Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 28, Issue 11, pp 1073–1085 | Cite as

Sperm DNA integrity assays: diagnostic and prognostic challenges and implications in management of infertility

  • Monis Bilal Shamsi
  • Syed Nazar Imam
  • Rima DadaEmail author
Review

Abstract

Sperm is not a simple carrier of paternal genetic information but its role extends clearly beyond fertilization. Integrity of sperm genome is an essential pre-requisite for birth of healthy offspring and evaluation of sperm should entail DNA integrity analysis. DNA integrity analysis is a better diagnostic and prognostic marker of sperm reproductive potential. Conventional semen analysis emphasizes on sperm concentration, viability, motility and morphology and has been proven to be a poor indicator of reproductive potential and pregnancy outcome. To overcome the drawbacks associated with conventional semen analysis more useful fertility tests and molecular biomarkers have been explored. Among the different tests which have evolved for assessing the sperm reproductive potential, tests for sperm DNA quality are most promising. Sperm DNA damage has been closely associated with numerous indicators of reproductive health including fertilization, embryo quality, implantation, spontaneous abortion, congenital malformations and childhood diseases. It therefore has great potential as a prognostic test for both in vitro and in vivo conception. This review presents an updated account of tests that have better diagnostic and prognostic implications in the evaluation of sperm DNA damage. The basic principles, outline of methodology, advantage, disadvantage, clinical significance of each technique and implications of these tests have been discussed. The logistics of each test with respect to available resources and equipment in an andrology laboratory, the feasibility of performing these tests in routine diagnostic workup of infertile men and the opportunities and challenges provided by DNA testing in male fertility determination are also presented.

Keywords

Sperm DNA integrity Semen analysis DNA integrity tests Comet, TUNEL, SCSA Acridine orange test Comet assay Toluidine blue staining Chromomycin A-3 Sperm chromatin dispersion Infertility, recurrent spontaneous abortion, assisted reproduction technique 

References

  1. 1.
    World Health Organization. WHO laboratory manual for the examination of human semen and semen–cervical mucus interaction. 4th ed. Cambridge: Cambridge University Press; 1999.Google Scholar
  2. 2.
    WHO Laboratory manual for the examination and processing of human semen. 5th ed. Cambridge: Cambridge University Press; 2010.Google Scholar
  3. 3.
    Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, et al. National Cooperative Reproductive Medicine Network. Sperm morphology, motility, and concentration in infertile and fertile men. New Engl J Med. 2001;345:1388–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Guzick DS, Sullivan MW, Adamson GD, Cedars MI, Falk RJ, Peterson EP, et al. Efficacy of treatment for unexplained infertility. Fertil Steril. 1998;70(2):207–13.PubMedCrossRefGoogle Scholar
  5. 5.
    Liu DY, Baker HW. Evaluation and assessment of semen for IVF/ICSI. Asian J Androl. 2002;4(4):281–5.PubMedGoogle Scholar
  6. 6.
    Berkovitz A, Eltes F, Lederman H, Peer S, Ellenbogen A, Feldberg B, et al. How to improve IVF-ICSI outcome by sperm selection. Reprod Biomed Online. 2006;12(5):634–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Lewis SE, Agbaje I, Alvarez J. Sperm DNA tests as useful adjuncts to semen analysis. Syst Biol Reprod Med. 2008;54(3):111–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57:78–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Host E, Lindenberg S, Smidt-Jensen S. DNA strand breaks in human spermatozoa: correlation with fertilization in vitro in oligozoospermic men and in men with unexplained infertility. Acta Obstet Gynecol Scand. 2000;79:189–93.PubMedCrossRefGoogle Scholar
  10. 10.
    Host E, Lindenberg S, Ernst E, Christensen F. DNA strand breaks in human spermatozoa: a possible factor, to be considered in couples suffering from unexplained infertility. Acta Obstet Gynecol Scand. 1999;78:622–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Saleh RA, Agarwal A, Nelson DE, Nada EA, El-Tonsy MH, Alvarez JG, et al. Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril. 2002;78:313–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Venkatesh S, Riyaz AM, Shamsi MB, Kumar R, Gupta NP, Mittal S, et al. Clinical significance of reactive oxygen species in semen of infertile Indian men. Andrologia. 2009;41(4):251–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Lewis SEM, Luke S. Clinical implications of sperm DNA damage. Hum Fertil. 2010;13(4):201–7. doi: 10.3109/14647273.2010.528823.CrossRefGoogle Scholar
  14. 14.
    Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000;73:43–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Evenson DP, Jost LK. Sperm chromatin structure assay is useful for fertility assessment. Meth Cell Sci. 2000;22:169–89.CrossRefGoogle Scholar
  16. 16.
    Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril. 2003;80:895–902.PubMedCrossRefGoogle Scholar
  17. 17.
    Saleh RA, Agarwal A, Nada ES, El-Tonsy MH, Sharma RK, Meyer A. Negative effects of increased sperm DNA damge in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79 Suppl 3:1597–605.PubMedCrossRefGoogle Scholar
  18. 18.
    Gandini L, Lombardo F, Paoli D, Caruso F, Eleuteri P, Leter G, et al. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod. 2004;19:1409–17.PubMedCrossRefGoogle Scholar
  19. 19.
    Check JH, Graziano V, Cohen R, Krotec J, Check ML. Effect of an abnormal sperm chromatin structural assay (SCSA) on pregnancy outcome following (IVF) with ICSI in previous IVF failures. Arch Androl. 2005;51:121–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Evenson D, Wixon R. Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod Biomed Online. 2006;12:466–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Fernández-Gonzalez R, Moreira PN, Pérez-Crespo M, Sánchez-Martín M, Ramirez MA, Pericuesta E, et al. Long term effects of mouse intracytoplasmic sperm injection with DNA fragmented sperm on health and behavior of adult offspring. Biol Reprod. 2008;78(4):761–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Shamsi MB, Kumar R, Dada R. Evaluation of nuclear DNA damage in human spermatozoa in men opting for assisted reproduction. Indian J Med Res. 2008;127(2):115–23.PubMedGoogle Scholar
  23. 23.
    Agarwal A, Allameneni SSR. The effect of sperm DNA damage in assisted reproduction outcomes. Mineva Ginecol. 2004;56:235–45.Google Scholar
  24. 24.
    Bungum M, Humaidan P, Spano M, Jepson K, Bungum L, Giwercman A. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod. 2004;19:1401–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Shamsi MB, Venkatesh S, Tanwar M, Singh G, Mukherjee S, Malhotra N, et al. Comet assay: a prognostic tool for DNA integrity assessment in infertile men opting for assisted reproduction. Indian J Med Res. 2010;131:675–81.PubMedGoogle Scholar
  26. 26.
    Shamsi MB, Venkatesh S, Kumar R, Gupta NP, Malhotra N, Singh N, et al. Antioxidant levels in blood and seminal plasma and their impact on sperm parameters in infertile men. Indian J Biochem Biophys. 2010;47(1):38–43.PubMedGoogle Scholar
  27. 27.
    Ahmadi A, Ng SC. Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool. 1999;284:696–704.PubMedCrossRefGoogle Scholar
  28. 28.
    Steger K, Cavalcanti MC, Schuppe HC. Prognostic markers for competent human spermatozoa: fertilizing capacity and contribution to the embryo. Int J Androl. 2010, Dec 3. doi: 10.1111/j.1365-2605.2010.01129.x. [Epub ahead of print].
  29. 29.
    Boissonneault G. Chromatin remodeling during spermiogenesis: a possible role for the transition proteins in DNA strand break repair. FEBS Lett. 2002;514:111–4.PubMedCrossRefGoogle Scholar
  30. 30.
    McLay DW, Hugh J. Clarke remodelling the paternal chromatin at fertilization in mammals. Reproduction. 2003;125:625–33.PubMedCrossRefGoogle Scholar
  31. 31.
    Sakkas D, Moffatt O, Manicardi GC, Mariethoz E, Tarozzi N, Bizzaro D. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod. 2002;66:1061–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Venkatesh S, Shamsi MB, Dudeja S, Kumar R, Dada R. Reactive oxygen species measurement in neat and washed semen: comparative analysis and its significance in male infertility assessment. Arch Gynecol Obstet. 2011 Jan;283(1):121–6. Epub 2010 Sep 3. PMID: 20814688.Google Scholar
  33. 33.
    Saalu LC. The incriminating role of reactive oxygen species in idiopathic male infertility: an evidence based evaluation. Pak J Biol Sci. 2010;13(9):413–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Aitken RJ, Baker MA, De Iuliis GN, Nixon B. New insights into sperm physiology and pathology. Handb Exp Pharmacol. 2010;198:99–115.PubMedCrossRefGoogle Scholar
  35. 35.
