Journal of Assisted Reproduction and Genetics

, Volume 29, Issue 8, pp 713–721 | Cite as

Triploid and diploid embryonic stem cell lines derived from tripronuclear human zygotes

  • Xinjie Chen
  • Yumei Luo
  • Yong Fan
  • Lei Yue
  • Xueshi Wu
  • Yaoyong Chen
  • Xiaofang Sun
Stem Cell Biology

Abstract

Purpose

Human embryonic stem cells (hESCs) are self-renewing, pluripotent cells that are valuable research tools and hold promise for use in regenerative medicine. The need for new hESC lines motivated our attempts to find a new resource for the derivation of hESC lines. The aim of this work was to establish more hESC lines from abnormal fertilized zygotes and to meet the emerging requirements for their use in cell replacement therapies, disease modeling, and basic research.

Methods

A total of 130 tripronuclear human zygotes was collected 18–20 h post-insemination and cultured in a modified culture medium. The inner cell mass of 12 blastocysts were isolated by a mechanical method in order to establish embryonic stem cell lines.

Results

We established four hESC lines derived from 130 trinuclear zygotes, one of which was triploid and the others were diploid. The efficiency of deriving hESC lines is 3.08 %. The ratio of deriving triploid and diploid hESC lines is 1:3. All of these hESC lines exhibited similar markers of undifferentiated hESCs and had the typical morphology of hESCs, a capacity for long-term proliferation, and pluripotent differentiation potential both in vivo and in vitro.

Conclusions

These abnormal zygotes, which otherwise would have been discarded, can serve as an alternative source for normal euploid hESC lines.

