Ovarian reserve evaluation: state of the art

  • Bruno Ramalho de Carvalho
  • Ana Carolina Japur de Sá Rosa e Silva
  • Júlio César Rosa e Silva
  • Rosana Maria dos Reis
  • Rui Alberto Ferriani
  • Marcos Felipe Silva de Sá
Assisted Reproduction



Revise role of hormonal basal and dynamic tests, as well as ultrasonographic measures as ovarian reserve markers, in order to provide better counseling to subfertile couples.


Review of publications on the topic, with an emphasis on recent well designed articles.


Currently available ovarian reserve tests do not provide sufficient evidence to be solely considered ideal, even for premature ovarian senescence patients who do not present subfertility complaints. However, these markers occupy important place in initial approach to treatment of subfertile couples, predicting unsatisfactory results that could be improved by differentiated induction schemes and reducing excessive psychological and financial burdens, and adverse effects.


In order to remedy the limitations due to the scarcity of strong evidence about this topic, future studies should try to clarify predictive value of markers in groups of specific diseases-related subfertility and pay special attention to propaedeutic multivariate models including anti-Müllerian hormone and antral follicle count.


Infertility IVF/ICSI outcome Ovarian reserve Reproductive aging Reproductive potential Ovarian senescence 



Conflict of interest statement

The authors of the present study declare that they are not involved in any organization or entity of financial interest and that they have no conflict of interest regarding the topic in question or the materials discussed in the text. This includes work relations, consultantships, honoraria and authors’ rights. There was no assistance in the writing of the paper in addition to that of the authors themselves. However, the authors wish to thank Mrs. Elettra Greene for translating the Portuguese original.


  1. 1.
    Block E. Quantitative morphological investigations of the follicular system in women; variations at different ages. Acta Anat (Basel) 1952;14:108–23. doi: 10.1159/000140595.CrossRefGoogle Scholar
  2. 2.
    Leridon H. 30 years of contraception in France. Contracept Fertil Sex 1998;26:435–8.PubMedGoogle Scholar
  3. 3.
    Elgindy EA, El-Haieg DO, El-Sebaey A. Anti-Müllerian hormone: correlation of early follicular, ovulatory and midluteal levels with ovarian response and cycle outcome in intracytoplasmic sperm injection patients. Fertil Steril 2007;89:1670–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 1996;17:121–55. doi: 10.1210/er.17.2.121.PubMedCrossRefGoogle Scholar
  5. 5.
    Tremellen KP, Kolo M, Gilmore A, Lekamge DN. Anti-Müllerian hormone as a marker of ovarian reserve. Aust N Z J Obstet Gynaecol 2005;45:20–4. doi: 10.1111/j.1479-828X.2005.00332.x.PubMedCrossRefGoogle Scholar
  6. 6.
    Fanchin R, Taieb J, Lozano DHM, Ducot B, Frydman R, Bouyer J. High reproducibility of serum anti-Müllerian hormone measurements suggests a multi-staged follicular secretion and strengthens its role in the assessment of ovarian follicular status. Hum Reprod 2005;20:923–7. doi: 10.1093/humrep/deh688.PubMedCrossRefGoogle Scholar
  7. 7.
    Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Updat 2006;12:685–718. doi: 10.1093/humupd/dml034.CrossRefGoogle Scholar
  8. 8.
    Evers JL, Slaats P, Land JA, Dumoulin JC, Dunselman GA. Elevated levels of basal estradiol-17beta predict poor response in patients with normal basal levels of follicle-stimulating hormone undergoing in vitro fertilization. Fertil Steril 1998;69:1010–4. doi: 10.1016/S0015-0282(98)00080-6.PubMedCrossRefGoogle Scholar
  9. 9.
    Frattarelli JL, Bergh PA, Drews MR, Sharara FI, Scott RT. Evaluation of basal estradiol levels in assisted reproductive technology cycles. Fertil Steril 2000;74:518–24. doi: 10.1016/S0015-0282(00)00693-2.PubMedCrossRefGoogle Scholar
  10. 10.
    Scott RT, Toner JP, Muasher SJ, Oehninger S, Robinson S, Rosenwaks Z. Follicle-stimulating hormone levels on cycle day 3 are predictive of in vitro fertilization outcome. Fertil Steril 1989;51:651–4.PubMedGoogle Scholar
  11. 11.
