Journal of Assisted Reproduction and Genetics

, Volume 28, Issue 8, pp 711–724 | Cite as

Biological pH buffers in IVF: help or hindrance to success

  • Matthew A. Will
  • Natalie A. Clark
  • Jason E. Swain
Technical Innovations

Abstract

Purpose

Minimizing environmental stress helps maintain cellular homeostasis and is a crucial component in optimizing embryo development in vitro and resulting ART success. One stressor of particular interest is pH. Biologic buffers, such as HEPES and MOPS, are valuable tools for stabilizing pH. The objective of this manuscript is to summarize efficacy and impact of various pH buffers used during IVF lab procedures

Methods

Keyword searches were performed using Pubmed and Medline and relevant literature reviewed.

Results

Various pH buffers have been used with varying degrees of success for gamete and embryo processing in a variety of animal species, as well as in human.

Conclusion

Though biologic buffers off a means to improve pH stability, not all buffers may be appropriate for use with gametes and embryos. Specific buffers may have undesired effects, and these may be buffer, species, cell type or concentration dependent. Continued research is needed to further refine and improve the use of biologic buffers for use in human ART.

Keywords

pH Zwitterion Good’s buffer Gamete Embryo 

Notes

Acknowledgements

The authors would like to thank Rusty Pool for his insight and assistance with preparation of this manuscript.

