Advertisement

Journal of Archaeological Research

, Volume 17, Issue 3, pp 263–295 | Cite as

New Developments in the Use of Spatial Technology in Archaeology

  • Mark D. McCoyEmail author
  • Thegn N. Ladefoged
Article

Abstract

Spatial technology is integral to how archaeologists collect, store, analyze, and represent information in digital data sets. Recent advances have improved our ability to look for and identify archaeological remains and have increased the size and complexity of our data sets. In this review we outline trends in visualization, data management, archaeological prospecting, modeling, and spatial analysis, as well as key advances in hardware and software. Due to developments in education, information technology, and landscape archaeology, the implementation of spatial technology has begun to move beyond superficial applications and is no longer limited to environmental deterministic approaches. In the future, spatial technology will increasingly change archaeology in ways that will enable us to become better practitioners, scholars, and stewards.

Keywords

Geographic information systems Laser mapping Remote sensing Geophysical survey 

Notes

Acknowledgments

We thank our students and colleagues who have discussed the joys and pains of spatial technology with us over the years. In particular, Michael Graves, Simon Holdaway, Lisa Holm, Stephanie Jolivette, Patrick Kirch, Mara Mulrooney, Chris Stevenson, and Steve Shackley have contributed to our use and understanding of spatial technology. The journal’s editors and anonymous reviewers provided many useful comments and suggestions. Special thanks to K. Ann Horsburgh for suggesting we produce this review.

