Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 27, Issue 12, pp 719–724 | Cite as

Analysis and difference of voltage-dependent anion channel mRNA in ejaculated spermatozoa from normozoospermic fertile donors and infertile patients with idiopathic asthenozoospermia

  • Bianjiang Liu
  • Peng Wang
  • Zengjun WangEmail author
  • Yuejun Jia
  • Xiaobing Niu
  • Wei Wang
  • Wei ZhangEmail author
Gamete Biology

Abstract

Purpose

To analyze the abundance and difference of voltage-dependent anion channel (VDAC) mRNA in ejaculated spermatozoa from normozoospermic fertile donors and infertile patients with idiopathic asthenozoospermia.

Methods

High motile and low motile spermatozoa were separated respectively from ejaculates of 36 donors and 40 patients using a discontinuous Percoll gradient centrifugation. Real-Time PCR was performed to detect mRNA abundance and difference of three VDAC subtypes between two groups with different sperm motility.

Results

Real-Time PCR demonstrated that three VDAC mRNAs were present in mature spermatozoa. The VDAC2 mRNA level in ejaculated spermatozoa of patients was significantly higher than that of donors. No significant differences of VDAC1 and VDAC3 mRNA levels were found between two groups.

Conclusion

The high abundance of VDAC2 mRNA seemed to have a positive correlation with low sperm motility. The abnormal expression of VDAC might be related to male infertility with idiopathic asthenozoospermia.

Keywords

Voltage-dependent anion channel mRNA Spermatozoa Asthenozoospermia 

Notes

Acknowledgments

We thank Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University for the technical assistance. This work was supported by the grant from National Natural Science Foundation of China (30872575).