    Moustafa MH, Sharma RK, Thornton J, Mascha E, Abdel-Hafez MA, Thomas Jr AJ, et al. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod. 2004;19:129–38.PubMedCrossRefGoogle Scholar
  36. 36.
    Weber RF, Dohle GR, Romijn JC. Clinical laboratory evaluation of male subfertility. Adv Clin Chem. 2005;40:317–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, et al. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod. 2005;20(10):2776–83.PubMedCrossRefGoogle Scholar
  38. 38.
    Colagar AH, Jorsaraee GA, Marzony ET. Cigarette smoking and the risk of male infertility. Pak J Biol Sci. 2007;10(21):3870–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Soares SR, Melo MA. Cigarette smoking and reproductive function. Curr Opin Obstet Gynecol. 2008;20(3):281–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Enciso M, Muriel L, Fernandez JL, Goyanes V, Segrelles E, Marcos M, et al. Infertile men with varicocele show a high relative proportion of sperm cells with intense nuclear damage level, evidenced by the sperm chromatin dispersion test. J Androl. 2006;27(1):106–11.PubMedCrossRefGoogle Scholar
  41. 41.
    Koppers AJ, Garg ML, Aitken RJ. Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa. Free Radical Biology & Medicine. 2010;48:112–9.CrossRefGoogle Scholar
  42. 42.
    St. John JC, Sakkas D, Barrat CL. A role of mitochondrial DNA and sperm survival. J Androl. 2000;21:189–99.PubMedGoogle Scholar
  43. 43.
    Gottlieb R. Mitochondria and apoptosis. Biol Signal Recep. 2001;10:147–61.CrossRefGoogle Scholar
  44. 44.
    Shamsi MB, Venkatesh S, Tanwar M, Talwar P, Sharma RK, Dhawan A, et al. DNA integrity and semen quality in men with low seminal antioxidant level. Mutat Res Fundam Mol Mech Mutagen. 2009;665(1–2):29–36.CrossRefGoogle Scholar
  45. 45.
    Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13. Epub 2009 Jul 31.PubMedCrossRefGoogle Scholar
  46. 46.
    Tarozzi N, Bizzaro D, Flamigni C, Borini A. Clinical relevance of sperm DNA damage in assisted reproduction. Reprod Biomed Online. 2007;14(6):746–57.PubMedCrossRefGoogle Scholar
  47. 47.
    Ozmen B, Koutlaki N, Youssry M, Diedrich K, Al-Hasani S. DNA damage of human spermatozoa in assisted reproduction: origins, diagnosis, impacts and safety. Reprod Biomed Online. 2007;14:384–95.PubMedCrossRefGoogle Scholar
  48. 48.
    Aitken RJ, Koopman P, Lewis SE. Seeds of concern. Nature. 2004;432:48–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Greco E, Romano S, Iacobelli M, Ferrero S, Baroni E, Minasi MG, et al. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod. 2005;20:2590–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Gorczyca W, Gong J, Darzynkiewicz Z. Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Canc Res. 1993;53:1945–51.Google Scholar
  51. 51.
    McVicar CM, McClure N, Williamson K, Dalzell LH, Lewis SE. Incidence of Fas positivity and deoxyribonucleic acid. Fertil Steril. 2004 Mar;81 Suppl 1:767–74.Google Scholar
  52. 52.
    Soleimani M, Tavalaee M, Aboutorabi R, Adib M, Bahramian H, Janzamin E, et al. Evaluation of Fas positive sperm and complement mediated lysis in subfertile individuals. J Assist Reprod Genet. 2010;27(8):477–82. Epub 2010 Jun 15.PubMedCrossRefGoogle Scholar
  53. 53.
    De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-20-deoxyguanosine a marker of oxidative stress. Biol Reprod. 2009;81:517–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Baker MA, Aitken RJ. Reactive oxygen species in spermatozoa: methods for monitoring and significance for the origins of genetic disease and infertility. Reprod Biol Endocrinol. 2005;3:67.PubMedCrossRefGoogle Scholar
  55. 55.
    Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17:1195–214.PubMedCrossRefGoogle Scholar
  56. 56.
    Alvarez JG. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular sperm. Hum Reprod. 2005;20:2031–2. author reply 2032–3.PubMedCrossRefGoogle Scholar
  57. 57.