References cited

  1. Abe, Y., Marean, C. W., Nilssen, P. J., Assefa, Z., and Stone, E. C. (2002). The analysis of cutmarks on archaeofauna: A review and critique of quantification procedures, and a new image-analysis GIS approach. American Antiquity 67: 643–663.Google Scholar
  2. Aldenderfer, M., and Maschner, H. D. (eds.) (1996). Anthropology, Space, and Geographic Information Systems, Oxford University Press, Oxford.Google Scholar
  3. Allen, K. M., Green, S. W., and Zubrow, E. B. (eds.) (1990). Interpreting Space: GIS and Archaeology, Taylor and Francis, London.Google Scholar
  4. Altaweel, M. (2005). The use of ASTER satellite imagery in archaeological contexts. Archaeological Prospection 12: 151–166.Google Scholar
  5. Anderson, D. G., and Gillam, J. C. (2000). Paleoindian colonization of the Americas: Implications from an examination of physiographic, demographic, and artifact distribution. American Antiquity 65: 43–66.Google Scholar
  6. Argote-Espino, D., and Chavez, R. E. (2005). Detection of possible archaeological pathways in central Mexico through digital processing of remote sensing images. Archaeological Prospection 12: 105–114.Google Scholar
  7. Ayala, G., and Fitzjohn, M. (2002). Seeing is believing: Questions of archaeological visibility in the Mediterranean. Antiquity 76: 337–338.Google Scholar
  8. Bailey, G. (2007). Time perspectives, palimpsests and the archaeology of time. Journal of Anthropological Archaeology 26: 198–223.Google Scholar
  9. Bains, A., and Brophy, K. (2006). What’s another word for thesaurus? Data standards and classifying the past. In Evans, T. L., and Daly, P. T. (eds.), Digital Archaeology: Bridging Method and Theory, London, Routledge, pp. 236–250.Google Scholar
  10. Ballard, R. D., Lawrence, E., Stager, D. M., Yoerger, D., Mindell, D., Whitcomb, L. L., Singh, H., and Piechota, D. (2002). Iron Age shipwrecks in deep water off Ashkelon, Israel. American Journal of Archaeology 106: 151–168.Google Scholar
  11. Bandy, M. S. (2004). Fissioning, scalar stress, and social evolution in early village societies. American Anthropologist 106: 322–333.Google Scholar
  12. Bates, R. (2005). Ground penetrating radar in sediments. Archaeological Prospection 12: 203–204.Google Scholar
  13. Beardah, C., and Baxter, M. (1996). The archaeological use of kernel density estimates. Internet Archaeology 1. http://intarch.ac.uk/journal/issue1/beardah_index.html
  14. Bender, B. (1999a). Landscape archaeology and the topography of anthropogenic environments: Introductory comments. Antiquity 73: 632–634.Google Scholar
  15. Bender, B. (1999b). Subverting the western gaze: Mapping alternative worlds. In Ucko, P., and Layton, R., (eds.), The Archaeology and Anthropology of Landscape, Routledge, London, pp. 31–45.Google Scholar
  16. Berry, J. W. (2003). Historic Sanborn maps in the digital age: City of New Orleans. Journal of GIS in Archaeology 1: 73–78.Google Scholar
  17. Bevan, A., and Conolly, J. (2002). GIS, archaeological survey, and landscape archaeology on the island of Kythera, Greece. Journal of Field Archaeology 29: 123–138.Google Scholar
  18. Bewley, R. H. (2003). Aerial survey for archaeology. Photogrammetric Record 18: 273–290.Google Scholar
  19. Bewley, R. H., Crutchley, S. P., and Shell, C. A. (2005). New light on an ancient landscape: Lidar survey in the Stonehenge world heritage site. Antiquity 79: 636–647.Google Scholar
  20. Bickler, S. H., and Low, J. M. (2007). “Lies, dam lies, and geophysics”: Uses and abuses of remote sensing techniques in New Zealand heritage management. Archaeology in New Zealand 50: 195–210.Google Scholar
  21. Bird, C., Minichillo, T., and Marean, C. W. (2007). Edge damage distribution at the assemblage level on Middle Stone Age lithics: An image-based GIS approach. Journal of Archaeological Science 34: 771–780.Google Scholar
  22. Bitelli, G., Girelli, V. A., Tini, M. A., and Vittuari, L. (2004). Low-height aerial imagery and digital photogrammetrical processing for archaeological mapping. Geo-Imagery Bridging Continents, XXth ISPRS Congress, 12-23 July 2004, Istanbul, Turkey.Google Scholar
  23. Boehler, W., Heinz, G., Marbs, A., and Siebold, M. (2002). 3D scanning software: An introduction. Paper presented at Close-Range Imaging, Long-Range Vision ISPRS Commission V, September 2002, Corfu, Greece.Google Scholar
  24. Bolten, A., Bubenzen, O., and Darius, F. (2006). A digital elevation model as a base for the reconstruction of Holocene land-use potential in arid regions. Geoarchaeology: An International Journal 21: 751–762.Google Scholar
  25. Bradley, R. (2000). An Archaeology of Natural Places, Routledge, London.Google Scholar
  26. Breman, J. (2003). Marine archaeology goes underwater with GIS. Journal of GIS in Archaeology 1: 23–32.Google Scholar
  27. Briault, C. (2007). Making mountains out of molehills in the Bronze Age Aegean: Visibility, ritual kits, and the idea of a peak sanctuary. World Archaeology 39: 122–141.Google Scholar
  28. Brizzi, M., Court, S., d’Andrea, A., Lastra, A., and Sepio, D. (2006). 3D laser scanning as a tool for conservation: The experiences of the Herculaneum conservation project. Proceedings of the 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage. http://www.cs.unc.edu/~lastra/Publications/2006_VAST.pdf.
  29. Byerly, R. M., Cooper, J. R., Meltzer, D. J., Hill, M. E., and LaBelle, J. M. (2005). On Bonfire Shelter (Texas) as a Paleoindian bison jump: An assessment using GIS and zooarchaeology. American Antiquity 70: 595–629.Google Scholar
  30. Carey, C. J., Brown, T. G., Challis, K. C., Howard, A. J., and Cooper, L. (2006). Predictive modelling of multiperiod geoarchaeological resources at a river confluence: A case study from the Trent-Soar, UK. Archaeological Prospection 13: 241–250.Google Scholar
  31. Challis, K. (2006). Airborne laser altimetry in alluviated landscapes. Archaeological Prospection 13: 103–127.Google Scholar
  32. Challis, K. (2007). Archaeology’s Cold War windfall: The CORONA programme and lost landscapes of the Near East. Journal of the British Interplanetary Society 60: 21–27.Google Scholar
  33. Challis, K., and Howard, A. J. (2006). A review of trends within archaeological remote sensing in alluvial environments. Archaeological Prospection 13: 231–240.Google Scholar
  34. Challis, K., Priestnall, G., Gardner, A., Henderson, J., and O’Hara, S. (2002). Corona remotely-sensed imagery in dryland archaeology: The Islamic city of al-Raqqa, Syria. Journal of Field Archaeology 29: 139–153.Google Scholar
  35. Chapman, H. P., and Cheetham, J. L. (2002). Monitoring and modelling saturation as a proxy indicator for in-situ preservation in wetlands: A GIS-based approach. Journal of Archaeological Science 29: 277–289.Google Scholar
  36. Clark, D. L. (2007). Viewing the liturgy: A space syntax study of changing visibility and accessibility in the development of the Byzantine church in Jordan. World Archaeology 39: 84–104.Google Scholar
  37. Clark, G. A. (1982). Quantifying Archaeological Research. Advances in Archaeological Method and Theory 5: 217–273.Google Scholar
  38. Colledge, S., Conolly, J., and Shennan, S. (2004). Archaeobotanical evidence for the spread of farming in the Eastern Mediterranean. Current Anthropology 45: S35–S58.Google Scholar
  39. Conolly, J., and Lake, M. (2006). Geographical Information Systems in Archaeology, Cambridge University Press, Cambridge.Google Scholar
  40. Conyers, L. B. (2004). Ground-Penetrating Radar for Archaeology, AltaMira Press, Walnut Creek, CA.Google Scholar
  41. Conyers, L. B. (2006). Innovative ground-penetrating radar methods for archaeological mapping. Archaeological Prospection 13: 139–141.Google Scholar
  42. Conyers, L. B., and Goodman, D. (1997). Ground-Penetrating Radar: An Introduction for Archaeologists, AltaMira Press, Walnut Creek, CA.Google Scholar
  43. Cooper, J. R., and Qiu, F. (2006). Expediting and standardizing stone artifact refitting using a computerized suitability model. Journal of Archaeological Science 33: 987–998.Google Scholar
  44. Craig, N., and Aldenderfer, M. (2003). Preliminary stages in the development of a real-time digital data recording system for archaeological excavation using ArcView GIS 3.1. Journal of GIS in Archaeology 1: 11–22.Google Scholar
