Generation of Single Attosecond Pulse by Using Asymmetric Polarization Gating Technology

  • H. Liu
  • R. S. Castle
  • A. Y. Z. FengEmail author

The generation of high-order harmonics and single attosecond pulses via the asymmetric polarization gating technology has been theoretically investigated. It is shown that when the two circularly polarized laser fields are asymmetric in amplitude and phase, not only can the modulations of the harmonic spectrum be decreased, but also the efficiencies of the harmonics can be enhanced. As a result, a super-continuum with the bandwidth of 85 eV, contributed by the single harmonic emission peak and the near-single short quantum path, can be obtained. Finally, through the Fourier transformation of the selected harmonics on this supercontinuum, a near-single attosecond pulse with a full width at half maximum of 52 as can be obtained.


single attosecond pulse high-order harmonic generation asymmetric polarization gating technology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Krausz and M. Ivanov, Rev. Mod. Phys., 81, 163–234 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    G. Vampa, T. J. Hammond, N. Thiré, B. E. Schmidt, F. Légaré, C. R. McDonald, T. Brabec, and P. B. Corkum, Nature, 462, 522–526 (2015).Google Scholar
  3. 3.
    T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, and E. Goulielmakis, Nature, 521, 498–502 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    P. C. Li, C. Laughlin, and S. I. Chu, Phys. Rev. A, 89, 023431 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    K. J. Yuan and A. D. Bandrauk, Phys. Rev. Lett., 110, 023003 (2013).Google Scholar
  6. 6.
    X. B. Bian and A. D. Bandrauk, Phys. Rev. Lett., 105, 093903 (2010).Google Scholar
  7. 7.
    M. F. Ciappina, J. A. Pérez-Hernández, A. S. Landsman, W. Okell, S. Zherebtsov, B. Förg, J. Schötz, J. L. Seiffert, T. Fennel, T. Shaaran, T. Zimmermann, A. Chacón, R. Guichard, A. Zaïr, J. W. G. Tisch, J. P. Marangos, T. Witting, A. Braun, S. A. Maier, L. Roso, M. Krüger, P. Hommelhoff, M. F. Kling, F Krausz, and M Lewenstein, Rep. Prog. Phys., 80, 054401 (2017).Google Scholar
  8. 8.
    R. E. F. Silva, F. Catoire, P. Riviere, H. Bachau, and F. Martin, Phys. Rev. Lett., 110, 113001 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    P. B. Corkum, Phys. Rev. Lett., 71, 1994–1997 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, Science, 320, 1614–1617 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, Phys. Rev. Lett., 98, 203901 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    C. L. Xia and X. S. Liu, Phys. Rev. A, 87, 043406 (2013).Google Scholar
  13. 13.
    X. Wang, C. Jin, and C. D. Lin, Phys. Rev. A, 90, 023416 (2014).Google Scholar
  14. 14.
    T. Popmintchev, M. C. Chen, O. Cohen, M. Grisham, J. Rocca, M. Murnane, and H. Kapteyn, Opt. Lett., 33, 2128–2130 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    J. J. Xu, B. Zeng, and Y. L. Yu, Phys. Rev. A, 82, 053822 (2010).Google Scholar
  16. 16.
    L. Q. F eng and T. S. Chu, Phys. Rev. A, 84, 053853 (2011).Google Scholar
  17. 17.
    L. Q. Feng, Phys. Rev. A, 92, 053832 (2015).Google Scholar
  18. 18.
    P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, Opt. Lett., 19, 1870–1872 (1994).Google Scholar
  19. 19.
    Z. Chang, Phys. Rev. A, 71, 023813 (2005).Google Scholar
  20. 20.
    F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, Nat. Photonics, 4, 875–879 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, Science, 314, 443–446 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    J. Li, X. M. Ren, Y. C. Yin, Y. Cheng, E. Cunningham, Y. Wu, and Z. H. Chang, Appl. Phys. Lett., 108, 231102 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    H. Mashiko, S. Gibertson, C. Q. Li, S. D. Khan, M. M. Shakya, E. Moon, and Z. H. Chang, Phys. Rev. Lett., 100, 103906 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. W. Wang, and Z. H. Chang, Opt. Lett., 37, 3891–3893 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    L. Q. Feng, W. L. Li, and R. S. Castle, J. Appl. Spectrosc., 85, 171 (2018).ADSGoogle Scholar
  26. 26.
    R. F. Lu, P. Y. Zhang, and K. L. Han, Phys. Rev. E, 77, 066701 (2008).Google Scholar
  27. 27.
    J. Hu, K. L. Han, and G. Z. He, Phys. Rev. Lett., 95, 123001 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    L. Q. Feng and H. Liu, Phys. Plasmas, 22, 013107 (2015).Google Scholar
  29. 29.
    L. Q. Feng, W. L. Li, and H. Liu, Ann. Phys. (Berlin), 529, 1700093 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    X. Cao, S. C. Jiang, C. Yu, Y. H. Wang, L. H. Bai, and R. F. Lu, Opt. Express, 22, 26153–26161 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    P. Antoine, B. Piraux, and A. Maquet, Phys. Rev. A, 51, R1750–R1753 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical and Environmental EngineeringLiaoning University of TechnologyJinzhouChina
  2. 2.Marmara University, Department of Chemical and Environmental EngineeringIstanbulTurkey

Personalised recommendations