    Licciardi FL, Liu HC, Rosenwaks Z. Day 3 estradiol serum concentrations as prognosticators of ovarian stimulation response and pregnancy outcome in patients undergoing in vitro fertilization. Fertil Steril 1995;64:991–4.PubMedGoogle Scholar
  12. 12.
    Smotrich DB, Widra EA, Gindoff PR, Levy MJ, Hall JL, Stillman RJ. Prognostic value of day 3 estradiol on in vitro fertilization outcome. Fertil Steril 1995;64:1136–40.PubMedGoogle Scholar
  13. 13.
    Fiçicioglu C, Kutlu T, Baglam E, Bakacak Z. Early follicular antimüllerian hormone as an indicator of ovarian reserve. Fertil Steril 2006;85:592–6. doi: 10.1016/j.fertnstert.2005.09.019.PubMedCrossRefGoogle Scholar
  14. 14.
    Lee SJ, Lenton EA, Sexton L, Cooke ID. The effect of age on the cyclical patterns of plasma LH, FSH, oestradiol and progesterone in women with regular menstrual cycles. Hum Reprod 1988;3:851–5.PubMedGoogle Scholar
  15. 15.
    Watt AH, Legedza ATR, Ginsburg ES, Barbieri RL, Clarke RN, Hornstein MD. The prognostic value of age and follicle-stimulating hormone levels in women over forty years of age undergoing in vitro fertilization. J Assist Reprod Genet 2000;17:264–8. doi: 10.1023/A:1009458332567.PubMedCrossRefGoogle Scholar
  16. 16.
    Franco RC, Ferriani RA, Moura MD, Reis RM, Ferreira RA, de Sala MM. Evaluation of ovarian reserve: comparison between basal FSH level and clomiphene test. Rev Bras Ginecol Obstet 2002;24:323–7.Google Scholar
  17. 17.
    Ashrafi M, Madani T, Tehranian AS, Malekzadeh F. Follicle stimulating hormone as a predictor of ovarian response in women undergoing controlled ovarian hyperstimulation for IVF. Int J Gynaecol Obstet 2005;91:53–7. doi: 10.1016/j.ijgo.2005.06.017.PubMedCrossRefGoogle Scholar
  18. 18.
    Klinkert ER, Broekmans FJ, Looman CW, Habbema JD, te Velde ER. The antral follicle count is a better marker then basal follicle-stimulating hormone for the selection of older patients with acceptable pregnancy prospects after in vitro fertilization. Fertil Steril 2005;83:811–4. doi: 10.1016/j.fertnstert.2004.11.005.PubMedCrossRefGoogle Scholar
  19. 19.
    van Montfrans JM, Hoek A, van Hooff MH, de Koning CH, Tonch N, Lambalk CB. Predictive value of basal follicle-stimulating hormone concentrations in a general subfertility population. Fertil Steril 2000;74:97–103. doi: 10.1016/S0015-0282(00)00560-4.PubMedCrossRefGoogle Scholar
  20. 20.
    Letterie GS, Lee JS, Padmanabhan V. Assessment of ovarian reserve by using the follicle-stimulating hormone isoform distribution pattern to predict the outcome of in vitro fertilization. Fertil Steril 2006;86:1547–9. doi: 10.1016/j.fertnstert.2006.03.060.PubMedCrossRefGoogle Scholar
  21. 21.
    van der Steeg JW, Steures P, Eijkemans MJC, Habbema JDF, Hompes PGA, Broekmans FJ, et al. Predictive value and clinical impact of basal follicle-stimulating hormone in subfertile, ovulatory women. J Clin Endocrinol Metab 2007;92:2163–8. doi: 10.1210/jc.2006-2399.PubMedCrossRefGoogle Scholar
  22. 22.
    Luna M, Grunfeld L, Mukherjee T, Sandler B, Copperman AB. Moderately elevated levels of basal follicle-stimulating hormone in young patients predict low ovarian response, but should not be used to disqualify patients from attempting in vitro fertilization. Fertil Steril 2007;87:782–7. doi: 10.1016/j.fertnstert.2006.08.094.PubMedCrossRefGoogle Scholar
  23. 23.
    Silberstein T, MacLaughlin DT, Shai I, Trimarchi JR, Lambert-Messerlian G, Seifer DB, et al. Müllerian inhibiting substance levels at the time of HCG administration in IVF cycles predict both ovarian reserve and embryo quality. Hum Reprod 2006;21:159–63. doi: 10.1093/humrep/dei270.PubMedCrossRefGoogle Scholar
  24. 24.
    Fanchin R, Schonäuer LM, Righini C, Guibourdenche J, Frydman R, Taieb J. Serum anti-Müllerian hormone is more strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH and LH on day 3. Hum Reprod 2003;18:323–7. doi: 10.1093/humrep/deg042.PubMedCrossRefGoogle Scholar
  25. 25.
    Kingsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994;8:133–46. doi: 10.1101/gad.8.2.133.PubMedCrossRefGoogle Scholar
  26. 26.
    Hayes FJ, Hall JE, Boepple PA, Crowley WF. Clinical review 96: differential control of gonadotropin secretion in the human: endocrine role of inhibin. J Clin Endocrinol Metab 1998;83:1835–41. doi: 10.1210/jc.83.6.1835.PubMedCrossRefGoogle Scholar
  27. 27.
    Klein NA, Illingworth PJ, Groome NP, McNeilly AS, Battaglia DE, Soules MR. Decreased inhibin B secretion is associated with the monotropic FSH rise in older, ovulatory women: a study of serum and follicular fluid levels of dimeric inhibin A and B in spontaneous menstrual cycles. J Clin Endocrinol Metab 1996;81:2742–5. doi: 10.1210/jc.81.7.2742.PubMedCrossRefGoogle Scholar
  28. 28.
    Magoffin DA, Jakimiuk AJ. Inhibin A, inhibin B and activin A in the follicular fluid of regularly cycling women. Hum Reprod 1997;12:1714–9. doi: 10.1093/humrep/12.8.1714.PubMedCrossRefGoogle Scholar
  29. 29.
    Welt CK, Schneyer AL. Differential regulation of inhibin B and inhibin a by follicle-stimulating hormone and local growth factors in human granulosa cells from small antral follicles. Clin Endocrinol Metab 2001;86:330–6. doi: 10.1210/jc.86.1.330.CrossRefGoogle Scholar
  30. 30.
    Groome NP, Illingworth PJ, O’Brien M, Pai R, Rodger FE, Mather JP, et al. Measurement of dimeric inhibin B throughout the human menstrual cycle. Clin Endocrinol Metab 1996;81:1401–5. doi: 10.1210/jc.81.4.1401.CrossRefGoogle Scholar
  31. 31.
    Seifer DB, Lambert Messerlian G, Hogan JW, Gardiner AC, Blazar AS, Berk CA. Day 3 serum inhibin-B is predictive of assisted reproductive technologies outcome. Fertil Steril 1997;67:110–4. doi: 10.1016/S0015-0282(97)81865-1.PubMedCrossRefGoogle Scholar
  32. 32.
    Hoffman GE, Danforth DR, Seifer DB. Inhibin-B: the physiologic basis of the clomiphene citrate challenge test for ovarian reserve screening. Fertil Steril 1998;69:474–7. doi: 10.1016/S0015-0282(97)00531-1.CrossRefGoogle Scholar
  33. 33.
    Tinkanen H, Bläuer M, Laippala P, Tuohimaa P, Kujansuu E. Correlation between serum inhibin B and other indicators of the ovarian function. Eur J Obstet Gynecol Reprod Biol 2001;94:109–13. doi: 10.1016/S0301-2115(00)00319-5.PubMedCrossRefGoogle Scholar
  34. 34.
    Hall JE, Welt CK, Cramer DW. Inhibin A and inhibin B reflect ovarian function in assisted reproduction but are less useful at predicting outcome. Hum Reprod 1999;4:409–15. doi: 10.1093/humrep/14.2.409.CrossRefGoogle Scholar
  35. 35.
    Corson SL, Gutmann J, Batzer FR, Wallace H, Klein N, Soules MR. Inhibin-B as a test of ovarian reserve for infertile women. Hum Reprod 1999;14:2818–21. doi: 10.1093/humrep/14.11.2818.PubMedCrossRefGoogle Scholar
  36. 36.
    Scheffer JB, Lozano DM, Frydman R, Fanchin R. Relationship of serum anti-Müllerian hormone, inhibin B, estradiol and FSH on day 3 with ovarian follicular status. Rev Bras Ginecol Obstet 2007;29:186–91. doi: 10.1590/S0100-72032007000400004.CrossRefGoogle Scholar
  37. 37.