    Cayli S, Jakab A, Ovari L, Delpiano E, Celik-Ozenci C, Sakkas D, et al. Biochemical markers of sperm function: male fertility and sperm selection for ICSI. Reprod Biomed Online. 2003;7(4):462–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Kovanci E, Kovacs T, Moretti E, Vigue L, Ward PB, Ward DC, et al. FISH assessment of aneuploidy frequencies in mature and immature human spermatozoa classified by the presence or absence of cytoplasmic retention. Hum Reprod. 2001;16(6):1209–17.PubMedCrossRefGoogle Scholar
  59. 59.
    Chang FW, Sun GH, Cheng YY, Chen IC, Chien HH, Wu GJ. Effects of varicocele upon the expression of apoptosis-related proteins. Andrologia. 2010;42(4):225–30.PubMedCrossRefGoogle Scholar
  60. 60.
    Paul C, Povey JE, Lawrence NJ, Selfridge J, Melton DW, Saunders PT. Deletion of genes implicated in protecting the integrity of male germ cells has differential effects on the incidence of DNA breaks and germ cell loss. PLoS One. 2007;2(10):e989.PubMedCrossRefGoogle Scholar
  61. 61.
    Rajender S, Avery K, Agarwal A. Epigenetics, spermatogenesis and male infertility. Mutat Res. 2011;727(3):62–71. Epub 2011 Apr 16.PubMedCrossRefGoogle Scholar
  62. 62.
    Singh NP, Muller CH, Berger RE. Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril. 2003;80(6):1420–30.PubMedCrossRefGoogle Scholar
  63. 63.
    Holt WV. Basic aspects of frozen storage of semen. Anim Reprod Sci. 2000;62:3–22.PubMedCrossRefGoogle Scholar
  64. 64.
    Erenpreisa EA, Zirne RA, Zaleskaia ND, S’iakste TG. Effect of single-stranded breaks on the ultrastructural organization and cytochemistry of the chromatin in tumor cells. Biull Eksp Biol Med. 1988;106:591–3.PubMedCrossRefGoogle Scholar
  65. 65.
    Erenpreisa EA, Sondore O, Zirne RA. Conformational changes in the chromatin of tumor cells and the phenomenon of nuclear achromasia. Eksp Onkol. 1988;10(2):54-7.PubMedGoogle Scholar
  66. 66.
    Brewer LR, Corzett M, Balhorn R. Protamine-induced condensation and decondensation of the same DNA molecule. Science. 1999;286:120–3.PubMedCrossRefGoogle Scholar
  67. 67.
    Brewer L, Corzett M, Balhorn R. Condensation of DNA by spermatid basic nuclear proteins. J Biol Chem. 2002;277:38895–900.PubMedCrossRefGoogle Scholar
  68. 68.
    Brewer L, Corzett M, Lau EY, Balhorn R. Dynamics of protamine 1 binding to single DNA molecules. J Biol Chem. 2003;278:42403–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Evenson D, Darzynkiewicz Z, Jost L, Janca F, Ballachey B. Changes in accessibility of DNA to various fluorochromes during spermatogenesis. Cytometry. 1986;7:45–53.PubMedCrossRefGoogle Scholar
  70. 70.
    Benyajati C, Worcel A. Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster. Cell. 1976;9:393–407.PubMedCrossRefGoogle Scholar
  71. 71.
    Erenpreiss J, Bars J, Lipatnikova V, Erenpreisa J, Zalkalns J. Comparative study of cytochemical tests for sperm chromatin integrity. J Androl. 2001;22:45–53.PubMedGoogle Scholar
  72. 72.
    Liu DY, Baker HW. Sperm nuclear chromatin normality: relationship with sperm morphology, sperm-zona pellucid binding, and fertilization rates in vitro. Fertil Steril. 1992;58:1178–84.PubMedGoogle Scholar
  73. 73.
    Manicardi GC, Bianchi PG, Pantano S, Azzoni P, Bizzaro D, Bianchi U, et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod. 1995;52:864–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Bianchi PG, Manicardi GC, Bizzaro D, Bianchi U, Sakkas D. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod. 1993;49:1083–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Ankem MK, Mayer E, Ward WS, Cummings KB, Barone JG. Novel assay for determining DNA organization in human spermatozoa: implications for male factor infertility. Urology. 2002;59:575–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Ward WS, Kimura Y, Yanagimachi R. An intact sperm nuclear matrix may be necessary for the mouse paternal genome to participate in embryonic development. Biol Reprod. 1999;60:702–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Fernandez JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24:59–66.PubMedGoogle Scholar
  78. 78.