References

  1. 1.
    Steptoe PC, Edwards RG, Purdy JM. Human blastocysts grown in culture. Nature. 1971;229(5280):132–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Steptoe PC, Edwards RG. Reimplantation of a human embryo with subsequent tubal pregnancy. Lancet. 1976;1(7965):880–2.PubMedCrossRefGoogle Scholar
  3. 3.
    Brinster RL. Studies on the Development of Mouse Embryos in Vitro. I. The Effect of Osmolarity and Hydrogen Ion Concentration. J Exp Zool. 1965;158:49–57.PubMedCrossRefGoogle Scholar
  4. 4.
    Hershlag A, Feng H. The effect of CO2 concentration and pH on the in vitro development of mouse embryos. Fertil Magazine. 2001;4:21–2.Google Scholar
  5. 5.
    Carney EW, Bavister BD. Regulation of hamster embryo development in vitro by carbon dioxide. Biol Reprod. 1987;36(5):1155–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Hentemann M, Mousavi K, Bertheussen K. Differential pH in embryo culture. Fertil Steril. 2011;95(4):1291–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Emmens CW. The motility and viability of rabbit spermatozoa at different hydrogen-ion concentrations. J Physiol. 1947;106(4):471–81.Google Scholar
  8. 8.
    Pholpramool C, Chaturapanich G. Effect of sodium and potassium concentrations and pH on the maintenance of motility of rabbit and rat epididymal spermatozoa. J Reprod Fertil. 1979;57(1):245–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Dale B, Menezo Y, Cohen J, DiMatteo L, Wilding M. Intracellular pH regulation in the human oocyte. Hum Reprod. 1998;13(4):964–70.PubMedCrossRefGoogle Scholar
  10. 10.
    Bagger PV, Byskov AG, Christiansen MD. Maturation of mouse oocytes in vitro is influenced by alkalization during their isolation. J Reprod Fertil. 1987;80(1):251–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Downs SM, Mastropolo AM. Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes. Mol Reprod Dev. 1997;46(4):551–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Leclerc C, Becker D, Buehr M, Warner A. Low intracellular pH is involved in the early embryonic death of DDK mouse eggs fertilized by alien sperm. Dev Dyn. 1994;200(3):257–67.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhao Y, Chauvet PJ, Alper SL, Baltz JM. Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo. J Biol Chem. 1995;270(41):24428–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhao Y, Baltz JM. Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am J Physiol. 1996;271(5 Pt 1):C1512–20.PubMedGoogle Scholar
  15. 15.
    Lane M, Baltz JM, Bavister BD. Na+/H+ antiporter activity in hamster embryos is activated during fertilization. Dev Biol. 1999;208(1):244–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Lane M, Bavister BD. Regulation of intracellular pH in bovine oocytes and cleavage stage embryos. Mol Reprod Dev. 1999;54(4):396–401.PubMedCrossRefGoogle Scholar
  17. 17.
    Berthelot F, Terqui M. Effects of oxygen, CO2/pH and medium on the in vitro development of individually cultured porcine one- and two-cell embryos. Reprod Nutr Dev. 1996;36(3):241–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Kane MT. The effects of pH on culture of one-cell rabbit ova to blastocysts in bicarbonate buffered medium. J Reprod Fertil. 1974;38(2):477–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Hamamah S, Gatti JL. Role of the ionic environment and internal pH on sperm activity. Hum Reprod. 1998;13 Suppl 4:20–30.PubMedGoogle Scholar
  20. 20.
    Babcock DF, Rufo Jr GA, Lardy HA. Potassium-dependent increases in cytosolic pH stimulate metabolism and motility of mammalian sperm. Proc Natl Acad Sci USA. 1983;80(5):1327–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Babcock DF, Pfeiffer DR. Independent elevation of cytosolic [Ca2+] and pH of mammalian sperm by voltage-dependent and pH-sensitive mechanisms. J Biol Chem. 1987;262(31):15041–7.PubMedGoogle Scholar