    Franchimont P, Hazeé-Hagelstein MT, Charlet-Renard C, Jaspar JM, Hazout A, Salat-Baroux J, et al. Correlation between follicular fluid content and the results of in vitro fertilization and embryo transfer. II. Inhibin and aromatase inhibitor activity. J Clin Endocrinol Metab 1990;71:748–54.PubMedCrossRefGoogle Scholar
  38. 38.
    Fowler PA, Fahy U, Culler MD, Knight PG, Wardle PG, McLaughlin EA, et al. Gonadotrophin surge-attenuating factor bioactivity is present in follicular fluid from naturally cycling women. Hum Reprod 1995;10:68–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Josso N. Anti-Müllerian hormone and Sertoli cell function. Horm Res 1992;38(Suppl 2):72–6.PubMedGoogle Scholar
  40. 40.
    Rajpert-De Meyts E, Jorgensen N, Graem N, Müller J, Cate RL, Skakkebaek NE. Expression of anti-Müllerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells. J Clin Endocrinol Metab 1999;84:3836–44. doi: 10.1210/jc.84.10.3836.PubMedCrossRefGoogle Scholar
  41. 41.
    Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA, et al. Anti-Müllerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod 2004;10:77–83. doi: 10.1093/molehr/gah015.PubMedCrossRefGoogle Scholar
  42. 42.
    Visser JA, Themmen APN. Anti-Müllerian hormone and folliculogenesis. Mol Cell Endocrinol 2005;234:81–6. doi: 10.1016/j.mce.2004.09.008.PubMedCrossRefGoogle Scholar
  43. 43.
    Durlinger AL, Kramer P, Karels B. de long EH, Uilenbroek JT, Grootegoed JA, Themmen AP: control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology 1999;140:5789–96. doi: 10.1210/en.140.12.5789.PubMedCrossRefGoogle Scholar
  44. 44.
    Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, et al. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 2001;142:4891–9. doi: 10.1210/en.142.11.4891.PubMedCrossRefGoogle Scholar
  45. 45.
    di Clemente N, Goxe B, R’emy JJ, Cate RL, Josso N, Vigier B, Salesse R. Inhibitory effect of AMH upon aromatase activity and LH receptors of granulosa cells of rat and porcine immature ovaries. Endocrine 1994;2:553–8.Google Scholar
  46. 46.
    Visser JA, Durlinger AL, Peters IJ, van den Heuvel ER, Rose UM, Kramer P, et al. Increased oocyte degeneration and follicular atresia during the estrous cycle in anti-Müllerian hormone null mice. Endocrinology 2007;148:2301–8. doi: 10.1210/en.2006-1265.PubMedCrossRefGoogle Scholar
  47. 47.
    Scheffer GJ, Broekmans FJ, Dorland M, Habbema JD, Looman CW, te Velde ER. Antral follicle counts by transvaginal ultrasonography are related to age in women with proven natural fertility. Fertil Steril 1999;72:845–51. doi: 10.1016/S0015-0282(99)00396-9.PubMedCrossRefGoogle Scholar
  48. 48.
    van Rooij IA, Broekmans FJ, te Velde ER, Fauser BC, Bancsi LF, de Jong FH, et al. Serum anti-Müllerian hormone levels: a novel measure of ovarian reserve. Hum Reprod 2002;17:3065–71. doi: 10.1093/humrep/17.12.3065.PubMedCrossRefGoogle Scholar
  49. 49.
    te Velde E, Pearson P. The variability of female reproductive ageing. Hum Reprod Updat 2002;8:141–54. doi: 10.1093/humupd/8.2.141.CrossRefGoogle Scholar
  50. 50.
    Gruijters M, Visser J, Durlinger A, Themmen AP. Anti-Müllerian hormone and its role in ovarian function. Mol Cell Endocrinol 2003;211:85–90. doi: 10.1016/j.mce.2003.09.024.PubMedCrossRefGoogle Scholar
  51. 51.
    Muttukrishna S, McGarrigle H, Wakim R, Khadum I, Ranieri DM, Serhal P. Antral follicle count, anti-Müllerian hormone and inhibin B: predictors of ovarian response in assisted reproductive technology? BJOG 2005;112:1384–90. doi: 10.1111/j.1471-0528.2005.00670.x.PubMedCrossRefGoogle Scholar
  52. 52.