    Ahnström G. Techniques to measure DNA strand breaks in cells: a review. Int J Radiat Biol. 1988;54:695–707.PubMedCrossRefGoogle Scholar
  79. 79.
    Gorczyca W, Gong J, Darzynkiewicz Z. Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Canc Res. 1993;53:945–51.Google Scholar
  80. 80.
    Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res. 1993;207:202–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–91.PubMedCrossRefGoogle Scholar
  82. 82.
    Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;1999(14):1039–49.CrossRefGoogle Scholar
  83. 83.
    Venkatesh S, Singh A, Shamsi MB, Thilagavathi J, Kumar R, Mitra DK, et al. Clinical significance of sperm DNA damage threshold value in the assessment of male infertility. Reprod Sci. 2011.Google Scholar
  84. 84.
    Larson KL, DeJonge CJ, Barnes AM, Jost LK, Evenson DP. Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod. 2000;15:1717–22.PubMedCrossRefGoogle Scholar
  85. 85.
    Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;17:3122–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Tomlinson MJ, Moffatt O, Manicardi GC, Bizzaro D, Afnan M, et al. Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum Reprod. 2001;16:2160–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Carrell DT, Liu L, Peterson CM, Jones KP, Hatasaka HH, Erickson L, et al. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch Androl. 2003;49:49–55.PubMedCrossRefGoogle Scholar
  88. 88.
    Shamsi MB, Venkatesh S, Pathak D, Deka D, Dada R. Sperm DNA damage & oxidative stress in recurrent spontaneous abortion (RSA). Indian J Med Res. 2011;133(5):550–1.PubMedGoogle Scholar
  89. 89.
    Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81:1289–95.PubMedCrossRefGoogle Scholar
  90. 90.
    Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988;332:459–61.PubMedCrossRefGoogle Scholar
  91. 91.
    Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19:611–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82(2):378–83.PubMedCrossRefGoogle Scholar
  93. 93.
    Mauri AL, Oliveira JBA, Baruffi RLR, Petersen CG, Vagnini LD, Massaro FC, Silva LFI, Nicoletti APM, Franco JG. Significance of extruded nuclear chromatin (regional nuclear shape malformation) in human spermatozoa: implications for ICSI. International Journal of Andrology. 2011. doi: 10.1111/j.1365-2605.2010.01119.x.
  94. 94.
    Henkel R, Hoogendijk CF, Bouic PJ, Kruger TF. TUNEL assay and SCSA determine different aspects of sperm DNA damage. Andrologia. 2010;42(5):305–13. doi: 10.1111/j.1439-0272.2009.01002.x.PubMedCrossRefGoogle Scholar
  95. 95.
    Donnelly ET, Steele EK, McClure N, Lewis SE. Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum Reprod. 2001;16:1191–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Donnelly ET, O’Connell M, McClure N, Lewis SE. Differences in nuclear DNA fragmentation and mitochondrial integrity of semen and prepared human spermatozoa. Hum Reprod. 2000;15:1552–61.PubMedCrossRefGoogle Scholar
  97. 97.
    Chan PJ, Corselli JU, Patton WC, Jacobson JD, Chan SR, King A. A simple alkaline comet assay for archived sperm correlates DNA fragmentation to reduced hyperactivation and penetration of zona-free hamster oocytes. Fertil Steril. 2001;75:186–92.PubMedCrossRefGoogle Scholar
  98. 98.
    O’Connell M, McClure N, Powell LA, Steele EK, Lewis SE. Differences in mitochondrial and nuclear DNA status of highdensity and low-density sperm fractions after density centrifugation preparation. Fertil Steril. 2003;79 Suppl 1:754–62.PubMedCrossRefGoogle Scholar
  99. 99.
    Morris ID, Ilott S, Dixon L, Brison DR. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (alkaline comet assay) and its relationship to fertilization and embryo development. Hum Reprod. 2002;17:990–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Lewis SE, O’Connell M, Stevenson M, Thompson-Cree L, McClure N. An algorithm to predict pregnancy in assisted reproduction. Hum Reprod. 2004;19:1385–94.PubMedCrossRefGoogle Scholar
  101. 101.