  22. 22.
    Marquez B, Suarez SS. Bovine sperm hyperactivation is promoted by alkaline-stimulated Ca2+ influx. Biol Reprod. 2007;76(4):660–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Leclerc C, Becker D, Buehr M, Warner A. Low intracellular pH is involved in the early embryonic death of DDK mouse eggs fertilized by alien sperm. Dev Dyn. 1994;200(3):257–67.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhao Y, Chauvet PJ, Alper SL, Baltz JM. Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo. J Biol Chem. 1995;270(41):24428–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhao Y, Baltz JM. Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am J Physiol. 1996;271(5 Pt 1):1512–20.Google Scholar
  26. 26.
    Lane M, Baltz JM, Bavister BD. Na+/H + antiporter activity in hamster embryos is activated during fertilization. Dev Biol. 1999;208(1):244–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Lane M, Bavister BD. Regulation of intracellular pH in bovine oocytes and cleavage stage embryos. Mol Reprod Dev. 1999;54(4):396–401.PubMedCrossRefGoogle Scholar
  28. 28.
    Lane M, Lyons EA, Bavister BD. Cryopreservation reduces the ability of hamster 2-cell embryos to regulate intracellular pH. Hum Reprod. 2000;15(2):389–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Edwards LJ, Williams DA, Gardner DK. Intracellular pH of the preimplantation mouse embryo: effects of extracellular pH and weak acids. Mol Reprod Dev. 1998;50(4):434–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Squirrell JM, Lane M, Bavister BD. Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol Reprod. 2001;64(6):1845–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Zander-Fox D, Mitchell M, Thompson JG, Lane M. Alterations in mouse embryo intracellular pH by DMO during culture impair implantation and fetal growth. Reprod Biomed Online. 2010;21(2):219–29.PubMedCrossRefGoogle Scholar
  32. 32.
    Phillips KP, Leveille MC, Claman P, Baltz JM. Intracellular pH regulation in human preimplantation embryos. Hum Reprod. 2000;15(4):896–904.PubMedCrossRefGoogle Scholar
  33. 33.
    Fitzharris G, Baltz JM. Granulosa cells regulate intracellular pH of the murine growing oocyte via gap junctions: development of independent homeostasis during oocyte growth. Development. 2006;133(4):591–9.PubMedCrossRefGoogle Scholar
  34. 34.
    FitzHarris G, Siyanov V, Baltz JM. Granulosa cells regulate oocyte intracellular pH against acidosis in preantral follicles by multiple mechanisms. Development. 2007;134(23):4283–95.PubMedCrossRefGoogle Scholar
  35. 35.
    Phillips KP, Baltz JM. Intracellular pH regulation by HCO3-/Cl- exchange is activated during early mouse zygote development. Dev Biol. 1999;208(2):392–405.PubMedCrossRefGoogle Scholar
  36. 36.
    Ferguson WJ, Braunschweiger KI, Braunschweiger WR, Smith JR, McCormick JJ, Wasmann CC, et al. Hydrogen ion buffers for biological research. Anal Biochem. 1980;104(2):300–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Eagle H. Buffer combinations for mammalian cell culture. Science. 1971;174(8):500–3.PubMedCrossRefGoogle Scholar
  38. 38.
    Good NE, Izawa S. Hydrogen ion buffers. Meth Enzymol. 1972;24:53–68.PubMedCrossRefGoogle Scholar
  39. 39.
    Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RM. Hydrogen ion buffers for biological research. Biochemistry. 1966;5(2):467–77.PubMedCrossRefGoogle Scholar
  40. 40.
    Garcia MA, Graham EF. Development of a buffer system for dialysis of bovine spermatozoa before freezing. I. Effect of zwitterion buffers. Theriogenology. 1989;31(5):1021–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Crabo BG, Brown KI, Graham EF. Effect of some buffers on storage and freezing of boar spermatozoa. J Anim Sci. 1972;35(2):377–82.PubMedGoogle Scholar