    La Marca A, Stabile G, Artenisio AC, Volpe A. Serum anti-Müllerian hormone throughout the human menstrual cycle. Hum Reprod 2006;21:3103–7. doi: 10.1093/humrep/del291.PubMedCrossRefGoogle Scholar
  53. 53.
    Hehenkamp WJK, Looman CWN, Themmen APN, de Jong FH, te Velde ER, Broekmans JM. Anti-Müllerian hormone levels in the spontaneous menstrual cycle do not show substantial fluctuation. J Clin Endocrinol Metab 2006;91:4057–63. doi: 10.1210/jc.2006-0331.PubMedCrossRefGoogle Scholar
  54. 54.
    Tsepelidis S, Devreker F, Demeestere I, Flahaut A, Gervy C, Englert Y. Stable serum levels of anti-Müllerian hormone during the menstrual cycle: a prospective study in normo-ovulatory women. Hum Reprod 2007;22:1837–40. doi: 10.1093/humrep/dem101.PubMedCrossRefGoogle Scholar
  55. 55.
    de Vet A, Laven JS, de Jong FH, Themmen AP, Fauser BC. Antimüllerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril 2002;77:357–62. doi: 10.1016/S0015-0282(01)02993-4.PubMedCrossRefGoogle Scholar
  56. 56.
    Muttukrishna S, Suharjono H, McGarrigle H, Sathanandan N. Inhibin B and anti-Müllerian hormone: markers of ovarian response in IVF/ICSI patients? BJOG 2004;111:1248–53. doi: 10.1111/j.1471-0528.2004.00452.x.PubMedCrossRefGoogle Scholar
  57. 57.
    La Marca A, Giulini S, Tirelli A, Bertucci E, Marsella T, Xella S, et al. Anti-Müllerian hormone measurement on any day of the menstrual cycle strongly predicts ovarian response in assisted reproductive technology. Hum Reprod 2007;22:766–71. doi: 10.1093/humrep/del421.PubMedCrossRefGoogle Scholar
  58. 58.
    Gnoth C, Schuring AN, Friol K, Tigges J, Mallmann P, Godehardt E. Relevance of anti-Müllerian hormone measurement in a routine IVF program. Hum Reprod 2008;23:1359–65.PubMedCrossRefGoogle Scholar
  59. 59.
    Navot D, Rosenwaks Z, Margalioth EJ. Prognostic assessment of female fecundity. Lancet 1987;2:645–7. doi: 10.1016/S0140-6736(87)92439-1.PubMedCrossRefGoogle Scholar
  60. 60.
    Jain T, Soules MR, Collins JA. Comparison of basal follicle-stimulating hormone versus the clomiphene citrate challenge test for ovarian reserve screening. Fertil Steril 2004;82:180–5. doi: 10.1016/j.fertnstert.2003.11.045.PubMedCrossRefGoogle Scholar
  61. 61.
    Loumaye E, Billion JM, Mine JM, Psalti I, Pensis M, Thomas K. Prediction of individual response to controlled ovarian hyperstimulation by means of a clomiphene citrate challenge test. Fertil Steril 1990;53:295–301.PubMedGoogle Scholar
  62. 62.
    Kwee J, Schats R, McDonnell J, Schoemaker J, Lambalk CB. The clomiphene citrate challenge test versus the exogenous follicle-stimulating hormone ovarian reserve test as a single test for identification of low responders and hyperresponders to in vitro fertilization. Fertil Steril 2006;85:1714–22. doi: 10.1016/j.fertnstert.2005.11.053.PubMedCrossRefGoogle Scholar
  63. 63.
    Hendriks DJ, Broekmans FJ, Bancsi LF, de Jong FH, Looman CW, te Velde ER. Repeated clomiphene citrate challenge testing in the prediction of outcome in IVF: a comparison with basal markers for ovarian reserve. Hum Reprod 2005;20:163–9. doi: 10.1093/humrep/deh553.PubMedCrossRefGoogle Scholar
  64. 64.
    Haadsma ML, Bukman A, Groen H, Roeloffzen EMA, Groenewoud ER, Heineman MJ, et al. The number of small antral follicles (2–6 mm) determines the outcome of endocrine ovarian reserve tests in a subfertile population. Hum Reprod 2007;22:1925–31. doi: 10.1093/humrep/dem081.PubMedCrossRefGoogle Scholar
  65. 65.