    Fernandez JL, Muriel L, Goyanes V, Segrelles E, Gosalvez J, Enciso M, et al. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril. 2005;84(4):833–42.PubMedCrossRefGoogle Scholar
  102. 102.
    Piasecka M, Gaczarzewicz D, Laszczynska M. Evaluation of sperm genomic integrity of normozoospermic men: a prospective study. Folia Histochem Cytobiol. 2006;44(2):117–22.PubMedGoogle Scholar
  103. 103.
    Giwercman A, Richthoff J, Hjollund H, Bonde JP, Jepson K, Frohm B, et al. Correlation between sperm motility and sperm chromatin structure assay parameters. Fertil Steril. 2003;80(6):1404–12.PubMedCrossRefGoogle Scholar
  104. 104.
    Peris SI, Morrier A, Dufour M, Bailey JL. Cryopreservation of ram semen facilitates sperm DNA damage: relationship between sperm andrological parameters and the sperm chromatin structure assay. J Androl. 2004;25(2):224–33.PubMedGoogle Scholar
  105. 105.
    Singh NP, Danner DB, Tice RR, McCoy MT, Collins GD, Schneider EL. Abundant alkali sensitive sites in DNA of human and mouse sperm. Exp Cell Res. 1989;184:461–70.PubMedCrossRefGoogle Scholar
  106. 106.
    Perreault SD, Aitken RJ, Baker HW, et al. Integrating new tests of sperm genetic integrity into semen analysis: breakout group discussion. Adv Exp Med Biol. 2003;518:253–68.PubMedCrossRefGoogle Scholar
  107. 107.
    Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl. 2002;23:25–43.PubMedGoogle Scholar
  108. 108.
    Aitken RJ, De Luliis GN. Value of DNA integrity assays for fertility evaluation. Soc Reprod Fertil Suppl. 2007;65:81–92.PubMedGoogle Scholar
  109. 109.
    Leroy T, Van Hummelen P, Anard D, Castelain P, Kirsch-Volders M, Lauwerys R, et al. Evaluation of three methods for the detection of DNA single-strand breaks in human lymphocytes: alkaline elution, nick translation and single-cell gel electrophoresis. J Toxicol Environ Health. 1996;47:409–22.PubMedCrossRefGoogle Scholar
  110. 110.
    Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21:33–44.PubMedGoogle Scholar
  111. 111.
    Tesarik J, Mendoza-Tesarik R, Mendoza C. Sperm nuclear DNA damage: update on the mechanism, diagnosis and treatment. Reprod Biomed Online. 2006;12:715–21.PubMedCrossRefGoogle Scholar
  112. 112.
    Benchaib M, Braun V, Lornage J, Hadj S, Salle B, Lejeune H, et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18:1023–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Benchaib M, Lornage J, Mazoyer C, Lejeune H, Salle B, Guerin JF. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril. 2007;87:93–100.PubMedCrossRefGoogle Scholar
  114. 114.
    Greco E, Scarselli F, Iacobelli M, et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20:226–30.PubMedCrossRefGoogle Scholar
  115. 115.
    Mitchell LA, De Iuliis GN, John Aitken R. The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality: development of an improved methodology. Int J Androl. 2010;34:2–13.CrossRefGoogle Scholar
  116. 116.
    Ménézo YJ, Hazout A, Panteix G, Robert F, Rollet J, Cohen-Bacrie P, et al. Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod Biomed Online. 2007;14(4):418–21.PubMedCrossRefGoogle Scholar
  117. 117.
    Moslemi MK, Tavanbakhsh S. Selenium-vitamin E supplementation in infertile men: effects on semen parameters and pregnancy rate. Int J Gen Med. 2011;4:99–104.PubMedGoogle Scholar
  118. 118.
    Lanzafame FM, La Vignera S, Vicari E, Calogero AE. Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online. 2009;19(5):638–59.PubMedCrossRefGoogle Scholar
  119. 119.
    Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011;26(7):1628–40.PubMedCrossRefGoogle Scholar
  120. 120.
    Showell MG, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. Cochrane Database of Systematic Reviews 2011, Issue 1. Art. No.: CD007411. doi: 10.1002/14651858.CD007411.pub2.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Monis Bilal Shamsi
    • 1
  • Syed Nazar Imam
    • 1
  • Rima Dada
    • 1
    Email author
  1. 1.Laboratory for Molecular Reproduction and Genetics, Department of AnatomyAll India Institute of Medical ScienceNew DelhiIndia

Personalised recommendations