  42. 42.
    Brown KI, Graham EF, Crabo BG. Effect of some hydrogen ion buffers on storage and freezing of turkey spermatozoa. Poult Sci. 1972;51(3):840–9.PubMedGoogle Scholar
  43. 43.
    Graham EF, Crabo BG, Brown KI. Effect of some zwitter ion buffers on the freezing and storage of spermatozoa. I. Bull J Dairy Sci. 1972;55(3):372–8.CrossRefGoogle Scholar
  44. 44.
    Molinia FC, Evans G, Maxwell WM. In vitro evaluation of zwitterion buffers in diluents for freezing ram spermatozoa. Reprod Nutr Dev. 1994;34(5):491–500.PubMedCrossRefGoogle Scholar
  45. 45.
    Downs SM, Mastropolo AM. Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes. Mol Reprod Dev. 1997;46(4):551–66.PubMedCrossRefGoogle Scholar
  46. 46.
    Swain JE, Pool TB. New pH-buffering system for media utilized during gamete and embryo manipulations for assisted reproduction. Reprod Biomed Online. 2009;18(6):799–810.PubMedCrossRefGoogle Scholar
  47. 47.
    Palasz AT, Brena PB, De la Fuente J, Gutierrez-Adan A. The effect of different zwitterionic buffers and PBS used for out-of-incubator procedures during standard in vitro embryo production on development, morphology and gene expression of bovine embryos. Theriogenology. 2008;70(9):1461–70.PubMedCrossRefGoogle Scholar
  48. 48.
    Sieracki NA, Hwang HJ, Lee MK, Garner DK, Lu Y. A temperature independent pH (TIP) buffer for biomedical biophysical applications at low temperatures. Chem Commun. 2008;7:823–5.CrossRefGoogle Scholar
  49. 49.
    Swain JE. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online. 2010;21(1):6–16.PubMedCrossRefGoogle Scholar
  50. 50.
    Morgia F, Torti M, Montigiani M, Piscitelli C, Giallonardo A, Schimberni M, et al. Use of a medium buffered with N-hydroxyethylpiperazine-N-ethanesulfonate (HEPES) in intracytoplasmic sperm injection procedures is detrimental to the outcome of in vitro fertilization. Fertil Steril. 2006;85(5):1415–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Graves CN, Biggers JD. Carbon dioxide fixation by mouse embryos prior to implantation. Science. 1970;167(924):506–8.CrossRefGoogle Scholar
  52. 52.
    Quinn P, Wales RG. Fixation of carbon dioxide by pre-implantation mouse embryos in vitro and the activities of enzymes involved in the process. Aust J Biol Sci. 1971;24(6):1277–90.PubMedGoogle Scholar
  53. 53.
    Quinn P, Wales RG. Fixation of carbon dioxide by preimplantation rabbit embryos in vitro. J Reprod Fertil. 1974;36(1):29–39.PubMedCrossRefGoogle Scholar
  54. 54.
    Lawitts JA, Biggers JD. Overcoming the 2-cell block by modifying standard components in a mouse embryo culture medium. Biol Reprod. 1991;45(2):245–51.PubMedCrossRefGoogle Scholar
  55. 55.
    Kane MT. Bicarbonate requirements for culture of one-cell rabbit ova to blastocysts. Biol Reprod. 1975;12(5):5525.CrossRefGoogle Scholar
  56. 56.
    Mahadevan MM, Fleetham J, Church RB, Taylor PJ. Growth of mouse embryos in bicarbonate media buffered by carbon dioxide, hepes, or phosphate. J In Vitro Fert Embryo Transf. 1986;3(5):304–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Farrell PS, Bavister BD. Short-term exposure of two-cell hamster embryos to collection media is detrimental to viability. Biol Reprod. 1984;31(1):109–14.PubMedCrossRefGoogle Scholar
  58. 58.
    Escriba MJ, Silvestre MA, Saeed AM, Garcia-Ximenez F. Comparison of the effect of two different handling media on rabbit zygote developmental ability. Reprod Nutr Dev. 2001;41(2):181–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Barnett DK, Clayton MK, Kimura J, Bavister BD. Glucose and phosphate toxicity in hamster preimplantation embryos involves disruption of cellular organization, including distribution of active mitochondria. Mol Reprod Dev. 1997;48(2):227–37.PubMedCrossRefGoogle Scholar