Keywords

Human embryonic stem cells Pronucleus (PN) Human zygotes Triploid 

References

  1. 1.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, Wang S, Morton CC, McMahon AP, Powers D, Melton DA. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350:1353–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Chen AE, Egli D, Niakan K, Deng J, Akutsu H, Yamaki M, Cowan C, Fitz-Gerald C, Zhang K, Melton DA, Eggan K. Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell. 2009;4:103–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Inamdar MS, Venu P, Srinivas MS, Rao K, VijayRaghavan K. Derivation and characterization of two sibling human embryonic stem cell lines from discarded grade III embryos. Stem Cells Dev. 2009;18:423–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Lerou PH, Yabuuchi A, Huo H, Takeuchi A, Shea J, Cimini T, Ince TA, Ginsburg E, Racowsky C, Daley GQ. Human embryonic stem cell derivation from poor-quality embryos. Nat Biotechnol. 2008;26:212–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Landry DW, Zucker HA. Embryonic death and the creation of human embryonic stem cells. J Clin Invest. 2004;114:1184–6.PubMedGoogle Scholar
  7. 7.
    Ho PC, Yeung WS, Chan YF, So WW, Chan ST. Factors affecting the incidence of polyploidy in a human in vitro fertilization program. Int J Fertil Menopausal Stud. 1994;39:14–9.PubMedGoogle Scholar
  8. 8.
    Matt DW, Ingram AR, Graff DP, Edelstein MC. Normal birth after single-embryo transfer in a patient with excessive polypronuclear zygote formation following in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2004;82:1662–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Feenan K, Herbert M. Can ‘abnormally’ fertilized zygotes give rise to viable embryos? Hum Fertil (Camb). 2006;9:157–69.CrossRefGoogle Scholar
  10. 10.
    Suss-Toby E, Gerecht-Nir S, Amit M, Manor D, Itskovitz-Eldor J. Derivation of a diploid human embryonic stem cell line from a mononuclear zygote. Hum Reprod. 2004;19:670–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Huan Q, Gao X, Wang Y, Shen Y, Ma W, Chen ZJ. Comparative evaluation of human embryonic stem cell lines derived from zygotes with normal and abnormal pronuclei. Dev Dyn. 2010;239:425–38.PubMedCrossRefGoogle Scholar
  12. 12.
    Strom S, Rodriguez-Wallberg K, Holm F, Bergstrom R, Eklund L, Stromberg AM, Hovatta O. No relationship between embryo morphology and successful derivation of human embryonic stem cell lines. PLoS One. 2010;5:e15329.PubMedCrossRefGoogle Scholar
  13. 13.
    Steer CV, Mills CL, Tan SL, Campbell S, Edwards RG. The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Hum Reprod. 1992;7:117–9.PubMedGoogle Scholar
  14. 14.
    Fan Y, Luo Y, Chen X, Sun X. A modified culture medium increases blastocyst formation and the efficiency of human embryonic stem cell derivation from poor-quality embryos. J Reprod Dev. 2010;56:533–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Gardner DK, Lane M, Schoolcraft WB. Culture and transfer of viable blastocysts: a feasible proposition for human IVF. Hum Reprod. 2000;15 Suppl 6:9–23.PubMedGoogle Scholar
  16. 16.
    Liu W, Yin Y, Long X, Luo Y, Jiang Y, Zhang W, Du H, Li S, Zheng Y, Li Q, Chen X, Liao B, Xiao G, Wang W, Sun X. Derivation and characterization of human embryonic stem cell lines from poor quality embryos. J Genet Genomics. 2009;36:229–39.PubMedCrossRefGoogle Scholar
  17. 17.
    Li M, Ma W, Hou Y, Sun XF, Sun QY, Wang WH. Improved isolation and culture of embryonic stem cells from Chinese miniature pig. J Reprod Dev. 2004;50:237–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Sun X, Long X, Yin Y, Jiang Y, Chen X, Liu W, Zhang W, Du H, Li S, Zheng Y, Kong S, Pang Q, Shi Y, Huang Y, Huang S, Liao B, Xiao G, Wang W. Similar biological characteristics of human embryonic stem cell lines with normal and abnormal karyotypes. Hum Reprod. 2008;23:2185–93.PubMedCrossRefGoogle Scholar
  19. 19.
    Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366:2019–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Baharvand H, Ashtiani SK, Taee A, Massumi M, Valojerdi MR, Yazdi PE, Moradi SZ, Farrokhi A. Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Dev Growth Differ. 2006;48:117–28.PubMedCrossRefGoogle Scholar
  21. 21.
    Oh SK, Kim HS, Ahn HJ, Seol HW, Kim YY, Park YB, Yoon CJ, Kim DW, Kim SH, Moon SY. Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells. 2005;23:211–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Simon C, Escobedo C, Valbuena D, Genbacev O, Galan A, Krtolica A, Asensi A, Sanchez E, Esplugues J, Fisher S, Pellicer A. First derivation in Spain of human embryonic stem cell lines: use of long-term cryopreserved embryos and animal-free conditions. Fertil Steril. 2005;83:246–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Zacharias DG, Nelson TJ, Mueller PS, Hook CC. The science and ethics of induced pluripotency: what will become of embryonic stem cells? Mayo Clin Proc. 2011;86:634–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Sathananthan AH, Tarin JJ, Gianaroli L, Ng SC, Dharmawardena V, Magli MC, Fernando R, Trounson AO. Development of the human dispermic embryo. Hum Reprod Update. 1999;5:553–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Tarin JJ, Trounson AO, Sathananthan H. Origin and ploidy of multipronuclear zygotes. Reprod Fertil Dev. 1999;11:273–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Rosenbusch BE. Mechanisms giving rise to triploid zygotes during assisted reproduction. Fertil Steril. 2008;90:49–55.PubMedCrossRefGoogle Scholar
  27. 27.
    Kola I, Trounson A, Dawson G, Rogers P. Tripronuclear human oocytes: altered cleavage patterns and subsequent karyotypic analysis of embryos. Biol Reprod. 1987;37:395–401.PubMedCrossRefGoogle Scholar
  28. 28.
    Rosenbusch B, Schneider M, Sterzik K. The chromosomal constitution of multipronuclear zygotes resulting from in-vitro fertilization. Hum Reprod. 1997;12:2257–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Peura T, Bosman A, Chami O, Jansen RP, Texlova K, Stojanov T. Karyotypically normal and abnormal human embryonic stem cell lines derived from PGD-analyzed embryos. Cloning Stem Cells. 2008;10:203–16.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xinjie Chen
    • 1
  • Yumei Luo
    • 1
  • Yong Fan
    • 1
  • Lei Yue
    • 1
  • Xueshi Wu
    • 1
  • Yaoyong Chen
    • 1
  • Xiaofang Sun
    • 1
  1. 1.Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Key Laboratory of Reproduction and Genetics, Institute of Gynecology and ObstetricsThe Third Affiliated Hospital of Guangzhou Medical CollegeGuangzhouPeople’s Republic of China

Personalised recommendations