Advertisement

First- and Third-Derivative Spectrophotometry for Simultaneous Determination of Dexamethasone and Cytarabine in Pharmaceutical Formulations and Biological Fluids

  • V. Montazeralmahdi
  • A. SheibaniEmail author
  • M. Reza Shishehbore
Article

The derivative spectrophotometric method was established for simultaneous determination of dexamethasone and cytarabine (cytosine arabinoside). Measurements were made in the zero-crossing wavelengths at 268.0 nm (first derivative) and 264.0 nm (third derivative) for determining dexamethasone and cytarabine, respectively. The calibration graphs were linear in the concentration ranges 0.10 to 10 μg/mL of dexamethasone and 0.25 to 50.0 μg/mL of cytarabine. The limits of detection 0.08 and 0.10 μg/mL and relative standard deviations 3.0 and 1.0% were obtained for dexamethasone and cytarabine, respectively. The possible interfering effect of other substances was also studied to investigate selectivity of the developed method. The proposed method was applied satisfactorily for the simultaneous determination of both drugs in the pharmaceutical formulation and biological fluid samples.

Keywords

dexamethasone cytarabine derivative spectrophotometry pharmaceutical formulation biological fluid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Rankovic, R. Hargreaves, and M. Bingham, Drug Discovery and Medicinal Chemistry for Psychiatric Disorders, Cambridge, Royal Society of Chemistry (2012).Google Scholar
  2. 2.
    M. E. Mutschler, G. Geisslinger, H. K. Kroemer, P. Ruth, and M. Schaefer-Kortin, Farmakologia i Toksykologia, MedPharm, Wrocław (2010).Google Scholar
  3. 3.
    J. C. Mucklow, Martindale: The Complete Drug Reference, Pharmaceutical Press (2009).Google Scholar
  4. 4.
    G. Willemart, K. R. Knight, and W. A. Morrison, Br. J. Plast. Surg., 51, 624–628 (1998).CrossRefGoogle Scholar
  5. 5.
    J. H. Galicich and L. A. French, Am. Pract. Dig. Treat., 12, 169–174 (1961).Google Scholar
  6. 6.
  7. 7.
    British National Formulary: BNF 69, 69 ed., British Medical Association (2015).Google Scholar
  8. 8.
    M. Y. Chu and G. A. Fischer, Biochem. Pharmacol., 11, 423–430 (1962).CrossRefGoogle Scholar
  9. 9.
    T. S. Gee, K. P. Yu, and B. D. Clarkson, Cancer, 23, 1019–1032 (1969).CrossRefGoogle Scholar
  10. 10.
    I. Fleming, J. Simone, R. Jackson, W. Johnson, T. Walters, and C. Mason, Cancer, 33, 427–434 (1974).CrossRefGoogle Scholar
  11. 11.
    Q. Chen, D. Zielinski, J. Chen, A. Koski, D. Werst, and S. Nowak, J. Pharm. Biomed. Anal., 48, 732–738 (2008).Google Scholar
  12. 12.
    M. Cherlet, S. De Baere, and P. De Backer, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 805, 57–65 (2004).Google Scholar
  13. 13.
    L. Li, P. Ma, J. Wei, K. Qian, and L. Tao, J. Chromatogr. B, 933, 44–49 (2013).Google Scholar
  14. 14.
    M. Zhang, G. A. Moore, B. P. Jensen, E. J. Begg, and P. A. Bird, J. Chromatogr. B, 879, 17–24 (2011).Google Scholar
  15. 15.
    C. Shu, T. Zeng, S. Gao, T. Xia, L. Huang, F. Zhang, and W. Chen, J. Chromatogr. B, 1028, 111–119 (2016).Google Scholar
  16. 16.
    R. L. Furrier, R. W. Gaston, J. D. Strobel, S. El Dareer, and L. B. MeIIett, J. Nat. Cancer Inst., 52, 1521–1528 (1974).CrossRefGoogle Scholar
  17. 17.
    Y. Hsieh and C. J. Duncan, Rapid Commun. Mass Spectrom., 21, 573–578 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Hsieh, C. J. Duncan, and M. Liu, J. Chromatogr. B, 854, 8–12 (2007).Google Scholar
  19. 19.
    M. J. Hilhorst, G. Hendriks, M. W. van Hout, H. Sillen, and N. C. van de Merbel, Bioanalysis, 3, 1603–1611 (2011).CrossRefGoogle Scholar
  20. 20.
    C. Liao, S. Chang, S. Hu, Z. Tang, and G. Fu, J. Pharm. Biomed. Anal., 85, 118–122 (2013).Google Scholar
  21. 21.
    D. Liang, W. Wang, X. Jiang, and S. Yin, J. Chromatogr. B, 962, 14–19 (2014).Google Scholar
  22. 22.
    M. Uchiyamaa, Y. Takamatsub, K. Ogataa, T. Matsumotoc, S. Jimid, K. Tamurab, and S. Hara, Biomed. Chromatogr., 27, 818–820 (2013).CrossRefGoogle Scholar
  23. 23.
    M. Krogh-Madsena, S. H. Hansenb, and P. H. Honoréa, J. Chromatogr. B, 878, 1967–1972 (2010).Google Scholar
  24. 24.
    M. Kazemipour and M. Ansar, Iran. J. Pharm. Res., 3, 147–153 (2005).Google Scholar
  25. 25.
    P. K. Pradhan, N. Raiyani, S. R. Shah, G. H. Patel, and U. Upadhyay, The Pharm. Innov. J., 3, No. 11, 6–10 (2015).Google Scholar
  26. 26.
    T. Madrakian, A. Afkhami, M. Borazjani, and M. Bahram, Bull. Kor. Chem. Soc., 25, No. 12, 1764–1768 (2004).CrossRefGoogle Scholar
  27. 27.
    M. M. Seleim, M. S. Abu-Bakr, E. Y. Hashem, and A. M. El-Zohry, J. Appl. Spectrosc., 76, No. 4, 554–563 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    A. H. Patel, J. K. Patel, K. N. Patel, G. C. Rajput, and N. B. Rajgor, Int. J. Pharm. Biol. Res., 1, No. 1, 1–5 (2010).Google Scholar
  29. 29.
    M. J. Bogusz, R. D. Maier, K. D. Krüger, and U. Kohls, J. Anal. Toxicol., 22, 549–558 (1998).Google Scholar
  30. 30.
    R. V. S. Nirogi, V. N. Kandikere, M. Shukla, K. Mudigonda, and D. R. Ajjala, J. Chromatogr. B, 848, 271–276 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. Montazeralmahdi
    • 1
  • A. Sheibani
    • 1
    Email author
  • M. Reza Shishehbore
    • 1
  1. 1.Department of Chemistry, Yazd BranchIslamic Azad UniversityYazdIran

Personalised recommendations