Advertisement

A randomized clinical trial comparing embryo culture in a conventional incubator with a time-lapse incubator

  • Kirstine KirkegaardEmail author
  • Johnny Juhl Hindkjaer
  • Marie Louise Grøndahl
  • Ulrik Schiøler Kesmodel
  • Hans Jakob Ingerslev
Technical Innovations

Abstract

Purpose

Time-lapse monitoring allows for a flexible embryo evaluation and potentially provides new dynamic markers of embryo competence. Before introducing time-lapse monitoring in a clinical setting, the safety of the instrument must be properly documented. Accordingly, the aim of this study was to evaluate the safety of a commercially available time-lapse incubator.

Methods

In a two center, randomized, controlled, clinical trial 676 oocytes from 59 patients in their 2nd or third treatment cycle, age <38 years and ≥8 oocytes retrieved were cultured in the time-lapse incubator or in a conventional incubator. The primary outcome was proportion of 4-cell embryos on day 2. Secondary outcomes were proportion of 7–8 cell embryos on day 3 and proportion of blastocysts on day 5. Implantation pregnancy rates were registered based on presence of fetal heart activity visualized by ultrasound 8 weeks after embryo transfer.

Results

No significant difference was found between the time-lapse incubator (TLI) and conventional incubator (COI) in proportion of 4-cell embryos on day 2 irrespective of whether data was analyzed according to ITT (RRTLI/COI: 0.81 (0.65; 1.02)) or PP (RRTLI/COI: 0.80 (0.63; 1.01)). Nor were any significant differences detected in the secondary endpoints; i.e. proportion of 7–8-cell embryos on day three ITT (RRTLI/COI: 0.96 (0.73; 1.26)); PP (RRTLI/COI: 0.95 (0.72; 1.26)) and proportion of blastocysts on day five ITT (RRTLI/COI: 1.09 (0.84; 1.41)); PP (RRTLI/COI: 1.09 (0.83: 1.41)). We found no differences in clinical pregnancy rate or implantation rate.

Conclusion

Culture in the time-lapse incubator supports embryonic development equally to a conventional incubator.

Keywords

Time-lapse monitoring Safety Embryo culture Human ART 

Notes

Acknowledgments

The authors wish to thank the clinical, paramedical and laboratory team of the Fertility Clinic, Aarhus University Hospital, Skejby and the Fertility Clinic, Copenhagen University Hospital Rigshospitalet. Unisense FertiliTech is thanked for providing EmbryoSlides. Inge Agerholm is thanked for scientific discussions.

Funding

Unisense FertiliTech provided EmbryoSlides.

