Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 27, Issue 11, pp 619–627 | Cite as

Stem cell factor/c-Kit signaling in in vitro cultures supports early mouse embryonic development by accelerating proliferation via a mechanism involving Akt-downstream genes

  • Jung Jin Lim
  • Jin Hee Eum
  • Jeoung Eun Lee
  • Eun Sun Kim
  • Hyung Min Chung
  • Tae Ki Yoon
  • Kye-Seong KimEmail author
  • Dong Ryul LeeEmail author
embryo biology

Abstract

Purpose

Stem cell factor (SCF)/c-Kit regulates the proliferation and survival of germ cells or stem cells; however, little is known about the role of SCF/c-Kit in pre-implantation embryo development.

Methods

Using exogenous SCF supplementation and c-Kit siRNA injection, we investigated the role and mechanism of SCF/c-Kit in pre-implantation mouse embryos.

Results

Addition of soluble SCF to the culture medium improved blastocyst formation. c-Kit gene silencing reduced the rate of blastocyst formation and delayed embryonic development. The number of proliferating cells in c-Kit gene-silenced blastocysts decreased, whereas the number of apoptotic cells in blastocysts obtained from both experimental and the control groups was not affected. RT-PCR, immunostaining and western blotting revealed that proliferation-related Akt downstream targets were substantially affected by c-Kit gene silencing.

Conclusion

SCF/c-Kit signaling through Akt downstream targets is likely involved in mediating the cleavage and proliferation of blastomeres during mouse pre-implantation embryogenesis.

Keywords

Stem cell factor (SCF) c-Kit receptor Embryonic cleavage Gene silencing 

Notes

Acknowledgements

This research was supported by a grant (2009-0093821) from Priority Research Centers Program funded by the Ministry of Education, Science and Technology, Republic of Korea.

Supplementary material

10815_2010_9449_Fig5_ESM.gif (170 kb)
Supplemental Figure 1

Effect of SCF supplementation on the development of mouse one-cell embryos at 96 h post-hCG. The data are expressed as the mean±SEM. a,b Values within the same column with different superscripts are significantly different (P < 0.05). Note: KSOM (only): 139 zygotes, serum-free KSOM media, KSOM (100 ng/ml SCF): 138 zygotes, serum-free KSOM media with 100 ng/ml soluble SCF, KSOM (3 mg/ml BSA): 144 zygotes, KSOM media with 3 mg/ml BSA. Early Bla: early blastocyst (less than 50% cavity), Bla: blastocyst (greater than 50% cavity), Expanded Bla: expanded blastocyst, Hatching Bla: hatching blastocyst. (GIF 170 kb)

10815_2010_9449_MOESM1_ESM.tif (3.3 mb)
High Resolution Image (TIFF 3329 kb)