  60. 60.
    Barnett DK, Bavister BD. Inhibitory effect of glucose and phosphate on the second cleavage division of hamster embryos: is it linked to metabolism? Hum Reprod. 1996;11(1):177–83.PubMedGoogle Scholar
  61. 61.
    Lane M, Ludwig TE, Bavister BD. Phosphate induced developmental arrest of hamster two-cell embryos is associated with disrupted ionic homeostasis. Mol Reprod Dev. 1999;54(4):410–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Koobs DH. Phosphate mediation of the Crabtree and Pasteur effects. Science. 1972;178(57):127–33.PubMedCrossRefGoogle Scholar
  63. 63.
    Bavister B. Analysis of culture media for in vitro fertilization and criteria for success. In: Mastroianni L, Biggers J, editors. Fertilization and Early Development In Vitro. New York: Plenum Press; 1981.Google Scholar
  64. 64.
    Vasuthevan S, Ng SC, Edirisinghe R, Bongso A, Ratnam S. The evaluation of various culture media in combination with dimethylsulfoxide for ultrarapid freezing of murine embryos. Fertil Steril. 1992;58(6):1250–3.PubMedGoogle Scholar
  65. 65.
    Stachecki JJ, Garrisi J, Sabino S, Caetano JP, Wiemer KE, Cohen J. A new safe, simple and successful vitrification method for bovine and human blastocysts. Reprod Biomed Online. 2008;17(3):360–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Quinn P, Kerin JF. Experience with the cryopreservation of human embryos using the mouse as a model to establish successful techniques. J In Vitro Fert Embryo Transf. 1986;3(1):40–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Molinia FC, Evans G, Maxwell WM. Fertility of ram spermatozoa pellet-frozen in zwitterion-buffered diluents. Reprod Nutr Dev. 1996;36(1):2129.CrossRefGoogle Scholar
  68. 68.
    Bagger PV, Byskov AG, Christiansen MD. Maturation of mouse oocytes in vitro is influenced by alkalization during their isolation. J Reprod Fertil. 1987;80(1):251–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Byrd SR, Flores-Foxworth G, Applewhite AA, Westhusin ME. In vitro maturation of ovine oocytes in a portable incubator. Theriogenology. 1997;47(4):857–64.PubMedCrossRefGoogle Scholar
  70. 70.
    Bhattacharyya A, Yanagimachi R. Synthetic organic pH buffers can support fertilization of guinea pig eggs, but not as efficiently as bicarbonate buffer. Gamete Res. 1988;19(2):123–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Behr BR, Stratton CJ, Foote WD, Knutzen V, Sher G. In vitro fertilization (IVF) of mouse ova in HEPES-buffered culture media. J In Vitro Fert Embryo Transf. 1990;7(1):9–15.PubMedCrossRefGoogle Scholar
  72. 72.
    Hagen DR, Prather RS, Sims MM, First NL. Development of one-cell porcine embryos to the blastocyst stage in simple media. J Anim Sci. 1991;69(3):1147–50.PubMedGoogle Scholar
  73. 73.
    Ozawa M, Nagai T, Kaneko H, Noguchi J, Ohnuma K, Kikuchi K. Successful pig embryonic development in vitro outside a CO2 gas-regulated incubator: effects of pH and osmolality. Theriogenology. 2006;65(4):860–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Ali J, Whitten WK, Shelton JN. Effect of culture systems on mouse early embryo development. Hum Reprod. 1993;8(7):1110–4.PubMedGoogle Scholar
  75. 75.
    Butler JE, Lechene C, Biggers JD. Noninvasive measurement of glucose uptake by two populations of murine embryos. Biol Reprod. 1988;39(4):779–86.PubMedCrossRefGoogle Scholar
  76. 76.
    Lee MA, Storey BT. Bicarbonate is essential for fertilization of mouse eggs: mouse sperm require it to undergo the acrosome reaction. Biol Reprod. 1986;34(2):349–56.PubMedCrossRefGoogle Scholar
  77. 77.
    Walker SK, Lampe RJ, Seamark RF. Culture of sheep zygotes in synthetic oviduct fluid medium with different concentrations of sodium bicarbonate and HEPES. Theriogenology. 1989;32(5):797–804.PubMedCrossRefGoogle Scholar
  78. 78.
    Geshi M, Yonai M, Sakaguchi M, Nagai T. Improvement of in vitro co-culture systems for bovine embryos using a low concentration of carbon dioxide and medium supplemented with beta-mercaptoethanol. Theriogenology. 1999;51(3):551–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Iwasaki T, Kimura E, Totsukawa K. Studies on a chemically defined medium for in vitro culture of in vitro matured and fertilized porcine oocytes. Theriogenology. 1999;51(4):709–20.PubMedCrossRefGoogle Scholar
  80. 80.
    Liu Z, Foote RH, Simkin ME. Effect of amino acids and alpha-amanitin on the development of rabbit embryos in modified protein-free KSOM with HEPES. Mol Reprod Dev. 1996;45(2):157–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Jones RC, Foote RH. Effect of osmolality and phosphate, 'tris', 'tes', 'mes', and 'hepes' hydrogen ion buffers on the motility of bull spermatozoa stored at 37 or 5 degreesC. Aust J Biol Sci. 1972;25(5):1047–55.PubMedGoogle Scholar
  82. 82.
    Lepe-Zuniga JL, Zigler Jr JS, Gery I. Toxicity of light-exposed Hepes media. J Immunol Methods. 1987;103(1):145.PubMedCrossRefGoogle Scholar
  83. 83.
    Zigler Jr JS, Lepe-Zuniga JL, Vistica B, Gery I. Analysis of the cytotoxic effects of light-exposed HEPES-containing culture medium. In Vitro Cell Dev Biol. 1985;21(5):282–7.PubMedCrossRefGoogle Scholar
  84. 84.
    El-Alamy MA, Foote RH. Freezability of spermatozoa from Finn and Dorset rams in multiple semen extenders. Anim Reprod Sci. 2001;65(3–4):245–54.PubMedCrossRefGoogle Scholar
  85. 85.
    El-Danasouri I, Selman H, Strehler E, De Santo M, Sterzik K. Comparison of MOPS and HEPES buffers during vitrification of human embryos. Hum Reprod. 2004;14:i136.Google Scholar
  86. 86.
    Wersinger C, Rebel G, Lelong-Rebel IH. Characterisation of taurine uptake in human KB MDR and non-MDR tumour cell lines in culture. Anticancer Res. 2001;21(5):3397–406.PubMedGoogle Scholar
  87. 87.
    Stellwagen NC, Bossi A, Gelfi C, Righetti PG. DNA and buffers: are there any noninteracting, neutral pH buffers? Anal Biochem. 2000;287(1):167–75.PubMedCrossRefGoogle Scholar
  88. 88.
    Schmidt J, Mangold C, Deitmer J. Membrane responses evoked by organic buffers in identified leech neurones. J Exp Biol. 1996;199(Pt 2):327–35.PubMedGoogle Scholar
  89. 89.
    Jeyendran RS, Graham EF. An evaluation of cryoprotective compounds on bovine spermatozoa. Cryobiology. 1980;17(5):458–64.PubMedCrossRefGoogle Scholar
  90. 90.
    Jeyendran RS, Gunawardana VK, Barisic D, Wentz AC. TEST-yolk media and sperm quality. Hum Reprod Update. 1995;1(1):73–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Zavos PM, Goodpasture JC, Zaneveld LJ, Cohen MR. Motility and enzyme activity of human spermatozoa stored for 24 hours at +5 degrees C and -196 degrees C. Fertil Steril. 1980;34(6):607–9.PubMedGoogle Scholar
  92. 92.
    Jaskey DG, Cohen MR. Twenty-four to ninety-six-hour storage of human spermatozoa in test-yolk buffer. Fertil Steril. 1981;35(2):205–8.PubMedGoogle Scholar
  93. 93.
    Jeyendran RS, Van der Ven HH, Kennedy W, Perez-Pelaez M, Zaneveld LJ. Comparison of glycerol and a zwitter ion buffer system as cryoprotective media for human spermatozoa. Effect on motility, penetration of zona-free hamster oocytes, and acrosin/proacrosin. J Androl. 1984;5(1):1–7.PubMedGoogle Scholar
  94. 94.
    McCoshen J, WA A, Tyson JE. Effectiveness of human semen frozen in TESE-yolk- buffered medium on AID outcome. Fertil Steril. 1984;42:162–3.Google Scholar
  95. 95.
    Bolanos JR, Overstreet JW, Katz DF. Human sperm penetration of zona-free hamster eggs after storage of the semen for 48 hours at 2 degrees C to 5 degrees C. Fertil Steril. 1983;39(4):536–41.PubMedGoogle Scholar
  96. 96.
    Johnson AR, Syms AJ, Lipshultz LI, Smith RG. Conditions influencing human sperm capacitation and penetration of zona-free hamster ova. Fertil Steril. 1984;41(4):603–8.PubMedGoogle Scholar
  97. 97.
    Yang YS, Rojas FJ, Stone SC. Acrosome reaction of human spermatozoa in zona-free hamster egg penetration test. Fertil Steril. 1988;50(6):954–9.PubMedGoogle Scholar
  98. 98.
    Bielfeld P, Jeyendran RS, Holmgren WJ, Zaneveld LJ. Effect of egg yolk medium on the acrosome reaction of human spermatozoa. J Androl. 1990;11(3):260–9.PubMedGoogle Scholar
  99. 99.
    Carrell DT, Bradshaw WS, Jones KP, Middleton RG, Peterson CM, Urry RL. An evaluation of various treatments to increase sperm penetration capacity for potential use in an in vitro fertilization program. Fertil Steril. 1992;57(1):134–8.PubMedGoogle Scholar
  100. 100.
    Chan SY, Tucker MJ. Comparative study on the use of human follicular fluid or egg yolk medium to enhance the performance of human sperm in the zona-free hamster oocyte penetration assay. Int J Androl. 1992;15(1):32–42.PubMedCrossRefGoogle Scholar
  101. 101.
    Falk RM, Silverberg KM, Fetterolf PM, Kirchner FK, Rogers BJ. Establishment of TEST-yolk buffer enhanced sperm penetration assay limits for fertile males. Fertil Steril. 1990;54(1):121–6.PubMedGoogle Scholar
  102. 102.
    Lanzendorf SE, Holmgren WJ, Jeyendran RS. The effect of egg yolk medium on human sperm binding in the hemizona assay. Fertil Steril. 1992;58(3):547–50.PubMedGoogle Scholar
  103. 103.
    Paulson RJ, Sauer MV, Francis MM, Macaso TM, Lobo RA. A prospective controlled evaluation of TEST-yolk buffer in the preparation of sperm for human in vitro fertilization in suspected cases of male infertility. Fertil Steril. 1992;58(3):551–5.PubMedGoogle Scholar
  104. 104.
    Katayama KP, Stehlik E, Roesler M, Jeyendran RS, Holmgren WJ, Zaneveld LJ. Treatment of human spermatozoa with an egg yolk medium can enhance the outcome of in vitro fertilization. Fertil Steril. 1989;52(6):1077–9.PubMedGoogle Scholar
  105. 105.
    Jacobs BR, Caulfield J, Boldt J. Analysis of TEST (TES and Tris) yolk buffer effects on human sperm. Fertil Steril. 1995;63(5):1064–70.PubMedGoogle Scholar
  106. 106.
    Syms AJ, Johnson AR, Lipshultz LI, Smith RG. Effect of aging and cold temperature storage of hamster ova as assessed in the sperm penetration assay. Fertil Steril. 1985;43(5):766–72.PubMedGoogle Scholar
  107. 107.
    Molinia FC, Evans G, Maxwell WM. Incorporation of penetrating cryoprotectants in diluents for pellet-freezing ram spermatozoa. Theriogenology. 1994;42(5):849–58.PubMedCrossRefGoogle Scholar
  108. 108.
    Weidel L, Prins GS. Cryosurvival of human spermatozoa frozen in eight different buffer systems. J Androl. 1987;8(1):41–7.PubMedGoogle Scholar
  109. 109.
    Prins GS, Weidel L. A comparative study of buffer systems as cryoprotectants for human spermatozoa. Fertil Steril. 1986;46(1):147–9.PubMedGoogle Scholar
  110. 110.
    Swain J, Ord V, Taylor D, Sossamon V, Pool T. Use of Two Zwitterionic Buffers in IVF Handling Media Supports Mouse Blastocyst Development and Normal Human Oocyte Fertilization Following ICSI. in Proceedings from the 15th Annual World Congress on IVF. 2009. Geneva, Switzerland.Google Scholar
  111. 111.
    Garcia MA, Graham EF. Development of a buffer system for dialysis of bovine spermatozoa before freezing. III. Effect of different inorganic and organic salts on fresh and frozen-thawed semen. Theriogenology. 1989;31(5):1039–48.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Matthew A. Will
    • 1
  • Natalie A. Clark
    • 1
  • Jason E. Swain
    • 1
    • 2
  1. 1.Department of Obstetrics & GynecologyUniversity of MichiganAnn ArborUSA
  2. 2.Reproductive Sciences ProgramUniversity of MichiganAnn ArborUSA

Personalised recommendations