Disclosure statement

The authors have nothing to declare

References

  1. 1.
    Ahlstrøm A, Wikland M, Rogberg L, Barnett JS, Tucker M, Hardarson T. Cross-validation and predictive value of near-infrared spectroscopy algorithms for day-5 blastocyst transfer. Reprod Biomed Online. 2011;22(5):477–84. doi: S1383-03),/j.rbmo.2011.01.009.CrossRefGoogle Scholar
  2. 2.
    Arav A, Aroyo A, Yavin S, Roth Z. Prediction of embryonic developmental competence by time-lapse observation and ‘shortest-half’ analysis. Reprod Biomed Online. 2008;17(5):669–75. doi: S1383-03),/S1472-6483(10)60314-8.PubMedCrossRefGoogle Scholar
  3. 3.
    Assou S, Haouzi D, De Vos J, Hamamah S. Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol Hum Reprod. 2010;16(8):531–8. doi: 10.1093/molehr/gaq032.PubMedCrossRefGoogle Scholar
  4. 4.
    Beraldi R, Sciamanna I, Mangiacasale R, Lorenzini R, Spadafora C. Mouse early embryos obtained by natural breeding or in vitro fertilization display a differential sensitivity to extremely low-frequency electromagnetic fields. Mutat Res. 2003;538(1–2):163–70. doi: S1383-03),/S1383-5718(03),00116-5.PubMedGoogle Scholar
  5. 5.
    Cruz M, Gadea B, Garrido N, Pedersen KS, Martinez M, Perez-Cano I, Munoz M, Meseguer M. Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. J Assist Reprod Genet. 2011. doi: 10.1007/s10815-011-9549-1.
  6. 6.
    Dondorp W, de Wert G. Innovative reproductive technologies: risks and responsibilities. Hum Rep. 2011;26(7):1604–8. doi: 10.1093/humrep/der112.CrossRefGoogle Scholar
  7. 7.
    Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;81(3):551–5. doi: S1383-03),/j.fertnstert.2003.07.023.PubMedCrossRefGoogle Scholar
  8. 8.
    Gonzales DS, Pinheiro JC, Bavister BD. Prediction of the developmental potential of hamster embryos in vitro by precise timing of the third cell cycle. J Reprod Fertil. 1995;105(1):1–8. doi: 10.1530/jrf.0.1050001.PubMedCrossRefGoogle Scholar
  9. 9.
    Grisart B, Massip A, Dessy F. Cinematographic analysis of bovine embryo development in serum-free oviduct-conditioned medium. J Reprod Fertil. 1994;101(2):257–64. doi: 10.1530/jrf.0.1010257.PubMedCrossRefGoogle Scholar
  10. 10.
    Hardarson T, Ahlström A, Rogberg L, Botros L, Hillensjö T, Westlander G, Sakkas D, Wikland M. Non-invasive metabolomic profiling of Day 2 and 5 embryo culture medium: a prospective randomized trial. Hum Rep. 2011. doi: 10.1093/humrep/der373.
  11. 11.
    Hardarson T, Hanson C, Lundin K, Hillensjo T, Nilsson L, Stevic J, Reismer E, Borg K, Wikland M, Bergh C. Preimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate: a randomized controlled trial. Hum Rep. 2008;23(12):2806–12. doi: 10.1093/humrep/den217.CrossRefGoogle Scholar
  12. 12.
    Hardarson T, Hanson C, Sjogren A, Lundin K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Rep. 2001;16(2):313–8. doi: 10.1093/humrep/16.2.313.CrossRefGoogle Scholar
  13. 13.
    Hardarson T, Lofman C, Coull G, Sjogren A, Hamberger L, Edwards RG. Internalization of cellular fragments in a human embryo: time-lapse recordings. Reprod Biomed Online. 2002;5(1):36–8. doi: S1383-03),/S1472-6483(10)61594-5.PubMedCrossRefGoogle Scholar
  14. 14.
    Harper J, Cristina Magli M, Lundin K, Barratt CLR, Brison D. When and how should new technology be introduced into the IVF laboratory? Hum Reprod. 2011;27(2):303–13. doi: 10.1093/humrep/der414.PubMedCrossRefGoogle Scholar
  15. 15.
    Holm P, Shukri NN, Vajta G, Booth P, Bendixen C, Callesen H. Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex. Theriogenology. 1998;50(8):1285–99. doi: S1383-03),/S0093-691X(98)00227-1.PubMedCrossRefGoogle Scholar
  16. 16.
    The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Rep. 2011;doi: 10.1093/humrep/der037
  17. 17.
    Jones GM, Cram DS, Song B, Kokkali G, Pantos K, Trounson AO. Novel strategy with potential to identify developmentally competent IVF blastocysts. Hum Rep. 2008;23(8):1748–59. doi: 10.1093/humrep/den123.CrossRefGoogle Scholar
  18. 18.
    Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008;17(3):385–91. doi: S1383-03),/S1472-6483(10)60222-2.PubMedCrossRefGoogle Scholar
  19. 19.
    Lewis WH, Gregory PW. Cinematographs of living developing rabbit-eggs. Science. 1929;69(1782):226–9. doi: 10.1126/science.69.1782.226-a.PubMedCrossRefGoogle Scholar
  20. 20.
    Massip A, Mulnard J. Time-lapse cinematographic analysis of hatching of normal and frozen-thawed cow blastocysts. J Reprod Fertil. 1980;58(2):475–8. doi: 10.1530/jrf.0.0580475.PubMedCrossRefGoogle Scholar
  21. 21.
    Massip A, Mulnard J, Vanderzwalmen P, Hanzen C, Ectors F. The behaviour of cow blastocyst in vitro: cinematographic and morphometric analysis. J Anat. 1982;134(Pt 2):399–405.PubMedGoogle Scholar
  22. 22.
    Mastenbroek S, Twisk M, van Echten-Arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR, Vogel NE, Arts EG, de Vries JW, Bossuyt PM, Buys CH, Heineman MJ, Repping S, van der Veen F. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357(1):9–17. doi: 10.1056/NEJMoa067744.PubMedCrossRefGoogle Scholar
  23. 23.
    Meseguer M, Herrero J, Tejera A, Hilligsøe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum Rep. 2011. doi: 10.1093/humrep/der256.
  24. 24.
    Mio Y, Maeda K. Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos. Am J Obstet Gynecol. 2008;199(6):660 e661–5 e661. doi: S1383-03),/j.ajog.2008.07.023.CrossRefGoogle Scholar
  25. 25.
    Montag M, Liebenthron J, Koster M. Which morphological scoring system is relevant in human embryo development? Placenta. 2011. doi: S1383-03),/j.placenta.2011.07.009.
  26. 26.
    Nakahara T, Iwase A, Goto M, Harata T, Suzuki M, Ienaga M, Kobayashi H, Takikawa S, Manabe S, Kikkawa F, Ando H. Evaluation of the safety of time-lapse observations for human embryos. J Assist Reprod Genet. 2010;27(2–3):93–6. doi: 10.1007/s10815-010-9385-8.PubMedCrossRefGoogle Scholar
  27. 27.
    Oh SJ, Gong SP, Lee ST, Lee EJ, Lim JM. Light intensity and wavelength during embryo manipulation are important factors for maintaining viability of preimplantation embryos in vitro. Fertil Steril. 2007;88(4 Suppl):1150–7. doi: S1383-03),/j.fertnstert.2007.01.036.PubMedCrossRefGoogle Scholar
  28. 28.
    Ottosen LD, Hindkjaer J, Ingerslev J. Light exposure of the ovum and preimplantation embryo during ART procedures. J Assist Reprod Genet. 2007;24(2–3):99–103. doi: 10.1007/s10815-006-9081-x.PubMedCrossRefGoogle Scholar
  29. 29.
    Ottosen LD, Hindkjaer J, Lindenberg S, Ingerslev HJ. Murine pre-embryo oxygen consumption and developmental competence. J Assist Reprod Genet. 2007;24(8):359–65. doi: 10.1007/s10815-007-9138-5.PubMedCrossRefGoogle Scholar
  30. 30.
    Payne D, Flaherty SP, Barry MF, Matthews CD. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum Rep. 1997;12(3):532–41. doi: 10.1093/humrep/12.3.532.CrossRefGoogle Scholar
  31. 31.
    Pickering SJ, Taylor A, Johnson MH, Braude PR. An analysis of multinucleated blastomere formation in human embryos. Hum Rep. 1995;10(7):1912–22.Google Scholar
  32. 32.
    Pribenszky C, Losonczi E, Molnar M, Lang Z, Matyas S, Rajczy K, Molnar K, Kovacs P, Nagy P, Conceicao J, Vajta G. Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment. Reprod Biomed Online. 2010;20(3):371–9. doi: S1383-03),/j.rbmo.2009.12.007.PubMedCrossRefGoogle Scholar
  33. 33.
    Racowsky C, Vernon M, Mayer J, Ball G, Behr B, Pomeroy K, Wininger D, Gibbons W, Conaghan J, Stern J. Standardization of grading embryo morphology. J Assist Reprod Genet. 2010;8:437–9. doi: S1383-03),/j.fertnstert.2010.05.042.CrossRefGoogle Scholar
  34. 34.
    Schoolcraft WB, Katz-Jaffe MG, Stevens J, Rawlins M, Munne S. Preimplantation aneuploidy testing for infertile patients of advanced maternal age: a randomized prospective trial. Fertil Steril. 2009;92(1):157–62. doi: S1383-03),/j.fertnstert.2008.05.029.PubMedCrossRefGoogle Scholar
  35. 35.
    Scott L, Berntsen J, Davies D, Gundersen J, Hill J, Ramsing N. Symposium: innovative techniques in human embryo viability assessment. Human oocyte respiration-rate measurement–potential to improve oocyte and embryo selection? Reprod Biomed Online. 2008;17(4):461–9. doi: S1383-03),/S1472-6483(10)60232-5.PubMedCrossRefGoogle Scholar
  36. 36.
    Scott L, Finn A, O'Leary T, McLellan S, Hill J. Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum Rep. 2007;22(1):230–40. doi: 10.1093/humrep/del358.CrossRefGoogle Scholar
  37. 37.
    Seli E, Robert C, Sirard MA. OMICS in assisted reproduction: possibilities and pitfalls. Mol Hum Reprod. 2010;16(8):513–30. doi: 10.1093/molehr/gaq041.PubMedCrossRefGoogle Scholar
  38. 38.
    Staessen C, Platteau P, Van Assche E, Michiels A, Tournaye H, Camus M, Devroey P, Liebaers I, Van Steirteghem A. Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum Rep. 2004;19(12):2849–58. doi: 10.1093/humrep/deh536.CrossRefGoogle Scholar
  39. 39.
    Steer CV, Mills CL, Tan SL, Campbell S, Edwards RG. The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Hum Rep. 1992;7(1):117–9.Google Scholar
  40. 40.
    Takenaka M, Horiuchi T, Yanagimachi R. Effects of light on development of mammalian zygotes. Proc Natl Acad Sci U S A. 2007;104(36):14289–93. doi: 10.1073/pnas.0706687104.PubMedCrossRefGoogle Scholar
  41. 41.
    Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, Reijo Pera RA. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28(10):1115–21. doi: 10.1038/nbt.1686.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang JQ, Li XL, Peng Y, Guo X, Heng BC, Tong GQ. Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reprod Biomed Online. 2010;20(4):510–5. doi: S1383-03),/j.rbmo.2009.12.027.PubMedCrossRefGoogle Scholar
  43. 43.
    Ziebe S, Petersen K, Lindenberg S, Andersen AG, Gabrielsen A, Andersen AN. Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Rep. 1997;12(7):1545–9. doi: 10.1093/humrep/12.7.1545.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kirstine Kirkegaard
    • 1
    Email author
  • Johnny Juhl Hindkjaer
    • 1
  • Marie Louise Grøndahl
    • 2
  • Ulrik Schiøler Kesmodel
    • 1
  • Hans Jakob Ingerslev
    • 1
  1. 1.The Fertility Clinic, Aarhus University HospitalAarhus NDenmark
  2. 2.Fertility DepartmentCopenhagen University Hospital, RigshospitaletCopenhagen ØDenmark

Personalised recommendations