References

  1. 1.
    Arceci RJ, Pampfer S, Pollard JW. Expression of CSF-1/c-fms and SF/c-kit mRNA during preimplantation mouse development. Dev Biol. 1992;151:1–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Paria BC, Dey SK. Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc Natl Acad Sci USA. 1990;87:4756–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Rappolee DA, Brenner CA, Schultz R, Mark D, Werb Z. Developmental expression of PDGF, TGF-alpha, and TGF-beta genes in preimplantation mouse embryos. Science. 1988;241:1823–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Tartakovsky B, Ben-Yair E. Cytokines modulate preimplantation development and pregnancy. Dev Biol. 1991;146:345–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Sharkey AM, Dellow K, Blayney M, Macnamee M, Charnock-Jones S, Smith SK. Stage-specific expression of cytokine and receptor messenger ribonucleic acids in human preimplantation embryos. Biol Reprod. 1995;53:974–81.PubMedCrossRefGoogle Scholar
  6. 6.
    Taniguchi F, Harada T, Nara M, Deura I, Mitsunari M, Terakawa N. Coculture with a human granulosa cell line enhanced the development of murine preimplantation embryos via SCF/c-kit system. J Assist Reprod Genet. 2004;21:223–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Linnekin D. Early signaling pathways activated by c-Kit in hematopoietic cells. Int J Biochem Cell Biol. 1999;31:1053–74.PubMedCrossRefGoogle Scholar
  8. 8.
    Ronnstrand L. Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol Life Sci. 2004;61:2535–48.PubMedCrossRefGoogle Scholar
  9. 9.
    van Dijk TB, van Den Akker E, Amelsvoort MP, Mano H, Lowenberg B, von Lindern M. Stem cell factor induces phosphatidylinositol 3′-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells. Blood. 2000;96:3406–13.PubMedGoogle Scholar
  10. 10.
    Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol. 2001;11:297–305.PubMedCrossRefGoogle Scholar
  11. 11.
    Mitsunari M, Harada T, Tanikawa M, Iwabe T, Taniguchi F, Terakawa N. The potential role of stem cell factor and its receptor c-kit in the mouse blastocyst implantation. Mol Hum Reprod. 1999;5:874–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Glabowski W. The protective effect of stem cell factor (SCF) on in vitro development of preimplantation mouse embryos. Ann Acad Med Stetin. 2005;51:83–93.PubMedGoogle Scholar
  13. 13.
    Glabowski W, Kurzawa R, Wiszniewska B, Baczkowski T, Marchlewicz M, Brelik P. Growth factors effects on preimplantation development of mouse embryos exposed to tumor necrosis factor alpha. Reprod Biol. 2005;5:83–99.PubMedGoogle Scholar
  14. 14.
    Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science (New York, NY). 1999;286:950–2.CrossRefGoogle Scholar
  15. 15.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Bernstein E, Denli AM, Hannon GJ. The rest is silence. Rna. 2001;7:1509–21.PubMedGoogle Scholar
  17. 17.
    Khang I, Sonn S, Park JH, Rhee K, Park D, Kim K. Expression of epithin in mouse preimplantation development: its functional role in compaction. Dev Biol. 2005;281:134–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Besmer P, Manova K, Duttlinger R, Huang EJ, Packer A, Gyssler C, et al. Development (Cambridge, England). 1993;125:37.Google Scholar
  19. 19.
    Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122:829–38.PubMedCrossRefGoogle Scholar
  20. 20.
    Horie K, Takakura K, Taii S, Narimoto K, Noda Y, Nishikawa S, et al. The expression of c-kit protein during oogenesis and early embryonic development. Biol Reprod. 1991;45:547–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Driancourt MA, Reynaud K, Cortvrindt R, Smitz J. Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod. 2000;5:143–52.PubMedCrossRefGoogle Scholar
  22. 22.
    Ismail RS, Okawara Y, Fryer JN, Vanderhyden BC. Hormonal regulation of the ligand for c-kit in the rat ovary and its effects on spontaneous oocyte meiotic maturation. Mol Reprod Dev. 1996;43:458–69.PubMedCrossRefGoogle Scholar
  23. 23.
    Packer AI, Hsu YC, Besmer P, Bachvarova RF. The ligand of the c-kit receptor promotes oocyte growth. Dev Biol. 1994;161:194–205.PubMedCrossRefGoogle Scholar
  24. 24.
    Yoshida H, Takakura N, Kataoka H, Kunisada T, Okamura H, Nishikawa SI. Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development. Dev Biol. 1997;184:122–37.PubMedCrossRefGoogle Scholar
  25. 25.
    Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Stokoe D. The phosphoinositide 3-kinase pathway and cancer. Expert Rev Mol Med. 2005;7:1–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem. 1999;68:965–1014.PubMedCrossRefGoogle Scholar
  28. 28.
    Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res. 1999;253:210–29.PubMedCrossRefGoogle Scholar
  29. 29.
    Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 2003;31:3635–41.PubMedCrossRefGoogle Scholar
  30. 30.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.PubMedCrossRefGoogle Scholar
  31. 31.
    Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 1999;401:82–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Verdu J, Buratovich MA, Wilder EL, Birnbaum MJ. Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nat Cell Biol. 1999;1:500–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Kurzawa R, Glabowski W, Baczkowski T, Wiszniewska B, Marchlewicz M. Growth factors protect in vitro cultured embryos from the consequences of oxidative stress. Zygote. 2004;12:231–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jung Jin Lim
    • 1
    • 2
  • Jin Hee Eum
    • 1
  • Jeoung Eun Lee
    • 1
  • Eun Sun Kim
    • 1
  • Hyung Min Chung
    • 1
  • Tae Ki Yoon
    • 1
  • Kye-Seong Kim
    • 2
    Email author
  • Dong Ryul Lee
    • 1
    • 3
    Email author
  1. 1.Fertility Center, CHA Gangnam Medical CenterCHA UniversitySeoulSouth Korea
  2. 2.Department of Anatomy and Cell Biology, College of MedicineHanyang UniversitySeoulSouth Korea
  3. 3.Department of Biomedical Science, College of Life ScienceCHA UniversitySeoulSouth Korea

Personalised recommendations