  45. Craig, N., Aldenderfer, M., and Moyes, H. (2006). Multivariate visualization and analysis of photomapped artifact scatters. Journal of Archaeological Science 33: 1617–1627.Google Scholar
  46. Crow, P., Benham, S., Devereux, B. J., and Amable, G. S. (2007). Woodland vegetation and its implications for archaeological survey using LiDAR. Forestry 80: 241–252.Google Scholar
  47. Crutchley, S. (2006). Light detection and ranging (lidar) in the Witham Valley, Lincolnshire: An assessment of new remote sensing techniques. Archaeological Prospection 13: 251–257.Google Scholar
  48. D’Andrea, A., Gallotti, R., and Piperno, M. (2002). Taphonomic interpretation of the developed Oldowan site of Garba IV (Melka Kunture, Ethiopia) through a GIS application. Antiquity 76: 991–1001.Google Scholar
  49. Dalan, R. A. (2006). A geophysical approach to buried site detection using down-hole susceptibility and soil magnetic techniques. Archaeological Prospection 13: 182–206.Google Scholar
  50. Dalan, R. A., and Banerjee, S. K. (1996). Soil magnetism, an approach for examining archaeological landscapes. Geophysical Research Letters 23: 185–188.Google Scholar
  51. Dalan, R. A., and Bevan, B. W. (2002). Geophysical indicators of culturally emplaced soils and sediments. Geoarchaeology: An International Journal 17: 779–810.Google Scholar
  52. Dalan, R. A., and Bevan, B. W. (2005). Archaeological geophysics: A global perspective. Geoarchaeology: An International Journal 20: 429–432.Google Scholar
  53. Daly, P. T., and Evans T. L. (2006). Afterword. In Evans, T. L., and Daly, P. T. (eds.), Digital Archaeology: Bridging Method and Theory, Routledge, London, pp. 253–256.Google Scholar
  54. David, A. (2001). The role and practice of archaeological prospection. In Brothwell, D. R., and Pollard, A. M. (eds.), Handbook of Archaeological Sciences, John Wiley and Sons, New York, pp. 519–520.Google Scholar
  55. David, A. (2006). Finding sites. In Balme, J., and Paterson, A. (eds.), Archaeology in Practice: A Student Guide to Archaeological Analyses, Blackwell, Malden, MA, pp. 1–38.Google Scholar
  56. Dawson, P., Levy, R., Gardner, D., and Walls, M. (2007). Simulating the behaviour of light inside Arctic dwellings: Implications for assessing the role of vision in task performance. World Archaeology 39: 17–35.Google Scholar
  57. De Laet, V., Paulissen, E., and Waelkens, M. (2007). Methods for the extraction of archaeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (southwest Turkey). Journal of Archaeological Science 34: 830–841.Google Scholar
  58. Devereux, B. J., Amable, G. S., Crow, P., and Cliff, A. D. (2005). The potential of airborne lidar for detection of archaeological features under woodland canopies. Antiquity 79: 648–660.Google Scholar
  59. Doneus, M., and Neubauer, W. (2005). 3D laser scanners on archaeological excavations. CIPA 2005 XX International Symposium, Torino, Italy. http://cipa.icomos.org/fileadmin/papers/Torino2005/226.pdf.
  60. Drennan, R. D. (2001). Numbers, models, maps: Computers and archaeology. In Brothwell, D. R., and Pollard, A. M. (eds.), Handbook of Archaeological Sciences, John Wiley and Sons, New York, pp. 663–670.Google Scholar
  61. Dyson-Bruce, L. (2003). Historic landscape assessment: The east of England experience paper product to GIS delivery. Journal of GIS in Archaeology 1: 61–72.Google Scholar
  62. Ebert, D. (2004). Applications of archaeological GIS. Canadian Journal of Archaeology 28: 319–341.Google Scholar
  63. Ebert, J. I. (2000). The state of the art in ‘inductive’ predictive modeling: Seven big mistakes (and lots of smaller ones). In Wescott, K. L., and Brandon, R. J. (eds.), Practical Applications of GIS for Archaeologists: A Predictive Modeling Toolkit, Taylor and Francis, Philadelphia, pp. 129–134.Google Scholar
  64. El-Hakim, S. F., Beraldin, J. A., and Picard, M. (2002). Detailed 3D reconstruction of monuments using multiple techniques. Paper presented at Close-Range Imaging, Long-Range Vision ISPRS Commission V, September 2002, Corfu, Greece.Google Scholar
  65. Elliott, M. (2005). Evaluating evidence for warfare and environmental stress in settlement pattern data from the Malpaso Valley, Zacatecas, Mexico. Journal of Anthropological Archaeology 24: 297–315.Google Scholar
  66. Evans, T. L., and Daly, P. T. (eds.) (2006). Digital Archaeology: Bridging Method and Theory, Routledge, London.Google Scholar
  67. Evans, D., Pottier, C., Fletcher, R., Hensley, S., Tapley, I., Milne, A., and Barbetti, M. (2007). A comprehensive archaeological map of the world’s largest preindustrial settlement complex at Angkor, Cambodia. Proceedings of the National Academy of Sciences 104: 14277–14282.Google Scholar
  68. Field, J. S. (2005). Land tenure, competition and ecology in Fijian prehistory. Antiquity 79: 586–600.Google Scholar
  69. Field, J. S, and Lahr, M. M. (2006). Assessment of the southern dispersal: GIS-based analyses of potential routes at oxygen isotopic stage 4. World Archaeology 19: 1–45.Google Scholar
  70. Fisher, P. (1991). First experiments in viewshed uncertainty: The accuracy of the viewshed area. Photogrammetric Engineering and Remote Sensing 57: 1321–1327.Google Scholar
  71. Fisher, P. (1992). First experiments in viewshed uncertainty: Simulating fuzzy viewsheds. Photogrammetric Engineering and Remote Sensing 58: 345–352.Google Scholar
  72. Fisher, P. (1994). Probable and fuzzy models of the viewshed operation. In Worboys, M. (ed.), Innovations in GIS, Taylor and Francis, London, pp. 161–175.Google Scholar
  73. Fisher, P. (1995). An exploration of probable viewsheds in landscape planning. Environment and Planning B: Planning and Design 22: 527–546.Google Scholar
  74. Fisher, P. (1996). Reconsideration of the viewshed function in terrain modeling. Geographical Systems 3: 33–58.Google Scholar
  75. Fisher, P. (1998). Improved modeling of elevation error with geostatistics. GeoInformatica 2: 215–233.Google Scholar
  76. Fitzjohn, M. (2007). Viewing places: GIS applications for examining the perception of space in the mountains of Sicily. World Archaeology 39: 36–50.Google Scholar
  77. Ford, B. (2007). Down by the water’s edge: Modelling shipyard locations in Maryland, USA. International Journal of Nautical Archaeology 36: 125–137.Google Scholar
  78. Friedman, R. A., Stein, J. R., and Blackhorse, T. (2003). A study of a Pre-Columbian irrigation system at Newcome, New Mexico. Journal of GIS in Archaeology 1: 1–10.Google Scholar
  79. Frieman, C., and Gillings, M. (2007). Seeing is perceiving? World Archaeology 39: 4–16.Google Scholar
  80. Fry, G. L., Skar, B., Jerpasen, G., Bakkestuen, V., and Erikstad, L. (2004). Locating archaeological sites in the landscape: A hierarchical approach based on landscape indicators. Landscape and Urban Planning 67: 97–107.Google Scholar
  81. Fyfe, R. (2006). GIS and the application of a model of pollen deposition and dispersal: A new approach to testing, landscape hypotheses using the POLLANDCAL models. Journal of Archaeological Science 33: 483–493.Google Scholar
  82. Gaffney, C. F., and Gater, J. (2003). Revealing the Buried Past: Geophysics for Archaeologists, Tempus, Stroud, Gloucestershire.Google Scholar
  83. Galaty, M. L. (2005). European regional studies: A coming of age? Journal of Archaeological Research 13: 291–336.Google Scholar
  84. Gibson, P. J., and George, D. M. (2006). Geophysical investigation of the site of the former monastic settlement, Clonard, County Meath, Ireland. Archaeological Prospection 13: 45–56.Google Scholar
  85. Giles, K. (2007). Seeing and believing: Visuality and space in pre-modern England. World Archaeology 39: 105–121.Google Scholar
  86. Gillings, M. (2005). The real, the virtually real, and the hyperreal: The role of VR in archaeology. In Smiles, S., and Moser, S. (eds.), Envisioning the Past: Archaeology and the Image, Blackwell, Oxford, pp. 223–239.Google Scholar
  87. Gillings, M., and Goodrick, G.T. (1996). Sensuous and reflexive GIS: Exploring visualisation and VRML. Internet Archaeology 1. http://intarch.ac.uk/journal/issue1/gillings_index.html