    Ranieri DM, Quinn F, Makhlouf A, Khadum I, Ghutmi W, McGarrigle H, et al. Simultaneous evaluation of basal follicle-stimulating hormone and 17 beta-estradiol response to gonadotropin-releasing hormone analogue stimulation: an improved predictor of ovarian reserve. Fertil Steril 1998;70:227–33. doi: 10.1016/S0015-0282(98)00159-9.PubMedCrossRefGoogle Scholar
  66. 66.
    Scheffer GJ, Broekmans FJM, Looman CWN, Blankenstein M, Fauser BCJM, de Jong FH, et al. The number of antral follicles in normal women with proven fertility is the best reflection of reproductive age. Hum Reprod 2003;18:700–6. doi: 10.1093/humrep/deg135.PubMedCrossRefGoogle Scholar
  67. 67.
    Ravhon A, Lavery S, Michael S, Donaldson M, Margara R, Trew G, et al. Dynamic assays of inhibin B and oestradiol following buserelin acetate administration as predictors of ovarian response in IVF. Hum Reprod 2000;15:2297–301. doi: 10.1093/humrep/15.11.2297.PubMedCrossRefGoogle Scholar
  68. 68.
    McIlven M, Skull JD, Ledger WL. Evaluation of the utility of multiple endocrine and ultrasound measures of ovarian reserve in the prediction of cycle cancellation in a high-risk IVF population. Hum Reprod 2007;22:778–85. doi: 10.1093/humrep/del435.CrossRefGoogle Scholar
  69. 69.
    Kwee J, Elting MW, Schats R, Bezemer PD, Lambalk CB, Schoemaker J. Comparison of endocrine tests with respect to their predictive value on the outcome of ovarian hyperstimulation in IVF treatment: results of a prospective randomized study. Hum Reprod 2003;18:1422–7. doi: 10.1093/humrep/deg205.PubMedCrossRefGoogle Scholar
  70. 70.
    Bancsi LFJMM, Broekmans FJM, Eijkemans MJC, de Jong FH, Habbema JDF, te Velde ER. Predictors of poor ovarian response in in vitro fertilization: a prospective study comparing basal markers of ovarian reserve. Fertil Steril 2002;77:328–36. doi: 10.1016/S0015-0282(01)02983-1.PubMedCrossRefGoogle Scholar
  71. 71.
    Syrop CH, Dawson JD, Husman K, Sparks AET, Van Voorhis BJ. Ovarian volume may predict assisted reproductive outcomes better than follicle stimulating hormone concentration on day 3. Hum Reprod 1999;14:1752–6. doi: 10.1093/humrep/14.7.1752.PubMedCrossRefGoogle Scholar
  72. 72.
    Bowen S, Norian J, Santoro N, Pal L. Simple tools for assessment of ovarian reserve (OR): individual ovarian dimensions are reliable predictors of OR. Fertil Steril 2007;88:390–5. doi: 10.1016/j.fertnstert.2006.11.175.PubMedCrossRefGoogle Scholar
  73. 73.
    Verhagen TEM, Hendriks DJ, Bancsi LFJMM, Mol BWJ, Broekmans FJM. The accuracy of multivariate models predicting ovarian reserve and pregnancy after in vitro fertilization: a meta-analysis. Hum Reprod Updat 2008;14:95–100. doi: 10.1093/humupd/dmn001.CrossRefGoogle Scholar
  74. 74.
    Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstet Gynecol 1986;67:604–6.PubMedGoogle Scholar
  75. 75.
    Gleicher N, Barad D. “Ovarian age-based” stimulation of young women with diminished ovarian reserve results in excellent pregnancy rates with in vitro fertilization. Fertil Steril 2006;86:1621–5. doi: 10.1016/j.fertnstert.2006.04.046.PubMedCrossRefGoogle Scholar
  76. 76.
    Anasti JN. Premature ovarian failure: an update. Fertil Steril 1998;70:1–15. doi: 10.1016/S0015-0282(98)00099-5.PubMedCrossRefGoogle Scholar
  77. 77.
    Massin N, Méduri G, Bachelot A, Mishrafi M, Kuttenn F, Touraine P. Evaluation of different markers of the ovarian reserve in patients presenting with premature ovarian failure. Mol Cell Endocrinol 2008;282:95–100. doi: 10.1016/j.mce.2007.11.017.PubMedCrossRefGoogle Scholar
  78. 78.
