J. Sperm DNA tests as useful adjuncts to semen analysis. Syst Biol Reprod Med. 2008;54(3):111–25.PubMedCrossRefGoogle Scholar
  2. 2.
    Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30(3):219–29.PubMedCrossRefGoogle Scholar
  3. 3.
    Lewis SE. Importance of mitochondrial and nuclear sperm DNA in sperm quality assessment and assisted reproduction outcome. Hum Fertil (Camb). 2002;5(3):102–9.CrossRefGoogle Scholar
  4. 4.
    Song GJ, Lewis V. Mitochondrial DNA integrity and copy number in sperm from infertile men. Fertil Steril. 2008;90(6):2238–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Bahr GF, Engler WF. Considerations of volume, mass, DNA, and arrangement of mitochondria in the midpiece of bull spermatozoa. Exp Cell Res. 1970;60(3):338–40.PubMedCrossRefGoogle Scholar
  6. 6.
    St John JC, Sakkas D, Barratt CL. A role for mitochondrial DNA and sperm survival. J Androl. 2000;21(2):189–99.PubMedGoogle Scholar
  7. 7.
    Otani H, Tanaka O, Kasai K, Yoshioka T. Development of mitochondrial helical sheath in the middle piece of the mouse spermatid tail: regular dispositions and synchronized changes. Anat Rec. 1988;222(1):26–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savagner F, Barriere P, Malthiery Y. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod. 2001;7(5):425–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Cummins JM. Fertilization and elimination of the paternal mitochondrial genome. Hum Reprod. 2000;15 Suppl 2:92–101.PubMedCrossRefGoogle Scholar
  10. 10.
    Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod. 2000;63(2):582–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitin tag for sperm mitochondria. Nature. 1999;402(6760):371–2.PubMedCrossRefGoogle Scholar
  12. 12.
    Rajender S, Rahul P, Mahdi AA. Mitochondria, spermatogenesis and male infertility. Mitochondrion 10(5):419–428.Google Scholar
  13. 13.
    Cummins JM. Mitochondria in reproduction. Reprod Biomed Online. 2004;8(1):14–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update. 2009;15(5):553–72.PubMedCrossRefGoogle Scholar
  15. 15.
    Kao SH, Chao HT, Liu HW, Liao TL, Wei YH. Sperm mitochondrial DNA depletion in men with asthenospermia. Fertil Steril. 2004;82(1):66–73.PubMedCrossRefGoogle Scholar
  16. 16.
    St John JC, Jokhi RP, Barratt CL. The impact of mitochondrial genetics on male infertility. Int J Androl. 2005;28(2):65–73.PubMedCrossRefGoogle Scholar
  17. 17.
    Lestienne P, Reynier P, Chretien MF, Penisson-Besnier I, Malthiery Y, Rohmer V. Oligoasthenospermia associated with multiple mitochondrial DNA rearrangements. Mol Hum Reprod. 1997;3(9):811–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Spiropoulos J, Turnbull DM, Chinnery PF. Can mitochondrial DNA mutations cause sperm dysfunction? Mol Hum Reprod. 2002;8(8):719–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Nascimento JM, Shi LZ, Tam J, Chandsawangbhuwana C, Durrant B, Botvinick EL, Berns MW. Comparison of glycolysis and oxidative phosphorylation as energy sources for mammalian sperm motility, using the combination of fluorescence imaging, laser tweezers, and real-time automated tracking and trapping. J Cell Physiol. 2008;217(3):745–51.PubMedCrossRefGoogle Scholar
  20. 20.
    Folgero T, Bertheussen K, Lindal S, Torbergsen T, Oian P. Mitochondrial disease and reduced sperm motility. Hum Reprod. 1993;8(11):1863–8.PubMedGoogle Scholar
  21. 21.
    Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod 83(1):52–62.Google Scholar
  22. 22.
    Lee HC, Yin PH, Lu CY, Chi CW, Wei YH. Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J. 2000;348(Pt 2):425–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Grivennikova VG, Vinogradov AD. Generation of superoxide by the mitochondrial Complex I. Biochim Biophys Acta. 2006;1757(5–6):553–61.PubMedGoogle Scholar
  24. 24.
    Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol. 2007;47:143–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu CS, Tsai CS, Kuo CL, Chen HW, Lii CK, Ma YS, Wei YH. Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes. Free Radic Res. 2003;37(12):1307–17.PubMedCrossRefGoogle Scholar
  26. 26.
    Agarwal A, Deepinder F, Cocuzza M, Agarwal R, Short RA, Sabanegh E, Marmar JL. Efficacy of varicocelectomy in improving semen parameters: new meta-analytical approach. Urology. 2007;70(3):532–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Schlesinger MH, Wilets IF, Nagler HM. Treatment outcome after varicocelectomy. A critical analysis. Urol Clin North Am. 1994;21(3):517–29.PubMedGoogle Scholar
  28. 28.
    Evers JL, Collins JA. Assessment of efficacy of varicocele repair for male subfertility: a systematic review. Lancet. 2003;361(9372):1849–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Ficarra V, Cerruto MA, Liguori G, Mazzoni G, Minucci S, Tracia A, Gentile V. Treatment of varicocele in subfertile men: The Cochrane Review–a contrary opinion. Eur Urol. 2006;49(2):258–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Evers JH, Collins J, Clarke J. Surgery or embolisation for varicoceles in subfertile men. Cochrane Database Syst Rev 2009;(1):CD000479.Google Scholar
  31. 31.
    Evenson DP, Jost LK, Baer RK, Turner TW, Schrader SM. Individuality of DNA denaturation patterns in human sperm as measured by the sperm chromatin structure assay. Reprod Toxicol. 1991;5(2):115–25.PubMedCrossRefGoogle Scholar
  32. 32.
    Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, de Angelis P, Claussen OP. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14(4):1039–49.PubMedCrossRefGoogle Scholar
  33. 33.
    Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000;73(1):43–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Zini A, Kamal K, Phang D, Willis J, Jarvi K. Biologic variability of sperm DNA denaturation in infertile men. Urology. 2001;58(2):258–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, Carson SA, Cisneros P, Steinkampf MP, Hill JA, et al. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001;345(19):1388–93.PubMedCrossRefGoogle Scholar
  36. 36.
    Goldstein M, Gilbert BR, Dicker AP, Dwosh J, Gnecco C. Microsurgical inguinal varicocelectomy with delivery of the testis: an artery and lymphatic sparing technique. J Urol. 1992;148(6):1808–11.PubMedGoogle Scholar
  37. 37.
    Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75(4):674–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen J, Kadlubar FF, Chen JZ. DNA supercoiling suppresses real-time PCR: a new approach to the quantification of mitochondrial DNA damage and repair. Nucleic Acids Res. 2007;35(4):1377–88.PubMedCrossRefGoogle Scholar
  39. 39.
    Chan SW, Chen JZ. Measuring mtDNA damage using a supercoiling-sensitive qPCR approach. Methods Mol Biol. 2009;554:183–97.PubMedCrossRefGoogle Scholar
  40. 40.
    Chan SW, Nguyen PN, Ayele D, Chevalier S, Aprikian A, Chen JZ. Mitochondrial DNA damage is sensitive to exogenous H(2)O(2) but independent of cellular ROS production in prostate cancer cells. Mutat Res. 2011;716(1–2):40–50.PubMedGoogle Scholar
  41. 41.
    May-Panloup P, Chretien MF, Savagner F, Vasseur C, Jean M, Malthiery Y, Reynier P. Increased sperm mitochondrial DNA content in male infertility. Hum Reprod. 2003;18(3):550–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Mourier T, Hansen AJ, Willerslev E, Arctander P. The Human Genome Project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol. 2001;18(9):1833–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Amaral A, Ramalho-Santos J, St John JC. The expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm. Hum Reprod. 2007;22(6):1585–96.PubMedCrossRefGoogle Scholar
  44. 44.
    Hecht NB, Liem H. Mitochondrial DNA is synthesized during meiosis and spermiogenesis in the mouse. Exp Cell Res. 1984;154(1):293–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Manfredi G, Thyagarajan D, Papadopoulou LC, Pallotti F, Schon EA. The fate of human sperm-derived mtDNA in somatic cells. Am J Hum Genet. 1997;61(4):953–60.PubMedCrossRefGoogle Scholar
  46. 46.
    St John JC, Bowles EJ, Amaral A. Sperm mitochondria and fertilisation. Soc Reprod Fertil Suppl. 2007;65:399–416.PubMedGoogle Scholar
  47. 47.
    Werthman P, Wixon R, Kasperson K, Evenson DP. Significant decrease in sperm deoxyribonucleic acid fragmentation after varicocelectomy. Fertil Steril. 2008;90(5):1800–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Zini A, Blumenfeld A, Libman J, Willis J. Beneficial effect of microsurgical varicocelectomy on human sperm DNA integrity. Hum Reprod. 2005;20(4):1018–21.PubMedCrossRefGoogle Scholar
  49. 49.
    Sadek A, Almohamdy AS, Zaki A, Aref M, Ibrahim SM, Mostafa T. Sperm chromatin condensation in infertile men with varicocele before and after surgical repair. Fertil Steril. 2011;95(5):1705–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen SS, Huang WJ, Chang LS, Wei YH. Attenuation of oxidative stress after varicocelectomy in subfertile patients with varicocele. J Urol. 2008;179(2):639–42.PubMedCrossRefGoogle Scholar
  51. 51.
    Sakamoto Y, Ishikawa T, Kondo Y, Yamaguchi K, Fujisawa M. The assessment of oxidative stress in infertile patients with varicocele. BJU Int. 2008;101(12):1547–52.PubMedCrossRefGoogle Scholar
  52. 52.
    Smit M, Romijn JC, Wildhagen MF, Veldhoven JL, Weber RF, Dohle GR. Decreased sperm DNA fragmentation after surgical varicocelectomy is associated with increased pregnancy rate. J Urol 183(1):270–274.Google Scholar
  53. 53.
    Azadi L, Abbasi H, Deemeh MR, Tavalaee M, Arbabian M, Pilevarian AA, Nasr-Esfahani MH. Zaditen (Ketotifen), as mast cell blocker, improves sperm quality, chromatin integrity and pregnancy rate after varicocelectomy. Int J AndrolGoogle Scholar
  54. 54.
    Spano M, Kolstad H, Larsen SB, Cordelli E, Leter G, Giwercman A, Bonde JP. Flow cytometric sperm chromatin structure assay as an independent descriptor of human semen quality. Scand J Work Environ Health. 1999;25 Suppl 1:28–30. discussion 76–28.PubMedGoogle Scholar
  55. 55.
    Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, Giwercman A. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22(1):174–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ, Rylander L. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case–control study. Int J Androl 2009.Google Scholar
  57. 57.
    Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med 57(1–2):78–85.Google Scholar
  58. 58.
    Blumer CG, Fariello RM, Restelli AE, Spaine DM, Bertolla RP, Cedenho AP. Sperm nuclear DNA fragmentation and mitochondrial activity in men with varicocele. Fertil Steril. 2008;90(5):1716–22.PubMedCrossRefGoogle Scholar
  59. 59.
    La Vignera S, Condorelli R, Vicari E, D’Agata R, Calogero AE. Effects of varicocelectomy on sperm DNA fragmentation, mitochondrial function, chromatin condensation, and apoptosis. J Androl 2011.Google Scholar
  60. 60.
    Zini A, Buckspan M, Jamal M, Jarvi K. Effect of varicocelectomy on the abnormal retention of residual cytoplasm by human spermatozoa. Hum Reprod. 1999;14(7):1791–3.PubMedCrossRefGoogle Scholar
  61. 61.
    Johnsen SG, Agger P. Quantitative evaluation of testicular biopsies before and after operation for varicocele. Fertil Steril. 1978;29(1):58–63.PubMedGoogle Scholar
  62. 62.
    Saleh RA, Agarwal A, Sharma RK, Said TM, Sikka SC, Thomas Jr AJ. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril. 2003;80(6):1431–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Maria San Gabriel
    • 1
  • Sam W. Chan
    • 1
  • Naif Alhathal
    • 1
  • Junjian Z. Chen
    • 1
  • Armand Zini
    • 2
    Email author
  1. 1.Division of Urology, Department of SurgeryMcGill UniversityMontrealCanada
  2. 2.St. Mary’s HospitalMontrealCanada

Personalised recommendations