  88. Goodchild, M. F., and Janelle, D. G. (2004). Thinking spatially in the social sciences. In Goodchild, M. F., and Janelle, D. G. (eds.), Spatially Integrated Social Science, Oxford University Press, New York, pp. 3–22.Google Scholar
  89. Gravili, D., and Ialuna, R. (2006). ‘Archeoegadi’: A GIS for the marine archaeological survey in the Egadi Islands. Chemistry and Ecology 22: 397–402.Google Scholar
  90. Gregory, I. N., and Ell, P. S. (2006). Error-sensitive historical GIS: Identifying areal interpolation errors in time-series. International Journal of Geographical Information Science 20: 135–152.Google Scholar
  91. Gunasekera, R. (2004). Use of GIS for environmental impact assessment: An interdisciplinary approach. Interdisciplinary Science Reviews 29: 37–48.Google Scholar
  92. Hageman, J. B., and Bennett, D. A. (2000). Construction of digital elevation models for archaeological applications. In Mehrer, M., and Wescott, K. (eds.), GIS and Archaeological Site Location Modeling, Taylor and Francis, Boca Raton, FL, pp. 113–128.Google Scholar
  93. Hailey, T. I. (2005). The powered parachute as an archaeological aerial reconnaissance vehicle. Archaeological Prospection 12: 69–78.Google Scholar
  94. Hare, T. S. (2004). Using measures of cost distance in the estimation of polity boundaries in the Postclassic Yautepec Valley, Mexico. Journal of Archaeological Science 31: 799–814.Google Scholar
  95. Harmon, J. M., Leone, M. P., Prince, S. D., and Snyder, M. (2006). Lidar for archaeological landscape analysis: A case study of two eighteenth-century Maryland plantation sites. American Antiquity 71: 649–670.Google Scholar
  96. Hayakawa, Y. S., Oguchi, T., Komatsubara, J., Ito, K., Hori, K., and Nishiaki, Y. (2007). Rapid on-site topographic mapping with a handheld laser range finder for a geoarchaeological survey in Syria. Geographical Journal 45: 95–104.Google Scholar
  97. Herbich, T., and Peeters, C. (2006). Results of the magnetic survey at Deir al-Barsha, Egypt. Archaeological Prospection 13: 11–24.Google Scholar
  98. Hernández, A. A. (2006). Strategic location and territorial integrity: The role of subsidiary sites in the Classic Maya kingdoms of the upper Usumacinta region. Internet Archaeology 19. http://intarch.ac.uk/journal/issue19/anaya_index.html
  99. Hill, J. B., Clark, J. J., Doelle, W. H., and Lyons, P. D. (2004). Prehistoric demography in the Southwest: Migration, coalescence and Hohokam population decline. American Antiquity 69: 689–716.Google Scholar
  100. Hodder, I. (1999). Archaeology and global information systems. Internet Archaeology 6. http://intarch.ac.uk/journal/issue6/hodder_index.html
  101. Holcomb, D. W. (2001). Imaging radar and archaeological survey: An example from the Gobi Desert of Southern Mongolia. Journal of Field Archaeology 28: 131–141.Google Scholar
  102. Holdaway, S., and Wandsnider, L. (2006). Temporal scales and archaeological landscapes from the eastern desert of Australia and intermontane North America. In Lock, G., and Molyneaux, B. (eds.), Confronting Scale in Archaeology: Issues of Theory and Practice, Springer, New York, pp. 183–202.Google Scholar
  103. Holdaway, S., Wallace, R., Gibb, R., Bader, H., McCurdy, D., and Taylor, M. (2005). Archaeology without squares: A computerised system for recording and visualising the excavation of a 19th century Maori village. Journal of the Polynesian Society 114: 267–283.Google Scholar
  104. Howey, M. C. (2007). Using multi-criteria cost surface analysis to explore past regional landscapes: A case study of ritual activity and social interaction in Michigan, A.D. 1200–1600. Journal of Archaeological Science 34: 1830–1846.Google Scholar
  105. Ioannides, M., and Wehr, A. (2002). 3D reconstructions and re-productions in archaeology. Paper presented at Close-Range Imaging, Long-Range Vision ISPRS Commission V, September 2002, Corfu, Greece.Google Scholar
  106. Jennings, J., and Craig, N. (2003). Using GIS for politywide analysis of Wari imperial political economy. Journal of GIS in Archaeology 1: 33–46.Google Scholar
  107. Johnson, I. (2002). Contextualising archaeological information through interactive maps. Internet Archaeology 12. http://intarch.ac.uk/journal/issue12/johnson_index.html
  108. Johnson, I., and Wilson, A. (2003). The Time Map Project: Developing time-based GIS display for cultural data. Journal of GIS in Archaeology 1: 123–135.Google Scholar
  109. Johnson, J. K. (ed.) (2006). Remote Sensing in Archaeology: An Explicitly North American Perspective, University of Alabama Press, Tuscaloosa.Google Scholar
  110. Johnston, K., Ver Hoef, J. M., Krivoruchko, K., and Lucas, N. (2001). Using ArcGIS Geostatistical Analyst, ESRI Press, Redlands, CA.Google Scholar
  111. Jones, E. E. (2006). Using viewshed analysis to explore settlement choice: A case study of the Onondaga Iroquois. American Antiquity 71: 523–538.Google Scholar
  112. Jones, G., and Munson, G. (2005). Geophysical survey as an approach to the ephemeral campsite problem: Case studies from the northern plains. Plains Anthropologist 50: 31–43.Google Scholar
  113. Kantner, J. (2004). Geographical approaches for reconstructing past human behavior from prehistoric roadways. In Goodchild, M. F., and Janelle, D. G. (eds.), Spatially Integrated Social Science: Examples in Best Practice, Oxford University Press, Oxford, pp. 323–344.Google Scholar
  114. Kantner, J. (2008). The archaeology of regions: From discrete analytical toolkit to ubiquitous spatial perspective. Journal of Archaeological Research 16: 37–81.Google Scholar
  115. Karaim, R. (2002). Archaeological mapping isn’t what it used to be. American Archaeology 6: 27–33.Google Scholar
  116. Katsianis, M., Tsipidis, S., Kotsakis, K., and Kousoulakou, A. (2008). A 3D digital workflow for archaeological intra-site research using GIS. Journal of Archaeological Science 35: 655–667.Google Scholar
  117. Kintigh, K. (2006). The promise and challenge of archaeological data integration. American Antiquity 71: 567–578.Google Scholar
  118. Kirch, P. V. (2007). Hawaii as a model system for human ecodynamics. American Anthropologist 109: 8–26.Google Scholar
  119. Kirch, P. V., Chadwick, O. A., Tuljapurkar, S., Ladefoged, T., Graves, M., Hotchkiss, S., and Vitousek, P. (2007). Human ecodynamics in the Hawaiian ecosystem, from 1200 to 200 Yr BP. In Kohler, T. A., and van der Leeuw, S. (eds.), The Model-Based Archaeology of Socionatural Systems, School for Advanced Research Press, Santa Fe, NM, pp. 121–140.Google Scholar
  120. Kohler, T. A., and van der Leeuw, S. E. (eds.) (2007). The Model-Based Archaeology of Socionatural Systems, School for Advanced Research Press, Santa Fe, NM.Google Scholar
  121. Kohler, T. A., Johnson, C. D., Varien, M., Ortman, S., Reynolds, R., Kobit, Z., Cowan, J., Kolm, K., Smith, S., and Yap, L. (2007). Settlement ecodynamics in the prehispanic central Mesa Verde region. In Kohler, T. A., and van der Leeuw, S. (eds.), The Model-Based Archaeology of Socionatural Systems, School for Advanced Research Press, Santa Fe, NM, pp. 61–120.Google Scholar
  122. Kvamme, K. L. (1999). Recent directions and developments in geographic information systems. Journal of Archaeological Research 7: 153–201.Google Scholar
  123. Kvamme, K. L. (2003). Geophysical surveys as landscape archaeology. American Antiquity 68: 435–457.Google Scholar
  124. Kvamme, K. L. (2006a). Integrating multidimensional geophysical data. Archaeological Prospection 13: 57–72.Google Scholar
  125. Kvamme, K. L. (2006b). Magnetometry: Nature’s gift to archaeology. In Johnson, J. K. (ed.), Remote Sensing in Archaeology: An Explicitly North American Perspective, University of Alabama Press, Tuscaloosa, pp. 205–234.Google Scholar
  126. Kvamme, K. L. (2006c). There and back again: Revisiting archaeological locational modeling. In Mehrer, M., and Wescott, K. (eds.), GIS and Archaeological Site Location Modeling, Taylor and Francis, Boca Raton, FL, pp. 3–38.Google Scholar
  127. Kvamme, K. L., Ernenwein, E. G., and Markussen, C. J. (2006a). Robotic total station for microtopographic mapping: An example from the Northern Great Plains. Archaeological Prospection 13: 91–102.Google Scholar
  128. Kvamme, K. L., Johnson, J. K., and Haley, B. S. (2006b). Multiple methods survey: Case studies. In Johnson, J. K. (ed.), Remote Sensing in Archaeology: An Explicitly North American Perspective, University of Alabama Press, Tuscaloosa, pp. 251–267.Google Scholar
  129. Ladefoged, T. N., and Graves, M. W. (2000). Evolutionary theory and the historical development of dry-land agriculture in north Kohala, Hawai‘i. American Antiquity 65: 423–448.Google Scholar
  130. Ladefoged, T. N., and Graves, M. W. (2008). Variable development of dryland agriculture in Hawai‘i: A fine-grained chronology from the leeward Kohala field system, Hawai‘i Island. Current Anthropology 49(5): 771–802.Google Scholar
  131. Ladefoged, T. N., Graves, M. W., and McCoy, M. D. (2003). Archaeological evidence for agricultural development in Kohala, Island of Hawai‘i. Journal of Archaeological Science 30: 923–940.Google Scholar
  132. Ladefoged, T. N., Graves, M. W., O’Connor, B. V., and Chapin, R. (1998). The integration of global positioning systems into archaeological field research: A case study from North Kohala, Hawai‘i Island. SAA Bulletin 16: 23–27.Google Scholar
  133. Ladefoged, T. N., Lee, C. T., and Graves, M. W. (2008). Modeling life expectancy and surplus production of dynamic pre-contact territories in leeward Kohala, Hawai‘i. Journal of Anthropological Archaeology 27: 93–110.Google Scholar
  134. Lake, M. (2007). Viewing space. World Archaeology 39: 1–3.Google Scholar
  135. Lake, M. W., and Woodman, P. E. (2003). Visibility studies in archaeology: A review and case study. Environment and Planning B: Planning and Design 30: 689–707.Google Scholar
  136. Lasaponara, R., and Masini, N. (2006). Identification of archaeological buried remains based on the normalized difference vegetation index (NDVI) from QuickBird satellite data. IEEE Geoscience and Remote Sensing Letters 3: 325–328.Google Scholar
  137. Lasaponara, R., and Masini, N. (2007). Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. Journal of Archaeological Science 34: 214–221.Google Scholar
  138. LeGates, R. (2005). Using spatial visualization to motivate undergraduate social science students. Visualizing Science Education, American Academy for the Advancement of Science (AAAS). www.aaas.org/publications/books_reports/CCLI/PDFs/05_Vis_Ed_LeGates.pdf
  139. Legg, R. J., and Taylor, D. (2006). Modeling environmental influences on the locations of Irish early medieval ringforts. Geoarchaeology: An International Journal 21: 201–220.Google Scholar
  140. Lemmens, J. P., Stancic, Z., and Verwaal, R. G. (1993). Automated archaeological feature extraction from digital aerial photographs. In Andresen, J., Madsen, T., and Scollar, I. (eds.), Computing the Past: Computer Applications and Quantitative Methods in Archaeology, Aarhus University Press, Aarhus, Denmark, pp. 45–52.Google Scholar
  141. Limp, W. F. (2001). Geographic information systems in historic preservation. Archives and Museum Informatics 13: 325–340.Google Scholar
  142. Limp, W. F. (2006). Ground penetrating radar for archaeology. Journal of Field Archaeology 31: 105–107.Google Scholar
  143. Llobera, M. (2000). Understanding movement: A pilot model towards the sociology of movement. In Lock, G. (ed.), Beyond the Map: Archaeology and Spatial Technologies, IOS Press, Amsterdam, pp. 65–84.Google Scholar
  144. Llobera, M. (2001). Building past landscape perception with GIS: Understanding topographic prominence. Journal of Archaeological Science 28: 1005–1014.Google Scholar
  145. Llobera, M. (2003). Extending GIS-based visual analysis: The concept of visualscapes. International Journal of Geographical Information Science 17: 25–48.Google Scholar
  146. Llobera, M. (2007). Reconstructing visual landscapes. World Archaeology 39: 51–69.Google Scholar
  147. Lock, G. R. (2000). Beyond the Map: Archaeology and Spatial Technologies, IOS Press: Amsterdam.Google Scholar
  148. Lock, G. R. (2003). Using Computers in Archaeology: Towards Virtual Pasts, Routledge, London.Google Scholar
  149. Lock, G. R., and Molyneaux, B. (eds.) (2006). Confronting Scale in Archaeology: Issues of Theory and Practice, Springer, New York.Google Scholar
  150. Lock, G. R., and Stancic, Z. (eds.) (1995). Archaeology and Geographical Information Systems: A European Perspective, Taylor and Francis, London.Google Scholar
  151. Marean, C. W., Abe, Y., Nilssen, P. J., and Stone, E. C. (2001). Estimating the minimum number of skeletal elements (MNE) in zooarchaeology: A review and a new image-analysis GIS approach. American Antiquity 66: 333–348.Google Scholar
  152. Masini, N., and Lasaponara, R. (2006). Satellite-based recognition of landscape archaeological features related to ancient human transformation. Journal of Geophysics and Engineering 3: 230–235.Google Scholar
  153. Masini, N., and Lasaponara, R. (2007). Investigating the spectral capability of QuickBird data to detect archaeological remains buried under vegetated and not vegetated areas. Journal of Culture Heritage 8: 53–60.Google Scholar
  154. Matthiesen, H., Salomonsen, E., and Sorensen, B. (2004). The use of radiography and GIS to assess the deterioration of archaeological iron objects from a water logged environment. Journal of Archaeological Science 31: 1451–1461.Google Scholar
  155. McCoy, M. D. (2005). The development of the Kalaupapa field system, Moloka’i Island, Hawai‘i. Journal of the Polynesian Society 114: 339–358.Google Scholar
  156. McCoy, M. D. (2006). Landscape, Social Memory, and Society: An Ethnohistoric-Archaeological Study of Three Hawaiian Communities, PhD dissertation, Department of Anthropology, University of California, Berkeley.Google Scholar
  157. McCoy, M. D. (2007). Revised late Holocene culture history for Moloka’i Island, Hawai‘i. Radiocarbon 49: 1273–1322.Google Scholar
  158. McPherron, S. J. (2005). Artifact orientations and site formation processes from total station proveniences. Journal of Archaeological Science 32: 1003–1014.Google Scholar
  159. Mehrer, M., and Wescott, K. (2006). GIS and Archaeological Site Location Modeling, Taylor and Francis, Boca Raton, FL.Google Scholar
  160. Meskell, L., and Preucel, R. W. (eds.) (2004). A Companion to Social Archaeology, Blackwell, Malden, MA.Google Scholar
  161. Miki, D., Homburg, J. A., and Brosowske, S. D. (2006). Thermally activated mineralogical transformations in archaeological hearths: Inversion from maghemite gamma Fe2O4 phase to haematite alpha Fe2O4 form. Archaeological Prospection 13: 207–227.Google Scholar
  162. Mlekuz, D. (2004). Listening to landscapes: Modelling soundscapes in GIS. Internet Archaeology 16. http://intarch.ac.uk/journal/issue16/mlekuz_index.html
  163. Montufo, A. M. (1997). The use of satellite imagery and digital image processing in landscape archaeology: A case study from the Island of Mallorca, Spain. Geoarchaeology: An International Journal 12: 71–85.Google Scholar
  164. Moore, J. A., and Keene, A. S. (1983). Archaeology and the law of the hammer. In Moore, J. A., and Keene, A. S. (eds.), Archaeological Hammers and Theories, Academic Press, New York, pp. 3–17.Google Scholar
  165. Mulrooney, M. A., Ladefoged, T. N., Gibb, R., and McCurdy, D. (2005). Eight million points per day: Archaeological implications of laser scanning and three-dimensional modeling of Pu’ukoholā Heiau, Hawai‘i Island. Hawaiian Archaeology 10: 18–28.Google Scholar
  166. Neubauer, W. (2001). Images of the invisible-prospection methods for the documentation of threatened archaeological sites. Naturwissenschaften 88: 13–24.Google Scholar
  167. Neubauer, W. (2004). GIS in archaeology: The interface between prospection and excavation. Archaeological Prospection 11: 159–166.Google Scholar
  168. Nigro, J. D., Ungar, P. S., de Ruiter, D. J., and Berger, L. R. (2003). Developing a geographic information system (GIS) for mapping and analysing fossil deposits at Swartkrans, Gauteng Province, South Africa. Journal of Archaeological Science 30: 317–324.Google Scholar
  169. Ogburn, D. E. (2006). Assessing the level of visibility of cultural objects in past landscapes. Journal of Archaeological Science 33: 405–413.Google Scholar
  170. Papadopoulos, N. G., Sarris, A., Kokkinou, E., Wells, B., Penttinen, A., Savini, E., Tsokas, G. N., and Tsourlos, P. (2006a). Contribution of multiplexed electrical resistance and magnetic techniques to the archaeological investigations at Poros, Greece. Archaeological Prospection 13: 75–90.Google Scholar
  171. Papadopoulos, N. G., Tsourlos, P., Tsokas, G. N., and Sarris, A. (2006b). Two-dimensional and three-dimensional resistivity imaging in archaeological site investigation. Archaeological Prospection 13: 163–181.Google Scholar
  172. Peterson, C. E., and Drennan, R. D. (2005). Communities, settlements, sites, and surveys: Regional-scale analysis of prehistoric human interaction. American Antiquity 70: 5–30.Google Scholar
  173. Pickels, J. (ed.) (1995). Ground Truth: The Social Implications of Geographic Information Systems, Guiford Press, New York.Google Scholar
  174. Powlesland, D., Lyall, J., Hopkinson, G., Donoghue, D., Beck, M., Harte, A., and Stott, D. (2006). Beneath the sand—remote sensing, archaeology aggregates and sustainability: A case study from Heslerton, the vale of Pickering, North Yorkshire, UK. Archaeological Prospection 13: 291–299.Google Scholar
  175. Regnauld, N., Mackaness, W. A., and Hart, G. (2002). Automated relief representation for visualisation of archaeological monuments and other anthropogenic forms. Computers, Environment and Urban Systems 26: 219–239.Google Scholar
  176. Richards, D. G. (1980). Water-penetration aerial photography. International Journal of Nautical Archaeology 9: 331–337.Google Scholar
  177. Richards, J. D. (1998). Recent trends in computer applications in archaeology. Journal of Archaeological Research 6: 331–382.Google Scholar
  178. Richards, J. D. (2002). Electronic publication in archaeology. In Evans, T. L., and Daly, P. T. (eds.), Digital Archaeology: Bridging Method and Theory, Routledge, London, pp. 213–225.Google Scholar
  179. Rick, J. W. (1996). Total stations in archaeology. SAA Bulletin 14: 24–27.Google Scholar
  180. Rowlands, A., and Sarris, A. (2007). Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing. Journal of Archaeological Science 34: 795–803.Google Scholar
  181. Russell, T. M. (2004). The Spatial Analysis of Radiocarbon Databases: The Spread of the First Farmers in Europe and of the Fat-Tailed Sheep in Southern Africa, Archaeopress, Oxford.Google Scholar
  182. Ryavec, K. E. (2001). Land use/cover change in central Tibet, c. 1830-1990: Devising a GIS methodology to study a historical Tibetan land decree. Geographical Journal 167: 342–357.Google Scholar
  183. Saturno,W., Sever, T. L., Irwin, D. E., Howell, B. F., and Garrison, T. G. (2007). Putting us on the map: Remote sensing investigation of the ancient Maya landscape. In Wiseman, J., and El-Baz, F. (eds.), Remote Sensing in Archaeology, Springer, New York, pp. 137–160.Google Scholar
  184. Schmidt, A. (2002). Geophysical Data in Archaeology: A Guide to Good Practice, Arts and Humanities Data Service Guides to Good Practice, 2nd edition, David Brown Book Co., New York.Google Scholar
  185. Schmidt, A. (2003). Remote sensing and geophysical prospection. Internet Archaeology 15. http://intarch.ac.uk/journal/issue15/schmidt_index.html.
  186. Schneiderman-Fox, F., and Pappalardo, A. M. (1996). A paperless approach toward field data collection: An example from the Bronx. SAA Bulletin 14: 18–20.Google Scholar
  187. Scott, C. (2007). Cost surface analysis of obsidian exchange in New Zealand. New Zealand Journal of Archaeology 29: 57–87.Google Scholar
  188. Shimoji, T. (1995). An archaeological application of synthetic radar (SAR) in Thailand. Asian Conference on Remote Sensing (ACRS), Nakhon Ratchasima, Thailand. http://www.gisdevelopment.net/aars/acrs/1995/ts3/ts3007.asp.
  189. Snow, D. R., Gahegan, M., Giles, C. L., Hirth, K. G., Milner, G. R., Mitra, R., and Wang, J. Z. (2006). Cybertools and archaeology. Science 311: 958–959.Google Scholar
  190. Stichelbaut, B. (2006). The application of First World War aerial photography to archaeology: The Belgian images. Antiquity 80: 161–172.Google Scholar
  191. Tan, K. L., Wan, Y. Q., Yang, Y. D., and Duan, Q. B. (2005). Study of hyperspectral remote sensing for archaeology. Journal of Infrared and Millimeter Waves 24: 437–440.Google Scholar
  192. Tringham, R. (1991). Households with faces: The challenge of gender in prehistoric architectural remains. In Gero, J., and Conkey, M. (eds.), Engendering Archaeology, Blackwell, Oxford, pp. 93–131.Google Scholar
  193. Wagtendonk, A. J., and De Jeu, R. A. (2007). Sensible field computing: Evaluating the use of mobile GIS methods in scientific fieldwork. Photogrammetric Engineering and Remote Sensing 73: 651–662.Google Scholar
  194. Wandsnider, L. (2004). Solving the puzzle of the archaeological labyrinth: Time perspectivism in Mediterranean surface archaeology. In Alcock, S., and Cherry, J. (eds.), Side-by-Side: Comparative Archaeological Survey in the Mediterranean, Oxbow Books, Oxford, pp. 49–62.Google Scholar
  195. Wandsnider, L., and Dooley, M. (2004). Landscape approaches to regional archaeological variation. Paper presented at the 2004 Annual Meeting of the Society for American Archaeology, Montreal, Canada.Google Scholar
  196. Weaver, W. (2006). Ground-penetrating radar mapping in clay: Success from South Carolina, USA. Archaeological Prospection 13: 147–150.Google Scholar
  197. Wescott, K. L., and Brandon, R. J. (eds.) (2000). Practical Applications of GIS for Archaeologists: A Predictive Modeling Toolkit, Taylor and Francis, Philadelphia.Google Scholar
  198. Wheatley, D. (2000). Spatial technology and archaeological theory revisited. In Lockyear, K., Sly, T. J., and Mihailesev-Birliba, V. (eds.), Computer Applications and Quantitative Methods in Archaeology, BAR International Series Vol. 845, Archaeopress, Oxford, pp. 123–131.Google Scholar
  199. Wheatley, D. (2004). Making space for an archaeology of place. Internet Archaeology 15. http://intarch.ac.uk/journal/issue15/wheatley_index.html.
  200. Wheatley, D., and Gillings, M. (2000). Vision, perception and GIS: Developing enriched approaches to the study of archaeological visibility. In Lock, G. (ed.), Beyond the Map: Archaeology and Spatial Technologies, IOS Press, Amsterdam, pp. 1–27.Google Scholar
  201. Wheatley, D., and Gillings, M. (2002). Spatial Technology and Archaeology: The Archaeological Applications of GIS, Taylor and Francis, London.Google Scholar
  202. Whitley, T. G. (2004). Causality and cross-purposes in archaeological predictive modeling. In Wien, M., Erbe, R. K., and Wien, S. (eds.), E-way into the Four Dimensions of Cultural Heritage CAA 2003, Archaeopress, Oxford, pp. 236–239.Google Scholar
  203. Wilkinson, T. J., Gibson, M., Christiansen, J. H., Widell, M., Schloen, D., Kouchoukos, N., Woods, W., Sanders, J., Simunich, K., Altaweel, M., Ur, J., Hritz, C., Lauinger, J., Paulette, T., and Tenney, J. (2007). Modeling settlement systems in a dynamic environment: Case studies in Mesopotamia. In Kohler, T. A., and van der Leeuw, S. (eds.), The Model-Based Archaeology of Socionatural Systems, School for Advanced Research Press, Santa Fe, NM, pp. 175–208.Google Scholar
  204. Williams, P. R., and Nash, D. J. (2006). Sighting the apu: A GIS analysis of Wari imperialism and the worship of mountain peaks. World Archaeology 38: 455–468.Google Scholar
  205. Winterbottom, S. J., and Dawson, T. (2005). Airborne multi-spectral prospection for buried archaeology in mobile sand dominated systems. Archaeological Prospection 12: 205–219.Google Scholar
  206. Winterbottom, S. J., and Long, D. (2006). From abstract digital models to rich virtual environments: Landscape contexts in Kilmartin Glen, Scotland. Journal of Archaeological Science 33: 1356–1367.Google Scholar
  207. Wise, A., and Miller, P. (1997). Why metadata matters in archaeology. Internet Archaeology 2. http://intarch.ac.uk/journal/issue2/wise_index.html
  208. Wiseman, J., and El-Baz, F. (eds.) (2007). Remote Sensing in Archaeology, Springer, New York.Google Scholar
  209. Zeidler, J. A. (1997). ProbeCorder: Pen-based computing for sediment profile recording. SAA Bulletin 15: 32–37.Google Scholar
  210. Zollikofer, C. P., and Ponce de León, M. S. (2005). Virtual reconstruction: A Primer in Computer-assisted Paleontology and Biomedicine, Wiley-Interscience, Hoboken, NJ.Google Scholar

Bibliography of recent literature

  1. Abbas, A. M., Kamei, H., Helal, A., Atya, M. A., and Shaaban, F. A. (2005). Contribution of geophysics to outlining the foundation structure of the Islamic museum, Cairo, Egypt. Archaeological Prospection 12: 167–176.Google Scholar
  2. Anderson, D. G., and Faught, M. K. (2000). Palaeoindian artefact distributions: Evidence and implications. Antiquity 74: 507–513.Google Scholar
  3. Anschuetz, K. F., Wilshusen, R. H., and Scheick, C. L. (2001). An archaeology of landscapes: Perspectives and directions. Journal of Archaeological Research 9: 157–211.Google Scholar
  4. Aspinall, A., and Saunders, M. K. (2005). Experiments with the square array. Archaeological Prospection 12: 115–129.Google Scholar
  5. Atya, M. A., Kamei, H., Abbas, A. M., Shaaban, F. A., Hassaneen, A. G., Abd Alla, M. A., Soliman, M. N., Marukawa, Y., Ako, T., and Kobayashi, Y. (2005). Complementary integrated geophysical investigation around Al-Zayyan temple, Kharga oasis, Al-Wadi Al-Jadeed (New Valley), Egypt. Archaeological Prospection 12:: 177–189.Google Scholar
  6. Ayala, G., and French, C. (2005). Erosion modeling of past land-use practices in the Fiume di Sotto di Troina River Valley, north-central Sicily. Geoarchaeology: An International Journal 20: 149–167.Google Scholar
  7. Barton, C. M., Bernabeu, J., Aura, J. E., Gracia, O., and La Roca, N. (2002). Dynamic landscapes, artifacts taphonomy, and land-use modeling in the western Mediterranean. Geoarchaeology: An International Journal 17: 155–190.Google Scholar
  8. Barton, K., and Fenwick, J. (2005). Geophysical investigations at the ancient royal site of Rathcroghan, County Roscommon, Ireland. Archaeological Prospection 12: 3–18.Google Scholar
  9. Bauer, A., Nicoll, K., Park, L., and Matney, T. (2004). Archaeological site distribution by geomorphic setting in the southern lower Cuyahoga River valley, northeastern Ohio: Initial observations from a GIS database. Geoarchaeology: An International Journal 19: 711–729.Google Scholar
  10. Bavusi, M., Chianese, D., Giano, S. I., and Mucciarelli, M. (2004). Multidisciplinary investigations on the Roman aqueduct of Grumentum (Basilicata, southern Italy). Annals of Geophysics 47: 1791–1801.Google Scholar
  11. Behrens, C. A., and Sever, T. L. (1991). Applications of Space-age Technology in Anthropology: November 28, 1990 Conference Proceedings, NASA Science and Technology Laboratory, John C. Stennis Space Center, MS.Google Scholar
  12. Bescoby, D. J. (2006). Detecting Roman land boundaries in aerial photographs using radon transforms. Journal of Archaeological Science 33: 735–743.Google Scholar
  13. Bewley, R. H., and Raczkowski, W. (eds.) (2002). Aerial Archaeology: Developing Future Practice, NATO Science Series, Life Sciences Vol. 337, IOS Press, Amsterdam.Google Scholar
  14. Box, P. (2003). Safeguarding the plain of jars: Megaliths and unexploded ordnance in the Lao People’s Democratic Republic. Journal of GIS in Archaeology 1: 90–102.Google Scholar
  15. Brewster, A., Byrd, B. F., and Reddy, S. N. (2003). Cultural landscapes of coastal foragers: An example of GIS and drainage catchment analysis from Southern California. Journal of GIS in Archaeology 1: 46–60.Google Scholar
  16. Brown, D. G., Riolo, R., Robinson, D. T., North, M., and Rand, W. (2005). Spatial process and data models: Toward integration of agent-based models and GIS. Journal of Geographical Systems 7: 25–47.Google Scholar
  17. Buckles, J. E., Kashiwase, K., and Krantz, T. (2002). Reconstruction of prehistoric Lake Cahuilla in the Salton Sea basin using GIS and GPS. Hydrobiologia 473: 55–57.Google Scholar
  18. Byerly, R. M., Cooper, J. R., Meltzer, D. J., Hill, M. E., and LaBelle, J. M. (2005). On Bonfire Shelter (Texas) as a Paleoindian bison jump: An assessment using GIS and zooarchaeology. American Antiquity 70: 595–629.CrossRefGoogle Scholar
  19. Campana, S., and Forte, M. (2001). Remote Sensing in Archaeology: XI Ciclo di Lezioni Sulla Ricerca Applicata in Archeologia, Certosa di Pontignano (Siena), 6-11 Dicembre 1999, All’Insegna del Giglio, Firenze, Italy.Google Scholar
  20. Chapman, H. P., and Van de Noort, R. (2001). High-resolution wetland prospection, using GPS and GIS: Landscape studies at Sutton Common (South Yorkshire), and Meare Village East (Somerset). Journal of Archaeological Science 28: 365–375.Google Scholar
  21. Clark, A. (2000). Seeing Beneath the Soil: Prospecting Methods in Archaeology, Routledge, London.Google Scholar
  22. Comer, D. C. (2003). Environmental history at an early prehistoric village: An application of cultural site analysis at Beidha, in southern Jordan. Journal of GIS in Archaeology 1: 103–115.Google Scholar
  23. Cooper, G. R. (2005). Analysing potential field data using visibility. Computers and Geosciences 31: 877–881.Google Scholar
  24. Dalan, R. A. (2001). A magnetic susceptibility logger for archaeological application. Geoarchaeology: An International Journal 16: 263–273.Google Scholar
  25. de la Vega, M., Osella, A., Lascano, E., and Carcione, J. M. (2005). Ground-penetrating radar and geo-electrical simulations of data from the Floridablanca archaeological site. Archaeological Prospection 12: 19–30.Google Scholar
  26. Diamanti, N. G., Tsokas, G. N., Tsourlos, P. I., and Vafidis, A. (2005). Integrated interpretation of geophysical data in the archaeological site of Europos (northern Greece). Archaeological Prospection 12: 79–91.Google Scholar
  27. Dixon, E. J., Manley, W. F., and Lee, C. M. (2005). The emerging archaeology of glaciers and ice patches: Examples from Alaska’s Wrangell-St. Elias National Park and Preserve. American Antiquity 70: 129–143.Google Scholar
  28. Dogan, M., and Papamarinopoulos, S. (2006). Exploration of the hellenistic fortification complex at Asea using a multigeophysical prospection approach. Archaeological Prospection 13: 1–9.Google Scholar
  29. Dureka, J. T., and Moore, R. G. (2003). A gazetteer of archaeological sites and cultural resource surveys surrounding the Big Thicket National Preserve. Journal of GIS in Archaeology 1: 116–122.Google Scholar
  30. Ernenwein, E. G. (2006). Imaging in the ground-penetrating radar near-field zone: A case study from New Mexico, USA. Archaeological Prospection 13: 154–156.Google Scholar
  31. Feinman, G. M. (1999). Defining a contemporary landscape approach: Concluding thoughts. Antiquity 73: 684–685.Google Scholar
  32. Fleming, A. (2006). Post-processual landscape archaeology: A critique. Cambridge Archaeological Journal 16: 267–280.Google Scholar
  33. Foster, H. T. (2004). Evidence of Historic Creek Indian migration from a regional and direct historic analysis of ceramic types. Southeastern Archaeology 23: 65–84.Google Scholar
  34. Fowler, M. J., and Fowler, Y. M. (2005). Detection of archaeological crop marks on declassified CORONA KH-4B intelligence satellite photography of Southern England. Archaeological Prospection 12: 257–264.Google Scholar
  35. Fowler, P. (1999). A limestone landscape from the air: Le Causse Mejean, Languedoc, France. Antiquity 73: 411–419.Google Scholar
  36. French, C. (2003). Geoarchaeology in Action: Studies in Soil Micromorphology and Landscape Evolution, Routledge, London.Google Scholar
  37. Gaffney, C., Hughes, G., and Gater, J. (2005). Geophysical surveys at King Lobengula’s Palace KoBulawayo, Zimbabwe. Archaeological Prospection 12: 31–49.Google Scholar
  38. Gartner, W. G. (1999). Late woodland landscapes of Wisconsin: Ridged fields, effigy mounds and territoriality. Antiquity 73: 671–683.Google Scholar
  39. Gillings, M. (2001). Spatial information and archaeology. In Brothwell, D. R., and Pollard, A. M. (eds.), Handbook of Archaeological Sciences, Wiley, New York, pp. 663–670.Google Scholar
  40. Goldberg, P., Holliday, V. T., and Reid, C. (2001). Earth Sciences and Archaeology, Kluwer Academic, New York.Google Scholar
  41. Goodman, D., Nishimura, Y., Hongo, H., and Higashi, N. (2006). Correcting for topography and the tilt of ground-penetrating radar antennae. Archaeological Prospection 13: 157–161.Google Scholar
  42. Grealy, M. (2006). Resolution of ground-penetrating radar reflections at differing frequencies. Archaeological Prospection 13: 142–146.Google Scholar
  43. Gregory, I. N., and Ell, P. S. (2005). Analyzing spatiotemporal change by use of national historical geographical information systems: Population change during and after the Great Irish Famine. Historical Methods 38: 149–167.Google Scholar
  44. Gregory, I. N., and Ell, P. S. (2005). Breaking the boundaries: Geographical approaches to integrating 200 years of the census. Journal of the Royal Statistical Society Series A - Statistics in Society 168: 419-437.Google Scholar
  45. Gregory, I. N., Bennett, C., Gilham, V. L., and Southall, H. R. (2002). The Great Britain historical GIS project: From maps to changing human geography. Cartographic Journal 39: 37–49.Google Scholar
  46. Hill, J. B. (2004). Land use and an archaeological perspective on socio-natural studies in the Wadi al-Hasa, west-central Jordan. American Antiquity 69: 389–412.Google Scholar
  47. Howard, A. J., and Macklin, M. G. (1999). A generic geomorphological approach to archaeological interpretation and prospection in British river valleys: A guide for archaeologists investigating Holocene landscapes. Antiquity 73: 527–541.Google Scholar
  48. Howard, P. (2007). Archaeological Surveying and Mapping: Recording and Depicting the Landscape, Routledge, London.Google Scholar
  49. Hughes, K. J. (1999). Persistent features from a palaeo-landscape: The ancient tracks of the Maltese Islands. Geographical Journal 165: 62–78.Google Scholar
  50. Hunt, T. L. (2005). Mapping prehistoric statue roads on Easter Island. Antiquity 79: 158–168.Google Scholar
  51. Johnson, I., and Wilson, A. (2003). Making the most of maps: Field survey on the Island of Kythera. Journal of GIS in Archaeology 1: 79–89.Google Scholar