References

  1. 1.
    Schein SJ, Colombini M, Finkelstein A. Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol. 1976;30:99–120.CrossRefPubMedGoogle Scholar
  2. 2.
    Young MJ, Bay DC, Hausner G, Court DA. The evolutionary history of mitochondrial porins. BMC Evol Biol. 2007;7:31.CrossRefPubMedGoogle Scholar
  3. 3.
    Decker WK, Bowles KR, Schatte EC, Towbin JA, Craigen WJ. Revised fine mapping of the human voltage-dependent anion channel loci by radiation hybrid analysis. Mamm Genome. 1999;10:1041–2.CrossRefPubMedGoogle Scholar
  4. 4.
    Decker WK, Craigen WJ. The tissue-specific, alternatively spliced single ATG exon of the type 3 voltage-dependent anion channel gene does not create a truncated protein isoform in vivo. Mol Genet Metab. 2000;70:69–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Benz R. Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. Biochim Biophys Acta. 1994;1197:167–96.PubMedGoogle Scholar
  6. 6.
    Rostovtseva TK, Bezrukov SM. ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys J. 1998;74:2365–73.CrossRefPubMedGoogle Scholar
  7. 7.
    Pavlov E, Grigoriev SM, Dejean LM, Zweihorn CL, Mannella CA, Kinnally KW. The mitochondrial channel VDAC has a cation-selective open state. Biochim Biophys Acta. 2005;1710:96–102.CrossRefPubMedGoogle Scholar
  8. 8.
    Choudhary OP, Ujwal R, Kowallis W, Coalson R, Abramson J, Grabe M. The electrostatics of VDAC: implications for selectivity and gating. J Mol Biol. 2010;396:580–92.CrossRefPubMedGoogle Scholar
  9. 9.
    Hodge T, Colombini M. Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol. 1997;157:271–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Tsujimoto Y, Shimizu S. The voltage-dependent anion channel: an essential player in apoptosis. Biochimie. 2002;84:187–93.CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science. 2003;301:513–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Shoshan-Barmatz V, Hadad N, Feng W, Shafir I, Orr I, Varsanyi M, et al. VDAC/porin is present in sarcoplasmic reticulum from skeletal muscle. FEBS Lett. 1996;386:205–10.CrossRefPubMedGoogle Scholar
  13. 13.
    Gonzalez-Gronow M, Kalfa T, Johnson CE, Gawdi G, Pizzo SV. The voltage-dependent anion channel is a receptor for plasminogen kringle 5 on human endothelial cells. J Biol Chem. 2003;278:27312–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Sabirov RZ, Sheiko T, Liu H, Deng D, Okada Y, Craigen WJ. Genetic demonstration that the plasma membrane maxianion channel and voltage-dependent anion channels are unrelated proteins. J Biol Chem. 2006;281:1897–904.CrossRefPubMedGoogle Scholar
  15. 15.
    Hinsch KD, De Pinto V, Aires VA, Schneider X, Messina A, Hinsch E. Voltage-dependent anion-selective channels VDAC2 and VDAC3 are abundant proteins in bovine outer dense fibers, a cytoskeletal component of the sperm flagellum. J Biol Chem. 2004;279:15281–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Guarino F, Specchia V, Zapparoli G, Messina A, Aiello R, Bozzetti MP, et al. Expression and localization in spermatozoa of the mitochondrial porin isoform 2 in Drosophila melanogaster. Biochem Biophys Res Commun. 2006;346:665–70.CrossRefPubMedGoogle Scholar
  17. 17.
    Arcelay E, Salicioni AM, Wertheimer E, Visconti PE. Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Int J Dev Biol. 2008;52:463–72.CrossRefPubMedGoogle Scholar
  18. 18.
    Menzel VA, Cassará MC, Benz R, de Pinto V, Messina A, Cunsolo V, et al. Molecular and functional characterization of VDAC2 purified from mammal spermatozoa. Biosci Rep. 2009;29:351–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Liu B, Zhang W, Wang Z. Voltage-dependent anion channel in mammalian spermatozoa. Biochem Biophys Res Commun. 2010;397:633–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Sampson MJ, Decker WK, Beaudet AL, Ruitenbeek W, Armstrong D, Hicks MJ, et al. Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J Biol Chem. 2001;276:39206–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Curi SM, Ariagno JI, Chenlo PH, Mendeluk GR, Pugliese MN, Sardi Segovia LM, et al. Asthenozoospermia: analysis of a large population. Arch Androl. 2003;49:343–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu B, Wang Z, Zhang W, Wang X. Expression and localization of voltage-dependent anion channels (VDAC) in human spermatozoa. Biochem Biophys Res Commun. 2009;378:366–70.CrossRefPubMedGoogle Scholar
  23. 23.
    World Health Organization. Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. UK: Cambridge University Press; 1999.Google Scholar
  24. 24.
    Lambard S, Galeraud-Denis I, Bouraïma H, Bourguiba S, Chocat A, Carreau S. Expression of aromatase in human ejaculated spermatozoa: a putative marker of motility. Mol Hum Reprod. 2003;9:117–24.CrossRefPubMedGoogle Scholar
  25. 25.
    Lambard S, Galeraud-Denis I, Martin G, Levy R, Chocat A, Carreau S. Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Mol Hum Reprod. 2004;10:535–41.CrossRefPubMedGoogle Scholar
  26. 26.
    Lambard S, Galeraud-Denis I, Saunders PT, Carreau S. Human immature germ cells and ejaculated spermatozoa contain aromatase and oestrogen receptors. J Mol Endocrinol. 2004;32:279–89.CrossRefPubMedGoogle Scholar
  27. 27.
    Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA. Spermatozoal RNA profiles of normal fertile men. Lancet. 2002;360:772–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature. 2004;429:154.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang H, Zhou Z, Xu M, Li J, Xiao J, Xu ZY, et al. Spermatogenesis-related gene expression profile in human spermatozoa and its potential clinical applications. J Mol Med. 2004;82:317–24.CrossRefPubMedGoogle Scholar
  30. 30.
    García-Herrero S, Garrido N, Martínez-Conejero JA, Remohí J, Pellicer A, Meseguer M. Ontological evaluation of transcriptional differences between sperm of infertile males and fertile donors using microarray analysis. J Assist Reprod Genet. 2010;27:111–20.CrossRefPubMedGoogle Scholar
  31. 31.
    Messina A, Oliva M, Rosato C, Huizing M, Ruitenbeek W, van den Heuvel LP, et al. Mapping of the human voltage-dependent anion channel isoforms 1 and 2 reconsidered. Biochem Biophys Res Commun. 1999;255:707–10.CrossRefPubMedGoogle Scholar
  32. 32.
    Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med. 2010;31:227–85.CrossRefPubMedGoogle Scholar
  33. 33.
    Hinsch KD, Asmarinah, Hinsch E, Konrad L. VDAC2 (porin-2) expression pattern and localization in the bovine testis. Biochim Biophys Acta. 2001;1518:329–33.PubMedGoogle Scholar
  34. 34.
    Flörke H, Thinnes FP, Winkelbach H, Stadtmüller U, Paetzold G, Morys-Wortmann C, et al. Channel active mammalian porin, purified from crude membrane fractions of human B lymphocytes and bovine skeletal muscle, reversibly binds adenosine triphosphate (ATP). Biol Chem Hoppe Seyler. 1994;375:513–20.PubMedGoogle Scholar
  35. 35.
    Triphan X, Menzel VA, Petrunkina AM, Cassará MC, Wemheuer W, Hinsch KD, et al. Localisation and function of voltage-dependent anion channels (VDAC) in bovine spermatozoa. Pflugers Arch. 2008;455:677–86.CrossRefPubMedGoogle Scholar
  36. 36.
    Ho HC, Suarez SS. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod. 2003;68:1590–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Luconi M, Porazzi I, Ferruzzi P, Marchiani S, Forti G, Baldi E. Tyrosine phosphorylation of the A kinase anchoring protein 3 (AKAP3) and soluble adenylate cyclase are involved in the increase of human sperm motility by bicarbonate. Biol Reprod. 2005;72:22–32.CrossRefPubMedGoogle Scholar
  38. 38.
    Krasznai Z, Krasznai ZT, Morisawa M, Bazsáné ZK, Hernádi Z, Fazekas Z, et al. Role of the Na+/Ca2+ exchanger in calcium homeostasis and human sperm motility regulation. Cell Motil Cytoskeleton. 2006;63:66–76.CrossRefPubMedGoogle Scholar
  39. 39.
    Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a spermspecific glycolytic enzyme, is required for sperm motility and male fertility. Proc NatlAcad Sci USA. 2004;101:16501–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Laboratory of Reproductive Medicine, Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  2. 2.Human Sperm Bank, Department of UrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations