Sertoli cell-conditioned medium induces germ cell differentiation in human embryonic stem cells

  • Mieke Geens
  • Karen Dora Sermon
  • Hilde Van de Velde
  • Herman Tournaye
Stem Cell Biology



To investigate the spontaneous germ cell differentiation capacity of VUB hESC lines, develop a protocol for the induction of germ cell differentiation using conditioned medium from Sertoli cells (SCCM) and compare it to existing protocols.


hESC were allowed to differentiate spontaneously or after the addition of bone morphogenetic proteins (BMPs) and/or SCCM. VASA transcripts were measured by relative quantification real-time RT-PCR to determine the efficiency of germ cell differentiation.


VUB hESC lines can differentiate spontaneously towards the germ cell lineage, however, more consistently in an embryoid body approach than in monolayer cultures. BMPs and SCCM significantly improve VASA expression, but do not have a synergistic effect. Direct contact of differentiating hESC with Sertoli cells does not improve VASA expression.


SCCM contains inductive factors for germ cell differentiation and could represent an element for in-vitro differentiation to germ cells.


hESC Sertoli cells Germ cells Differentiation Embryoid bodies 



Our research is supported by grants from the Research Foundation—Flanders (FWO-Vlaanderen) and the research council of the Brussels Free University (OZR).


  1. 1.
    Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 1999;13:424–36.PubMedCrossRefGoogle Scholar
  2. 2.
    Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol. 2000;14:1053–63.PubMedCrossRefGoogle Scholar
  3. 3.
    de Sousa Lopes SM, Roelen BA, Monteiro RM, Emmens R, Lin HY, Li E, et al. BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes Dev. 2004;18:1838–49.PubMedCrossRefGoogle Scholar
  4. 4.
    Hübner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, De La Fuente R, et al. Derivation of oocytes from mouse embryonic stem cells. Science. 2003;300:1251–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA. 2003;100:457–62.CrossRefGoogle Scholar
  6. 6.
    Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature. 2004;427:148–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Nayernia K, Nolte J, Michelmann HW, Lee JH, Rathsack K, Drusenheimer N, et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell. 2006;11:125–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Clark AT, Bodnar MS, Fox M, Rodriquez RT, Abeyta MJ, Firpo MT, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet. 2004;13:727–39.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen HF, Kuo HC, Chien CL, Shun CT, Yao YL, Ip PL, et al. Derivation, characterization and differentiation of human embryonic stem cells: comparing serum-containing versus serum-free media and evidence of germ cell differentiation. Hum Reprod. 2007;22:567–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Kee K, Gonsalves JM, Clark AT, Pera RA. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev. 2006;15:831–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Wei W, Qing T, Ye X, Liu H, Zhang D, Yang W, et al. Primordial germ cell specification from embryonic stem cells. PLoS ONE. 2008;3:e4013.PubMedCrossRefGoogle Scholar
  12. 12.
    West FD, Roche-Rios MI, Abraham S, Rao RR, Natrajan MS, Bacanamwo M, et al. KIT ligand and bone morphogenetic protein signaling enhances human embryonic stem cell to germ-like cell differentiation. Hum Reprod. 2010;25:168–78.PubMedCrossRefGoogle Scholar
  13. 13.
    Kerkis A, Fonseca SA, Serafim RC, Lavagnolli TM, Abdelmassih S, Abdelmassih R, et al. In vitro differentiation of male mouse embryonic stem cells into both presumptive sperm cells and oocytes. Cloning Stem Cells. 2007;9:535–48.PubMedCrossRefGoogle Scholar
  14. 14.
    Aflatoonian B, Ruban L, Jones M, Aflatoonian R, Fazeli A, Moore HD. In vitro post-meiotic germ cell development from human embryonic stem cells. Hum Reprod. 2009;24:3150–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Richards M, Fong CY, Bongso A. Comparative evaluation of different in vitro systems that stimulate germ cell differentiation in human embryonic stem cells. Fertil Steril. 2010;93:986–94.PubMedCrossRefGoogle Scholar
  16. 16.
    West FD, Machacek DW, Boyd NL, Pandiyan K, Robbins KR, Stice SL. Enrichment and differentiation of human germ-like cells mediated by feeder cells and basic fibroblast growth factor signalling. Stem Cells. 2008;26:2768–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Lacham-Kaplan O, Chy H, Trounson A. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes. Stem Cells. 2006;24:266–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Tilgner K, Atkinson SP, Golebiewska A, Stojkovic M, Lako M, Armstrong L. Isolation of primordial germ cells from differentiating human embryonic stem cells. Stem Cells. 2008;26:3075–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Saiti D, Lacham-Kaplan O. Densitiy gradients for the isolation of germ cells from embryoid bodies. RBM Online. 2008;16:730–40.PubMedGoogle Scholar
  20. 20.
    Zwaka TP, Thomson JA. A germ cell origin of embryonic stem cells? Development. 2005;132:227–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Hua J, Sidhu K. Recent advances in the derivation of germ cells from the embryonic stem cells. Stem Cells Dev. 2008;17:399–411.PubMedCrossRefGoogle Scholar
  22. 22.
    Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP. The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci USA. 2000;97:9585–90.PubMedCrossRefGoogle Scholar
  23. 23.
    de Rooij DG, Repping S, van Pelt AM. Role for adhesion molecules in the spermatogonial stem cell niche. Cell Stem Cell. 2008;3:467–8.PubMedCrossRefGoogle Scholar
  24. 24.
    de Rooij DG. The spermatogonial stem cell niche. Microsc Res Tech. 2009;72:580–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Qing T, Shi Y, Qin H, Ye X, Wei W, Liu H, et al. Induction of oocyte-like cells from mouse embryonic stem cells by co-culture with ovarian granulosa cells. Differentiation. 2007;75:902–11.PubMedGoogle Scholar
  26. 26.
    Mateizel I, De Temmerman N, Ullmann U, Cauffman G, Sermon K, Van de Velde H, et al. Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum Reprod. 2006;21:503–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Mateizel I, Spits C, De Rycke M, Liebaers I, Sermon K. Derivation, culture and characterization of VUB hESC lines. In Vitro Cell Dev Biol Anim. 2010;46:300–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Ying Y, Qi X, Zhao GQ. Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc Natl Acad Sci USA. 2001;98:7858–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Yoshimizu T, Obinata M, Matsui Y. Stage-specific tissue and cell interactions play key roles in mouse germ cell specification. Development. 2001;128:481–90.PubMedGoogle Scholar
  30. 30.
    Pellegrini M, Grimaldi P, Rossi P, Geremia R, Dolci S. Developmental expression of BMP4/ALK3/SMAD5 signaling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation. J Cell Sci. 2003;116:3363–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Mather JP. Establishment and characterization of two distinct mouse testicular epithelial cell lines. Biol Reprod. 1980;23:243–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Pinter O, Beda Z, Csaba Z, Gerendai I. Differences in the onset of puberty in selected inbred mouse strains. Endocr Abstr. 2007;14:P617.Google Scholar
  33. 33.
    Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature. 2005;436:207–13.PubMedCrossRefGoogle Scholar
  34. 34.
    De Felici M. Primordial germ cell biology at the beginning of the XXI century. Int J Dev Biol. 2009;53:891–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Bratt-Leal AM, Carpenedo RL, McDevitt TC. Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog. 2009;25:43–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mieke Geens
    • 1
    • 2
  • Karen Dora Sermon
    • 2
  • Hilde Van de Velde
    • 2
    • 3
  • Herman Tournaye
    • 1
    • 3
  1. 1.Research group Biology of the Testis (BITE), Department of Embryology and GeneticsMedical School of the Vrije Universiteit Brussel (VUB)BrusselsBelgium
  2. 2.Research group Reproduction and Genetics (REGE), Department of Embryology and GeneticsMedical School of the Vrije Universiteit Brussel (VUB)BrusselsBelgium
  3. 3.Centre for Reproductive MedicineUniversitair Ziekenhuis Brussel (UZ Brussel)BrusselsBelgium

Personalised recommendations