  52. Jones, E. L. (2007). Subsistence change, landscape use, and changing site elevation at the Pleistocene-Holocene transition in the Dordogne of southwestern France. Journal of Archaeological Science 34: 344–353.Google Scholar
  53. Jones, G., and Maki, D. L. (2005). Lightning-induced magnetic anomalies on archaeological sites. Archaeological Prospection 12: 191–197.Google Scholar
  54. Kohler, T. A., and Gumerman, G. J. (2000). Dynamics in Human and Primate Societies: Agent-Based Modeling of Social and Spatial Processes, Oxford University Press, New York.Google Scholar
  55. Krivanek, R. (2006). Magnetometric prospection of various types of large ditched enclosures in Bohemia. Archaeological Prospection 13: 25–43.Google Scholar
  56. Lake, M. W., Woodman, P. E., and Mithen, S. J. (1998). Tailoring GIS software for archaeological applications: An example concerning viewshed analysis. Journal of Archaeological Science 25: 27–38.Google Scholar
  57. Lashlee, D., Briuer, F., Murphy, W., and McDonald, E. V. (2002). Geomorphic mapping enhances cultural resource management at the US Army Yuma Proving Ground, Arizona, USA. Arid Land Research and Management 16: 213–229.Google Scholar
  58. Leckebusch, J. (2005). Aerial archaeology: A full digital workflow for aerial photography. Archaeological Prospection 12: 235–244.Google Scholar
  59. Leckebusch, J. (2005). Precision real-time positioning for fast geophysical survey. Archaeological Prospection 12: 199–202.Google Scholar
  60. Linford, P. K. (2005). An automated approach to the analysis of the arrangement of post-pits at Stanton Drew. Archaeological Prospection 12: 137–150.Google Scholar
  61. Llobera, M. (2003). Extending GIS-based visual analysis: The concept of visualscapes. International Journal of Geographical Information Science 17: 25–48.Google Scholar
  62. Lock, G. R., and Brown, K. (2000). On the Theory and Practice of Archaeological Computing, Oxford University Committee for Archaeology, Oxford.Google Scholar
  63. Losier, L. M., Pouliot, J., and Fortin, M. (2007). 3D geometrical modeling of excavation units at the archaeological site of Tell’Acharneh (Syria). Journal of Archaeological Science 34: 272–288.Google Scholar
  64. Manhein, M. H., Ginesse, A. L., and Leitner, M. (2006). The application of geographic information systems and spatial analysis to assess dumped and subsequently scattered human remains. Journal of Forensic Science 51: 469–474.Google Scholar
  65. Marchant, R., Behling, H., Berrio, J. C., Hooghiemstra, H., van Geel, B., van der Hammen, T., Herrera, L., Melief, B., van Reenen, G., and Wille, M. (2004). Vegetation disturbance and human population in Colombia: A regional reconstruction. Antiquity 78: 828–838.Google Scholar
  66. Matthews, J. A., Seppala, M., and Dresser, P. Q. (2005). Holocene solifluction, climate variation and fire in a subarctic landscape at Pippokangas, Finnish Lapland, based on radiocarbon-dated buried charcoal. Journal of Quaternary Science 20: 533–548.Google Scholar
  67. McCoy, M. D. (2008). Hawaiian limpet harvesting in historical perspective: A review of modern and archaeological data on Cellana spp. from the Kalaupapa Peninsula, Moloka’i Island. Pacific Science 62: 21–38.Google Scholar
  68. McCoy, M. D., and Hartshorn, A. S. (2007). Wind erosion and intensive prehistoric agriculture: A case study from the Kalaupapa Field System, Hawai‘i. Geoarchaeology: An International Journal 22: 511–532.Google Scholar
  69. Metwaly, M., Green, A. G., Horstmeyer, H., Maurer, H., Abbas, A. M., and Hassaneen, A. R. (2005). Combined seismic tomographic and ultrashallow seismic reflection study of an Early Dynastic mastaba, Saqqara, Egypt. Archaeological Prospection 12: 245–256.Google Scholar
  70. Morgan, C. (2008). Reconstructing prehistoric hunter–gatherer foraging radii: A case study from California’s southern Sierra Nevada. Journal of Archaeological Science 35: 247–258.Google Scholar
  71. Nelson, M. C., Hegmon, M., Kulow, S., and Schollmeyer, K. G. (2006). Archaeological and ecological perspectives on reorganization: A case study from the Mimbres region of the US Southwest. American Antiquity 71: 403–432.CrossRefGoogle Scholar
  72. Nuzzo, L. (2005). Identification and removal of above-ground spurious signals in GPR archaeological prospecting. Archaeological Prospection 12: 93–103.Google Scholar
  73. Odah, H., Abdallatif, T. F., El-Hemaly, I. A., and Abd El-All, E. (2005). Gradiometer survey to locate the ancient remains distributed to the northeast of the Zoser pyramid, Saqqara, Giza, Egypt. Archaeological Prospection 12: 61–68.Google Scholar
  74. Paoletti, V., Secomandi, M., Piromallo, M., Giordano, F., Fedi, M., and Rapolla, A. (2005). Magnetic survey at the submerged archaeological site of Baia, Naples, southern Italy. Archaeological Prospection 12: 51–59.Google Scholar
  75. Passmore, D. G., Waddington, C., and Van der Schriek, T. (2006). Enhancing the evaluation and management of river valley archaeology: Geoarchaeology in the Till-Tweed catchment, northern England. Archaeological Prospection 13: 269–281.Google Scholar
  76. Periman, R. D. (2005). Modeling landscapes and past vegetation patterns of New Mexico’s Rio del Oso Valley. Geoarchaeology: An International Journal 20: 193–210.Google Scholar
  77. Polymenakos, L., and Papamarinopoulos, S. P. (2005). Exploring a prehistoric site for remains of human structures by three-dimensional seismic tomography. Archaeological Prospection 12: 221–233.Google Scholar
  78. Pomfret, J. (2006). Ground-penetrating radar profile spacing and orientation for subsurface resolution of linear features. Archaeological Prospection 13: 151–153.Google Scholar
  79. Rogers, S. S., Sandweiss, D. H., Maasch, K. A., Belknap, D. F., and Agouris, P. (2004). Coastal change and beach ridges along the northwest coast of Peru: Image and GIS analysis of the Chira, Piura, and Colan beach-ridge plains. Journal of Coastal Research 20: 1102–1125.Google Scholar
  80. Shepardson, B. (2005). The role of Rapa Nui (Easter Island) statuary as territorial boundary markers. Antiquity 79: 169–178.Google Scholar
  81. Snead, J. E. (2002). Ancestral Pueblo trails and the cultural landscape of the Pajarito Plateau, New Mexico. Antiquity 76: 756–765.Google Scholar
  82. Spikins, P. (2000). GIS models of past vegetation: An example from northern England, 10,000-5000 B.P. Journal of Archaeological Science 27: 219–234.Google Scholar
  83. Spikins, P., Conneller, C., Ayestaran, H., and Scaife, B. (2002). GIS based interpolation applied to distinguishing occupation phases of Early Prehistoric sites. Journal of Archaeological Science 29: 1235–1245.Google Scholar
  84. Sullivan, A. P., Cook, R. A., Purtill, M. P., and Uphus, P. M. (2001). Economic and land-use implications of prehistoric fire-cracked rock piles, northern Arizona. Journal of Field Archaeology 28: 367–382.Google Scholar
  85. Swanson, S. (2003). Documenting prehistoric communication networks: A case study in the Paquime polity. American Antiquity 68: 753–767.Google Scholar
  86. Tabor, R., and Johnson, P. (2000). Sigwells, Somerset, England: Regional application and interpretation of geophysical survey. Antiquity 74: 319–325.Google Scholar
  87. Tonkov, N., and Loke, M. H. (2006). A resistivity survey of a burial mound in the ‘Valley of the Thracian Kings.’ Archaeological Prospection 13: 129–136.Google Scholar
  88. Toom, D. L., and Kvamme, K. L. (2002). The “big house” at Whistling Elk Village (39HU242): Geophysical findings and archaeological truths. Plains Anthropologist 47: 5–16.Google Scholar
  89. Ucko, P., and Layton, R. (eds.), The Archaeology and Anthropology of Landscape, Routledge, London.Google Scholar
  90. Utsi, E. (2006). Ground-penetrating radar for archaeology. Archaeological Prospection 13: 228–229.Google Scholar
  91. Van Leusen, M. (2001). Archaeological data integration. In Brothwell, D. R., and Pollard, A. M. (eds.), Handbook of Archaeological Sciences, Wiley, New York, pp. 575–584.Google Scholar
  92. Venter, M. L., Thompson, V. D., Reynolds, M. D., and Waggoner, J. C. (2006). Integrating shallow geophysical survey: Archaeological investigations at Totógal in the Sierra de los Tuxtlas, Veracruz, México. Journal of Archaeological Science 33: 767–777.Google Scholar
  93. Vining, B. R., and Wiseman, J. (2006). Multispectral and synthetic aperture radar remote-sensing-based models for holocene coastline development in the Ambracian Gulf, Epirus, Greece. Archaeological Prospection 13: 258–268.Google Scholar
  94. Walker, R., Gaffney, C., Gater, J., and Wood, E. (2005). Fluxgate gradiometry and square array resistance survey at Drumlanrig, Dumfries and Galloway, Scotland. Archaeological Prospection 12: 131–136.Google Scholar
  95. Watters, M.S. (2006). Geovisualization: An example from the catholme ceremonial complex. Archaeological Prospection 13: 282–290.Google Scholar
  96. Webster. D. S. (1999). The concept of affordance and GIS: A note on Llobera (1996). Antiquity 73: 915–917.Google Scholar
  97. Wien, M., Erbe, R. K. and Wien, S. (eds.) (2004). E-way into the Four Dimensions of Cultural Heritage CAA 2003, Archaeopress, Oxford.Google Scholar
  98. Wells, E. C., Rice, G. E., and Ravesloot, J. C. (2004). Peopling landscapes between villages in the middle Gila River valley of central Arizona. American Antiquity 69: 627–652.Google Scholar
  99. Whitridge, P. (2004). Landscapes, houses, bodies, things: “Place” and the archaeology of Inuit imaginaries. Journal of Archaeological Method and Theory 11: 213–250.Google Scholar
  100. Wilson, D. R. (2000). Air Photo Interpretation for Archaeologists, Arcadia Publishing, New York.Google Scholar
  101. Wobst, H. M. (2006). Artifacts as social interference: The politics of spatial scale. In Lock, G. R., and Molyneaux, B. (eds.), Confronting Scale in Archaeology: Issues of Theory and Practice, Springer, New York, pp. 55–64.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of AnthropologySan Jose State UniversitySan JoseUSA
  2. 2.Department of AnthropologyUniversity of AucklandAucklandNew Zealand

Personalised recommendations