    Doherty E, Pakarinen P, Tiitinen A, Kiilavuori A, Huhtaniemi I, Forrest S, et al. A novel mutation in the FSH receptor inhibiting signal transduction and causing primary ovarian failure. J Clin Endocrinol Metab 2002;87:1151–5. doi: 10.1210/jc.87.3.1151.PubMedCrossRefGoogle Scholar
  79. 79.
    Meduri G, Touraine P, Beau I, Lahuna O, Desroches A, Vacher-Lavenu MC, et al. Delayed puberty and primary amenorrhea associated with a novel mutation of the human follicle stimulating hormone receptor: clinical, histological and molecular studies. J Clin Endocrinol Metab 2003;88:3491–8. doi: 10.1210/jc.2003-030217.PubMedCrossRefGoogle Scholar
  80. 80.
    Gleicher N, Weghofer A, Barad DH. A pilot study of premature ovarian senescence: I. Correlation of triple CGG repeats on the FMR1 gene to ovarian reserve parameters FSH and anti-Müllerian hormone. Fertil Steril 2008;in press.Google Scholar
  81. 81.
    Gleicher N, Weghofer A, Barad DH. A pilot study of premature ovarian senescence: II. Different genotype and phenotype for genetic and autoimmune etiologies. Fertil Steril 2008;in press.Google Scholar
  82. 82.
    Conway GS. Premature ovarian failure. Br Med Bull 2000;3:643–9. doi: 10.1258/0007142001903445.CrossRefGoogle Scholar
  83. 83.
    Rebar RW, Connolly HV. Clinical features of young women with hypergonadotropic amenorrhea. Fertil Steril 1990;53:804–10.PubMedGoogle Scholar
  84. 84.
    Nelson LM, Kimzey LM, White BJ, Merriam GR. Gonadotropin suppression for the treatment of karyotypically normal spontaneous premature ovarian failure: a controlled trial. Fertil Steril 1992;57:50–5.PubMedGoogle Scholar
  85. 85.
    Nelson LM, Anasti JN, Kimzey LM, Defensor RA, Lipetz KJ, White BJ, et al. Development of luteinized Graafian follicles in patients with karyotypically normal spontaneous premature ovarian failure. J Clin Endocrinol Metab 1994;79:1470–5. doi: 10.1210/jc.79.5.1470.PubMedCrossRefGoogle Scholar
  86. 86.
    Massin N, Gougeon A, Meduri G, Thibaud E, Laborde K, Matuchansky C, et al. Significance of ovarian histology in the management of patients presenting a premature ovarian failure. Hum Reprod 2004;19:2555–60. doi: 10.1093/humrep/deh461.PubMedCrossRefGoogle Scholar
  87. 87.
    Tsigkou A, Marzotti S, Borges L, Brozzetti A, Reis F, Candeloro P, et al. High serum inhibin concentration discriminates autoimmune oophoritis from other forms of primary ovarian insufficiency. J Clin Endocrinol Metab 2008;93(4):1263–9. doi: 10.1210/jc.2007-1675.PubMedCrossRefGoogle Scholar
  88. 88.
    La Marca A, Pati M, Orvieto R, Stabile G, Artenisio AC, Volpe A. Serum anti-Müllerian hormone levels in women with secondary amenorrhea. Fertil Steril 2006;85:1547–9. doi: 10.1016/j.fertnstert.2005.10.057.PubMedCrossRefGoogle Scholar
  89. 89.
    van Rooij IA, Broekmans FJ, Scheffer GJ, Looman CW, Habbema JD, de Jong FH, et al. Serum antimullerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility: a longitudinal study. Fertil Steril 2005;83:979–87. doi: 10.1016/j.fertnstert.2004.11.029.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bruno Ramalho de Carvalho
    • 1
  • Ana Carolina Japur de Sá Rosa e Silva
    • 1
    • 2
  • Júlio César Rosa e Silva
    • 1
  • Rosana Maria dos Reis
    • 1
  • Rui Alberto Ferriani
    • 1
  • Marcos Felipe Silva de Sá
    • 1
  1. 1.Sector of Human Reproduction, Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
  2. 2.Laboratório de Ginecologia e Obstetrícia, Hospital das Clínicas da Faculdade de Medicina de Ribeirão PretoCampus da Universidade de São PauloRibeirão PretoBrazil

Personalised recommendations